首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
We detected a rare HLA‐B locus allele, B*39:77, in a Taiwanese unrelated marrow stem cell donor in our routine HLA sequence‐based typing (SBT) exercise for a possible haematopoietic stem cell donation. In exons 2, 3 and 4, the DNA sequence of B*39:77 is identical to the sequence of B*39:01:01:01 except one nucleotide at nucleotide position 733 (G‐>A) in exon 4. The nucleotide variation caused one amino acid alteration at residue 221 (Gly‐>Ser). B*39:77 was probably derived from a nucleotide substitution event involving B*39:01:01:01. The probable HLA‐A, ‐B, ‐C, ‐DRB1 and ‐DQB1 haplotype in association with B*39:77 may be deduced as A*02:01‐B*39:77‐C*07:02‐DRB1*08:03‐DQB1*06:01. Our discovery of B*39:77 in Taiwanese adds further polymorphism of B*39 variants in Taiwanese population.  相似文献   

2.
Three new HLA class I alleles, HLA‐A*02:620, HLA‐B*27:150 and HLA‐B*07:05:01:02, were described in the Spanish Caucasoid population.  相似文献   

3.
Using DNA sequence‐based typing method, we found a new HLA‐B*40 variant, B*40:221, in a Taiwanese hematopoietic stem cell donor. The allele sequence of B*40:221 is identical to the sequence of B*40:01:01 in exons 2, 3 and 4 except the nucleotides at codon 265 (GGG→AGG). The sequence variation caused one amino acid exchange at residue 265 where Gly was replaced by Arg. The probable HLA‐A, ‐B, ‐C, ‐DRB1 and ‐DQB1 haplotype in association with B*40:221 may be deduced as HLA‐A*11:01‐B*40:221‐C*03:04‐DRB1*14:54‐DQB1*05:02. The generation of B*40:221 is thought as a result of a nucleotide point mutation involving B*40:01:01. Our discovery of B*40:221 increases the polymorphism of B*40 in Taiwanese.  相似文献   

4.
A novel HLA‐B*39:01:01‐related variant, HLA‐B*39:130, has been identified in a normal individual of Han ethnicity in Hunan province, southern China. Following Sanger polymerase chain reaction–sequence‐based typing (PCR‐SBT), this new allele was further confirmed by cloning, phasing and sequencing. Aligned with HLA‐B*39:01:01, HLA‐B*39:130 has a nonsynonymous thymine substitution at nucleotide position 94 in exon 4, resulting in amino acid change from threonine to isoleucine at codon 214 (ACA→ATA) of the mature HLA‐BmRNA molecule.  相似文献   

5.
A novel allelic variant in HLA‐B*40 lineage, HLA‐B*40:298:02, has been identified in an individual of Han ethnicity afflicted with nasopharyngeal carcinoma in Hunan province, southern China. Following polymerase chain reaction–Sanger sequence‐based typing (PCR–SBT), this new variant was further confirmed by two distinct strategies of cloning and sequencing. HLA‐B*40:298:02 differs from HLA‐B*40:298:01 by a single synonymous cytosine substitution at nucleotide position 26 (T→C) in exon 3, which corresponds to codon 99 of the mature HLA‐B mRNA molecule. This new allele has an estimated frequency of 0.0002, in about 2,500 sequence‐based typed subjects from the same population.  相似文献   

6.
HLA‐A*02:28, found in a Korean and a Japanese, was reported independently to the IMGT/HLA database in 2003 and 2005, respectively. We report here eight Taiwanese unrelated bone marrow hematopoietic stem cell donors carrying A*02:28 detected during our routine HLA typing exercise. The probable HLA‐A, ‐B and ‐DRB1 haplotype in association with A*02:28 may be deduced from the eight marrow stem cell donor as A*02:28‐B*15:11‐DRB1*09:01. Our result suggests A*02:28‐B*15:11‐DRB1*09:01 is a conserved HLA haplotype restricted to Taiwanese.  相似文献   

7.
Using sequence‐based typing method, we found a new HLA‐B*13:02 variant, B*13:02:13, in a Taiwanese haematopoietic stem cell donor. The DNA sequence of B*13:02:13 is identical to the sequence of B*13:02:01 in exons 2 and 3 except the nucleotide at position 588 where G is replaced by T (codon 172; CTG→CTT). The DNA sequence variation did not alter the amino acid sequence of B*13:02:01. The generation of B*13:02:13 is thought to derive from B*13:02:01 as a result of a silence mutation. The probable HLA‐A, HLA‐B and HLA‐DRB1 haplotype in association with B*13:02:1 may be deduced as HLA‐A*24‐B*13:02:13‐DRB1*07:01 or HLA‐A*02‐B*13:02:13‐DRB1*07:01. The discovery of B*13:02:13 furthers the polymorphism of HLA‐B*13 and HLA‐B*13:02.  相似文献   

8.
The distribution of human leucocyte antigen (HLA) allele and haplotype is varied among different ethnic populations. In this study, HLA‐A, ‐B and ‐DRB1 allele and haplotype frequencies were determined in 8333 volunteer bone marrow donors of Zhejiang Han population using the polymerase chain reaction sequence‐based typing. A total of 52 HLA‐A, 96 HLA‐B and 61 HLA‐DRB1 alleles were found. Of these, the top three frequent alleles in HLA‐A, HLA‐B and HLA‐DRB1 loci, respectively, were A*11:01 (24.53%), A*24:02 (17.35%), A*02:01 (11.58%); B*40:01 (15.67%), B*46:01 (11.87%), B*58:01 (9.05%); DRB1*09:01 (17.54%),DRB1*12:02 (9.64%) and DRB1*08:03 (8.65%). A total of 171 A‐B‐DRB1 haplotypes with a frequency of >0.1% were presented and the five most common haplotypes were A*33:03‐B*58:01‐ DRB1*03:01, A*02:07‐B*46:01‐DRB1*09:01, A*30:01‐B*13:02‐DRB1*07:01, A*33:03‐B*58:01‐RB1*13:02 and A*11:01‐B*15:02‐DRB1*12:02. The information will be useful for selecting unrelated bone marrow donors and for anthropology studies and pharmacogenomics analysis.  相似文献   

9.
The identification of a novel HLA‐B*35:279 allele in a Czech patient is described. This allele is identical to the B*35:03:01 variant except the G/A nucleotide exchange at position 652 of the HLA‐B gene that corresponds to the amino acid substitution from valine to isoleucine in alpha 3 domain of the HLA‐B antigen.  相似文献   

10.
A novel HLA‐B*40 variant, HLA‐B*40:186:02, has been identified by cloning and sequencing in a southern Chinese Han population. Aligned with HLA‐B*40:01:01, HLA‐B*40:186:02 has a nonsynonymous cytosine mutation at nucleotide position 165 in exon 2, leading to amino acid change from glycine to arginine at codon 56. It differs from HLA‐B*40:186:01 by a synonymous change (adenine to cytosine) at position 165 in exon 2.  相似文献   

11.
We detected a rare HLA‐B locus allele, B*40:97, in a Taiwanese unrelated donor in our routine HLA SBT (sequence‐based typing) exercise for a possible hematopoietic stem cell donation. In exons 2, 3 and 4, the sequence of B*40:97 is identical to the sequence of B*40:02:01 except one nucleotide at nucleotide position 760 (C‐>T) in exon 4. The nucleotide variation caused one amino acid alteration at residue 230 (L‐>F). B*40:97 was probably derived from a nucleotide substitution event where C was replaced by T at nucleotide 760 involving B*40:02:01. The HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 haplotype in association with B*40:97 may be deduced as A*26:01‐B*40:97‐C*03:03‐DRB1*11:01‐DQB1*03:03. Our recognition of B*40:97 in Taiwanese helps to fill the void of ethnic information for the allele B*40:97 reported to the IMGT/HLA Database.  相似文献   

12.
Two new HLA‐ DRB1 alleles were identified by sequence‐based typing method (SBT) in 1100 participants in the Saudi Stem Cell Donor Registry. HLA‐DRB1*11:150 differs from HLA‐DRB1*11:01:01G by a single C to A substitution at nucleotide position 5580 in exon 2, resulting in an amino acid change from alanine to glutamic acid at position 74. HLA‐DRB1*14:145 differs from HLA‐DRB1*14:04 by a C to G substitution at nucleotide position 5511 in exon 2, resulting in an amino acid change from threonine to arginine at position 51.  相似文献   

13.
The human leucocyte antigen (HLA) system is the most polymorphic genetic system in humans, and HLA matching is crucial in organ transplantation, especially in hematopoietic stem cell transplantation. We investigated HLA‐A, HLA‐B and HLA‐DRB1 allele and haplotype frequencies at allelic level in 10 918 Koreans from bone marrow donor registry in Korea. Intermediate resolution HLA typing was performed using Luminex technology (Wakunaga, Japan), and additional allelic level typing was performed using PCR–single‐strand conformation polymorphism method and/or sequence‐based typing (Abbott Molecular, USA). Allele and haplotype frequencies were calculated by direct counting and maximum likelihood methods, respectively. A total of 39 HLA‐A, 66 HLA‐B and 47 HLA‐DRB1 alleles were identified. High‐frequency alleles found at a frequency of ≥5% were 6 HLA‐A (A*02:01, *02:06, *11:01, *24:02, *31:01 and *33:03), 6 HLA‐B (B*15:01, *35:01, *44:03, *51:01, 54:01 and *58:01) and 8 HLA‐DRB1 (DRB1*01:01, *04:05, *04:06, *07:01, *08:03, *09:01, *13:02 and *15:01) alleles. At each locus, A*02, B*15 and DRB1*14 generic groups were most diverse at allelic level, consisting of 9, 12 and 11 different alleles, respectively. A total of 366, 197 and 21 different HLA‐A‐B‐DRB1 haplotypes were estimated with frequencies of ≥0.05%, ≥0.1% and ≥0.5%, respectively. The five most common haplotypes with frequencies of ≥2.0% were A*33:03‐B*44:03‐DRB1*13:02 (4.97%), A*33:03‐B*58:01‐DRB1*13:02, A*33:03‐B*44:03‐DRB1*07:01, A*24:02‐B*07:02‐DRB1*01:01 and A*24:02‐B*52:01‐DRB1*15:02. Among 34 serologic HLA‐A‐B‐DR haplotypes with frequencies of ≥0.5%, 17 haplotypes revealed allele‐level diversity and majority of the allelic variation was arising from A2, A26, B61, B62, DR4 and DR14 specificities. Haplotype diversity obtained in this study is the most comprehensive data thus far reported in Koreans, and the information will be useful for unrelated stem cell transplantation as well as for disease association studies.  相似文献   

14.
The split specificities of HLA‐B14 (B64, B65) are assigned to the B*14:01 (B64) and B*14:02 (B65) products only. Of the further 50 B*14 expressed products, only B*14:03 and B*14:06 are officially designated as HLA‐B14. The B*14:08 product differs from B64 by a single amino acid substitution of W97R, while the B*14:53 specificity (which is a “short” B14 and neither B64 nor B65) differs from B64 by three residues (W97S, Y113H and F116Y). Comprehensive testing of B*14:08:01 cells (using 49 alloantisera with B64 or B64, B65 specificities, and five monoclonal antibodies with B65 or B64, B65 activity) showed that the B*14:08 specificity is, like the B*14:53 product, neither B64 nor B65 and appears as a “short” B14 specificity. To help understand the serological reactivity of the B*14:08 and B*14:53 products, and B64 and B65, we identified seven published epitopes (11AV, 97W, 61ICT, 116F, 131S+163T, 170RH and 420) and, by inspection, 29 motifs, that encompass one or more of B64, B65 and various HLA‐B14 cross‐reactive group specificities. We then considered the possession of these epitopes and motifs by the products of B*14:01 to B*14:06, B*14:08 and B*14:53. Seventeen of the 29 motifs fully complied with the one‐/two‐patch functional epitope concept for amino acid proximity, as determined by Cn3D software, the remainder partially complied. The nature and patterns of epitopes and motifs possessed by both B*14:08 and B*14:53 specificities supported their designation as HLA‐B14 but non‐B64/B65. Also that epitope 97W, with 11S or 11A, is critical for serological B64 and B65 reactivity. And conversely, that epitope 116F, and several identified motifs, are probably unimportant for HLA‐B14 antibody reactivity. The previous submission that the B*14:03 specificity is HLA‐B65 was compatible with its epitope/motif pattern. B*14:04 cells would also be expected to react as B65, based on its epitope/motif pattern, and not as B64 as previously implied. Also, from their epitope/motif patterns, and external serological information, it is probable that the B*14:05 and B*14:06 specificities will both appear as “short” HLA‐B14, non‐B64/B65. Several epitopes and motifs encompassed a range of HLA‐B specificities included in the serological HLA‐B14 cross‐reactive group, thus supporting these original serological findings.  相似文献   

15.
We report here a novel variant of HLA‐DRB1*10, DRB1*10:04, discovered in a Taiwanese volunteer bone marrow donor by a sequence‐based typing (SBT) method. The DNA sequence of DRB1*10:04 differs from DRB1*10:01:01, in exon 2, at nucleotide positions 296 (G→A) and 303 (T→G). The nucleotide changes caused an amino acid substitution at amino acid residue 70 (R→Q). We hypothesize that the formation of DRB1*10:04 was probably the result of a gene recombination event where DRB1*10:01:01 received a minimum length of DNA sequence from DRB1*04:05:01, as the sequence of DRB1*10:04 is identical to DRB1*10:01:01 in exon 2 except the sequence from nucleotide 296 to nucleotide 303, which is identical to DRB1*04:05:01. The plausible HLA‐A, ‐B, ‐C and ‐DRB1 haplotypes in association with DRB1*10:04 was deduced as A*01:01‐B*37:01‐C*06:02‐DRB1*10:04.  相似文献   

16.
HLA‐B*14:53 was found in a UK European normal blood donor prior to registration on the Welsh Bone Marrow Donor Registry. It differs from B*14:13 by one base (103G>T) in exon 2 resulting in a substitution of alanine (A) in B*14:13 to serine (S) in B*14:53. Unique among current HLA‐B*14 alleles, B*14:53 and B*14:13 share a motif of 59 bases between positions 361 and 419 in exon 3. This motif is present in numerous HLA‐B alleles the commonest overall being B*08:01, suggesting that both B*14:53 and B*14:13 arose from intralocus gene conversion events with B*08:01. Thus, B*14:53 probably arose from B*14:01:01 (which has TCC at codon 11 (S), while B*14:13 arose from B*14:02:01:01 which has GCC at codon 11 (A). Additionally, the two likely B*14:53‐bearing and B*14:13‐bearing haplotypes are typical of B*14:01:01‐bearing and B*14:02:01:01‐bearing haplotypes, respectively. Serological testing, using 49 antisera with HLA‐B64, or B64, B65 reactivity, showed that the B*14:53 specificity did not react as a B64 (B*14:01) specificity and may appear as a short/weak HLA‐B14. This implies that residues additional to S at position 11 are involved in HLA‐B64 serological identity; for example, the motif 11S 97W 116F is possessed by B*14:01 and many other B*14 products (and B*39:79 plus some HLA‐C products) but not B65 (B*14:02) or the B*14:53 specificity. B*14:53 was found in a random HLA sequence‐based typed population of 32 530 normal subjects indicating a low precision allele frequency of 0.000015 in subjects resident in Wales.  相似文献   

17.
The HLA‐B*15 group is the most polymorphic HLA‐B allele and so has several subtypes. These subtypes have not been defined in the population of north‐eastern Thailand (NET). In a previous study, using polymerase chain reaction–sequence‐specific primers (PCR‐SSP), subtypes were categorized into four groups, namely: group I: HLA‐B*15 (01, 04–07, 12, 14, 19, 20, 24, 25, 26N, 27, 32, 33, 34 and 35); group II: HLA‐B*15 (02, 08, 11, 15, 28 and 30); group III: HLA‐B*1503/4802; group IV: HLA‐B*1521. Groups I and II occurred frequently (allele frequency = 8.0 and 2.5%), and thus we optimized the polymerase chain reaction–single‐stranded conformation polymorphism (PCR‐SSCP) method to identify HLA‐B*15 subtypes of groups I and II. Eighty samples of DNA carrying HLA‐B*15 from 300 healthy unrelated individuals were tested. B*1502 (52.5%) and B*1525 (13.8%) were the most common subtypes found in NET. They also showed strong linkage disequilibrium with HLA‐Cw and heterogeneity of HLA‐A, DR, DQ haplotypes. Although limited conclusions can be drawn from this study because of the small number of DNA references used, the baseline data will be useful in the selection of common HLA‐B*15 alleles when subtyping for unrelated donor transplantations.  相似文献   

18.
The distributions of HLA allele and haplotype are variable in different ethnic populations and the data for some populations have been published. However, the data on HLA‐C and HLA‐DQB1 loci and the haplotype of HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci at a high‐resolution level are limited in Zhejiang Han population, China. In this study, the frequencies of the HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci and haplotypes were analysed among 3,548 volunteers from the Zhejiang Han population using polymerase chain reaction sequencing‐based typing method. Totals of 51 HLA‐A, 97 HLA‐B, 45 HLA‐C, 53 HLA‐DRB1 and 27 HLA‐DQB1 alleles were observed. The top three frequent alleles of HLA‐A, HLA‐B, HLA‐C, HLA‐DRB1 and HLA‐DQB1 loci were A*11:01 (23.83%), A*24:02 (17.16%), A*02:01 (11.36%); B*40:01 (14.08%), B*46:01 (12.20%), B*58:01 (8.50%); C*07:02 (18.25%), C*01:02:01G (18.15%), C*03:04 (9.88%); DRB1*09:01 (17.52%), DRB1*12:02 (10.57%), DRB1*15:01 (9.70%); DQB1*03:01 (22.63%), DQB1*03:03 (18.26%) and DQB1*06:01 (10.88%), respectively. A total of 141 HLA‐A‐C‐B‐DRB1‐DQB1 haplotypes with a frequency of ≥0.1% were found and the haplotypes with frequency greater than 3% were A*02:07‐C*01:02:01G‐B*46:01‐DRB1*09:01‐DQB1*03:03 (4.20%), A*33:03‐C*03:02‐B*58:01‐DRB1*03:01‐DQB1*02:01 (4.15%), A*30:01‐C*06:02‐B*13:02‐DRB1*07:01‐DQB1*02:02 (3.20%). The likelihood ratios test for the linkage disequilibrium of two loci haplotypes was revealed that the majority of the pairwise associations were statistically significant. The data presented in this study will be useful for searching unrelated HLA‐matched donor, planning donor registry and for anthropology studies in China.  相似文献   

19.
Three new HLA‐C alleles were identified by sequence‐based typing method (SBT) in donors for the Saudi Bone Marrow Donor Registry (SBMDR). HLA‐C*14:02:13 differs from HLA‐C*14:02:01 by a silent G to A substitution at nucleotide position 400 in exon 2, where lysine at position 66 remains unchanged. HLA‐C*15:72 differs from HLA‐C*15:22 by a nonsynonymous C to A substitution at nucleotide position 796 in exon 3, resulting in an amino acid change from phenylalanine to leucine at position 116. HLA‐C*15:74 differs from HLA‐C*15:08 by a nonsynonymous C to T substitution at nucleotide position 914 in exon 3, resulting in an amino acid change from arginine to tryptophan at position 156.  相似文献   

20.
Five novel HLA‐B alleles were identified by HLA‐SBT typing in seven unrelated Brazilian individuals. The new alleles discovered include HLA‐B*07:184, B*41:27, B*42:19, B*50:32 and B*57:63 and were officially named by the World Health Organization (WHO) Nomenclature Committee. All new HLA‐B alleles had nonsynonymous nucleotide substitution polymorphisms when compared to their most closely related HLA‐B allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号