首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Chondrogenesis is an essential component of endochondral fracture healing, though the molecular and cellular events by which it is regulated have not been fully elucidated. In this study, we used a rat model of closed fracture healing to determine the spatial and temporal expression of genes for cartilage-specific collagens. Furthermore, to determine the effects of basic fibroblast growth factor (bFGF) on chondrogenesis in fracture healing, we injected 100 microg recombinant human bFGF into the fracture site immediately after fracture. In normal calluses, pro-alpha1(II) collagen mRNA (COL2A1) was detected in proliferative chondrocytes beginning on day 4 after the fracture, and pro-alpha1(X) collagen mRNA (COL10A1) in hypertrophic chondrocytes beginning on day 7. In FGF-injected calluses, the cartilage enlarged in size significantly. On day 14, both COL2A1- and COL10A1-expressing cells were more widely distributed, and the amounts of COL2A1 and COL10A1 mRNAs were both approximately 2-fold increased when compared with uninjected fractures. Temporal patterns of expression for these genes were, however, identical to those found in normal calluses. The number of proliferating cell nuclear antigen-positive cells was increased in the non-cartilaginous area in the bFGF-injected calluses by day 4. The present molecular analyses demonstrate that a single injection of bFGF enhances the proliferation of chondroprogenitor cells in fracture callus, and thus contributes to the formation of a larger cartilage. However, maturation of chondrocytes and replacement of the cartilage by osseous tissue are not enhanced by exogenous bFGF, and this results in the prolonged cartilaginous callus phase. We conclude that, in the healing of closed fractures of long bones, exogenous bFGF has a capacity to enlarge the cartilaginous calluses, but not to induce more rapid healing.  相似文献   

3.
Recently, it has become increasingly evident that fracture healing involves a complex interaction of many local and systemic regulatory factors. The roles of some of these growth factors have been described; however, little is understood about the presence of the bone morphogenetic proteins in fracture repair, despite the fact that they are the most potent osteoinductive proteins known. This study defines and characterizes the physiologic presence, localization, and chronology of the bone morphogenetic proteins in fracture healing with an established rat fracture healing model. With use of a recently developed monoclonal antibody against bone morphogenetic proteins 2 and 4 developed with standard avidin-biotin complex/immunoperoxidase protocols, frozen undecalcified fracture calluses were analyzed semiquantitatively for the percentage of various types of fracture cells staining positively. During the early stages of fracture healing, only a minimum number of primitive cells stained positively in the fracture callus. As the process of endochondral ossification proceeded, the presence of bone morphogenetic proteins 2 and 4 increased dramatically, especially in the primitive mesenchymal and chondrocytic cells. While the cartilaginous component of the callus matured with a concomitant decrease in the number of primitive cells, there was a concomitant decrease in both the intensity and the number of positively staining cells. As osteoblasts started to lay down woven bone on the chondroid matrix, these osteoblastic cells exhibited strong positive staining. The intensity of this staining decreased, however, as lamellar bone replaced the primitive woven bone. A similar observation was noted for the areas of the callus undergoing intramembranous ossification. Initially, within several days after the fracture, periosteal cells and osteoblasts exhibited intense staining for bone morphogenetic proteins 2 and 4. As the woven bone was replaced with mature lamellar bone, this staining decreased. These data, and the awareness of the strong osteoinductive capacities of bone morphogenetic protein, suggest that bone morphogenetic proteins 2 and 4 are important regulators of cell differentiation during fracture repair.  相似文献   

4.
5.
To clarify the mechanisms underlying shockwave-induced osteogenesis, we applied shockwave to rat femoral shafts from the ventral side. We assessed bone mineral content (BMC) and bone mineral density (BMD), and analyzed the spatial and temporal gene expression for pro-1 (I) collagen (COL1A1), pro-1 (II) collagen (COL2A1), pro-1 (X) collagen (COL10A1), osteocalcin (OC) and osteopontin (OPN) using in situ hybridization. On the 21st day post-exposure, BMC and BMD in the exposed femur were elevated by 8.46% and 5.80%, respectively, relative to the unexposed femur. Immediately following exposure, there was evidence of scraping of the cortex and periosteal separation with hemorrhage. On day 4, new periosteal bone formation could be seen on the ventral and dorsal side of the femur. In the newly formed bone, COL1A1, OC and OPN were expressed in osteoblastic cells underlying the periosteum. On day 7, there was progression of periosteal bone and trabeculae formation. COL1A1 and OC were expressed in mature osteoblasts lining the trabeculae, whereas OPN was expressed in immature osteoblastic cells, osteocytes and osteoclasts. On day 14, bone remodeling commenced in the periosteal bone. COL1A1, OC and OPN were still expressed at this stage, however, signals were much weaker. Between 4–7 days, chondrocyte clusters were distributed multi-focally near the exposed site, and there was expression of COL2A1 but not of COL10A1. The results demonstrate that gene expression patterns of shockwave-induced osteogenesis are similar to those of periosteal hard callus formation during fracture healing. Shockwaves can yield dramatic activation of cells in normal long bones, and drive the cells to express genes for osteogenesis.  相似文献   

6.
Bone repair models in animals may be considered relevant to human fracture healing to the extent that the sequence of events in the repair process in the model reflect the human fracture healing sequence. In the present study, the relevance of a recently developed segmental defect model in rat fibula to human fracture healing was investigated by evaluating temporal progression of rigidity of the fibula, mineral content of the repair site, and histological changes. In this model, a surgically created 2-mm-long defect was grafted with a 5-mm-long tubular specimen of demineralized bone matrix (DBM) by inserting it over the cut ends of the fibula. The temporal increase in rigidity of the healing fibula demonstrated a pattern similar to biomechanical healing curves measured in human fracture healing. This pattern was characterized by a short phase of rapidly rising rigidity during weeks 4-7 after surgery, associated with a sharp increase in the mineral content of the repair tissue. This was preceded by a phase of nearly zero rigidity and followed by a phase of slow rate of increase approaching a plateau. Histologically, chondroblastic and osteoblastic blastema originating from extraskeletal and subperiosteal (near fibula-graft junction) regions, infiltrated the DBM graft during the first 2 weeks. The DBM graft assumed the role of a "bridging callus." By weeks 6-8, most of the DBM was converted to new woven and trabecular bone with maximal osteoblastic activity and minimal endochondral ossification. Medullary callus formation started with direct new bone formation adjacent to the cortical and endosteal surfaces in the defect and undifferentiated cells in the center of the defect at 3 weeks. The usual bone repair process in rodents was altered by the presence of the DBM graft to recapitulate the sequential stages of human fracture healing, including the formation of a medullary callus, union with woven and lamellar bone, and recreation of the medullary canal.  相似文献   

7.
The effect of the administration of acidic fibroblast growth factor (aFGF) on normal fracture healing was examined in a rat fracture model. One microgram of aFGF was injected into the fracture site between the first and the ninth day after fracture either every other day or every day. aFGF-injected calluses were significantly larger than control calluses, although this does not imply an increased mechanical strength of the callus. Histology showed a marked increase in the size of the cartilaginous soft callus. Total DNA and collagen content in the cartilaginous portion of the aFGF-injected calluses were greater than those of controls, although the collagen content/DNA content ratio was not different between the aFGF-injected and control calluses. Fracture calluses injected with aFGF remained larger than controls until 4 weeks after fracture. The enlarged cartilaginous portion of the aFGF-injected calluses seen at 10 days after fracture was replaced by trabecular bone at 3 and 4 weeks. Northern blot analysis of total cellular RNA extracted separately from the cartilaginous soft callus and the bony hard callus showed decreased expression of type II procollagen and proteoglycan core protein mRNA in the aFGF-injected calluses when compared with controls. A slight decrease in types I and III procollagen mRNA expression was also observed. We concluded that aFGF injections induced cartilage enlargement and decreased mRNA expression for type II procollagen and proteoglycan core protein.  相似文献   

8.
We examined the rapid formation and subsequent resorption of woven bone induced by partial ablation of rat bone marrow. On the 1st day after ablation, masses of clots occupied the region from which marrow was eliminated. On the 3rd day, alkaline phosphatase-(ALPase-) positive osteoblastic cells appeared in the vicinity of the marrow-eliminated region, forming woven bone. Other ectopic woven bone extended from the endosteal surface toward the bone marrow. Therefore, the newly formed bone originated in two different sites, the endosteal bone surface and the marrow tissues near the marrow-eliminated region. On the 7th day, numerous tartrate-resistant acid phosphatase- (TRAPase-) positive osteoclasts and ALPase-positive osteoblasts expressing the osteonectin gene indicated high activity in both formation and resorption of ectopic woven bone. On the 10th day, the ectopic bone had been markedly resorbed and replaced by bone marrow tissue as the ectopically formed woven bone had not been dynamically maintained, probably because of reduced bone formation activity. Immunoreactivity for basic fibroblast growth factor (bFGF) was indistinctly observed on osteoblastic and preosteoblastic cells on the 1st day after ablation. The fibroblastic cells in the marrow-eliminated region on the 3rd day, and both osteoblasts and preosteoblasts in the woven bone on the 7th day, showed strong immunoreactivity for bFGF. Unlike fractured cortical bone, no chondrogenesis was observed. This model appears to provide convenient material and an important clue for investigation of imbalanced bone formation and subsequent resorption.  相似文献   

9.
Wang FS  Yang KD  Kuo YR  Wang CJ  Sheen-Chen SM  Huang HC  Chen YJ 《BONE》2003,32(4):387-396
Extracorporeal shock wave (ESW) is a noninvasive acoustic wave, which has recently been demonstrated to promote bone repair. The actual healing mechanism triggered by ESW has not yet been identified. Bone morphogenetic proteins (BMP) have been implicated as playing an important role in bone development and fracture healing. In this study, we aimed to examine the involvement of BMP-2, BMP-3, BMP-4, and BMP-7 expression in ESW promotion of fracture healing. Rats with a 5-mm segmental femoral defect were given ESW treatment using 500 impulses at 0.16 mJ/mm(2). Femurs and calluses were subjected to immunohistochemistry and RT-PCR assay 1, 2, 4, and 8 weeks after treatment. Histological observation demonstrated that fractured femurs received ESW treatment underwent intensive mesenchymal cell aggregation, hypertrophic chondrogenesis, and endochondral/intramembrane ossification, resulting in the healing of segmental defect. Aggregated mesenchymal cells at the defect, chondrocytes at the hypertrophic cartilage, and osteoblasts adjunct to newly formed woven bone showed intensive proliferating cell nuclear antigen expression. ESW treatment significantly promoted BMP-2, BMP-3, BMP-4, and BMP-7 mRNA expression of callus as determined by RT-PCR, and BMP immunoreactivity appeared throughout the bone regeneration period. Mesenchymal cells and immature chondrocytes showed intensive BMP-2, BMP-3, and BMP-4 immunoreactivity. BMP-7 expression was evident on osteoblasts located at endochondral ossification junction. Our findings suggest that BMP play an important role in signaling ESW-activated cell proliferation and bone regeneration of segmental defect.  相似文献   

10.
11.
12.
Samad L  Arif M  Zaidi Z 《The Journal of urology》2007,178(5):2124-2127
PURPOSE: We evaluated the frequency and features of extraosseous bone formation in the kidneys of patients undergoing percutaneous nephrolithotomy. MATERIALS AND METHODS: Percutaneous nephrolithotomy was performed in 621 patients at our institution between 1997 and 2006. In 21 cases metaplastic bone arising from the urothelium was observed. Clinical, radiographic and histopathological features of this group were studied in detail. RESULTS: Patient age ranged from 7 to 40 years (median 11). Extraosseous bone formation was identified in 7 right (33%) and 14 left (67%) kidneys. In all cases extraosseous bone was identified at the angle of the pelvis and ureter, just proximal to the ureteropelvic junction. The typical radiographic appearance of a radiopaque eccentric halo surrounding an area of lesser radiological density connected with the urothelium was seen in 10 of 13 radiographs (77%). Histopathological evaluation showed well formed trabecular bone with surface osteoblastic activity, areas of intratrabecular adipose bone marrow and hematopoietic cells in 5 cases (24%); woven bone intimately related to trabecular bone with scattered hematopoietic cells in 14 (67%); and entirely woven bone with associated mineral deposits and prominent fibroblastic proliferation in 2 (10%). CONCLUSIONS: Although rarely reported in the literature, metaplastic bone formation in the renal pelvis was seen relatively frequently in our patient population. The pathogenesis of this phenomenon is not clearly understood. Recognition of extraosseous bone is important, since it has implications for management and prognosis. In-depth studies of this phenomenon are required to arrive at any conclusions regarding its etiology.  相似文献   

13.
Distraction osteogenesis is a special form of bone healing in which well-controlled distraction stresses and consequent tensile strains within callus tissue induce very efficient new bone formation. Proinflammatory cytokines are involved during the early phase of fracture healing and callus remodeling. Temporal expression patterns of proinflammatory cytokines were assessed in Sprague-Dawley rat tibial models of distraction osteogenesis and acute lengthening, and only interleukin-6 (IL-6) was found to be specifically induced during the distraction phase. IL-6 immunoreactivity was detected not only in hemopoietic cells and osteoblasts but also in the spindle-shaped cells of the fibrous interzone, where most of the tensile strains are concentrated. In vitro study revealed that IL-6 did not affect the proliferation of C3H10T1/2 cells, mouse bone marrow stromal cells (MSCs), or MC3T3-E1 cells; but its blocking antibody reduced the proliferation of C3H10T1/2 cells and MSCs. The mRNA expression of COL1A1 and osteopontin were not changed by IL-6 or its blocking antibody, but the alkaline phosphatase activities of MC3T3-E1 cells were increased by IL-6 and decreased by its blocking antibody. These findings indicate that IL-6 is a proinflammatory cytokine that responds to tensile strain during distraction osteogenesis. IL-6 negatively affects the proliferation of primitive mesenchymal cells, whereas the differentiation of more mature osteoblastic lineage cells is enhanced by IL-6 in vitro. IL-6 appears to be one of the cytokines involved in the complex network of signal cascades evoked during distraction osteogenesis and may differentially affect immature and mature osteoblastic lineage cells.  相似文献   

14.
Introduction Formation of new blood vessels is essential for the process of fracture healing.Materials and methods We investigated the expression of the angiogenic factor pleiotrophin/HB-GAM in a closed fracture model in rats by immunohistochemical methods.Results Histologically, 5 days after fracture the callus was predominantly composed of fibrous tissue. On day 10 a prominent chondral callus connected both ends of the fractured tibia. There was a continuous transition from the chondral callus to the newly formed bone adjacent to the corticalis of the tibia. On day 15 the amount of woven bone had increased, and in 3 of 5 animals the proximal and distal tibiae were connected by a bridge of woven bone. Pleiotrophin could be immunostained in fibroblasts and endothelial cells of the fibrous tissue between the fractured tibia ends. The chondral callus remained largely pleiotrophin-negative. Only single chondrocytes adjacent to the newly formed bone were pleiotrophin-positive. On days 10 and 15 strong immunoreactivity for pleiotrophin in the well vascularized, newly formed, woven bone was detectable. Osteoblasts, endothelial cells and fibroblasts were strongly pleiotrophin-positive.Conclusions These results show the presence of the angiogenic peptide pleiotrophin during fracture healing.  相似文献   

15.
The interepiphyseal region between the greater trochanter and the capital femoral epiphysis and the medioproximal portion of the femoral neck exhibit extensive morphological changes during the first 4 weeks after birth in rats. Previous reports show that matrix metalloproteinase-13 (MMP-13, rat collagenase) mRNA is expressed in bone and cartilage during embryonal development and fracture healing. We examined MMP-13 mRNA expression and compared it with the distribution of osteopontin and osteocalcine mRNA in the femoral neck. Moreover, we examined histomorphometric analysis in the femoral neck where the morphology changes rapidly. Histomorphometric analysis of the 4-week-old rat femoral neck showed a high rate of bone formation and resorption in the region where shape changed rapidly. Osteopontin mRNA was expressed diffusely along the endosteum. In contrast, MMP-13 mRNA expression was restricted to the medial endosteal portion near the cartilage–bone interface of the femoral neck in 15- and 28-day-old rats and in the deepest endosteal interepiphyseal region of 15-day-old rats. MMP-13 mRNA-expressing osteoblastic cells were also expressing osteopontin but not osteocalcin mRNA. MMP-13 mRNA-expressing cells differ from tartrate-resistant acid phosphatase (TRAP) -positive cells, and MMP-13 mRNA-positive cells are located adjacent to TRAP-positive cells. The results of the site- and cell-specific expression of MMP-13, taken together with its enzymatic property, suggest that MMP-13 plays an important role in morphological changes in the rat femur, at least during the third and fourth week after birth, and that MMP-13 itself is involved in the interaction between osteoblastic and TRAP-positive cells. Received: Aug. 10, 1999 / Accepted: Dec. 8, 1999  相似文献   

16.
Osteocyte density in woven bone   总被引:7,自引:0,他引:7  
Hernandez CJ  Majeska RJ  Schaffler MB 《BONE》2004,35(5):1095-1099
Woven bone forms rapidly during tissue growth, following injury and in response to certain anabolic stimuli. Functional differences between woven and lamellar bone may be due, in part, to differences in osteocyte density (cells per unit tissue). Woven bone has been estimated to contain four to eight times more osteocytes than lamellar bone, although primary data to support this assertion are limited. Given recent findings implicating osteocytes as regulators of bone remodeling, bone formation and bone volume, such large differences in osteocyte density between woven and lamellar bone may have important consequences. In this study, we compared the density of osteocyte lacunae (lacunae/mm(2) tissue) in rat lamellar bone with that in woven bone formed under several different circumstances. We found that the lacunar density of lamellar cortical bone in the rat (834+/-83 cells/mm2, mean+/-SD) did not differ significantly from that of periosteal woven bone formed via intramembranous osteogenesis, either in response to mechanical loading (921+/-204 cells/mm2) or in the periosteal buttressing region of the fracture callus (1138+/-168 cells/mm2). In contrast, lacunar density of endochondrally derived woven bone in the center (gap) region of fracture callus was nearly 100% greater (1875+/-270 cells/mm2) than in lamellar cortical bone while lacunar density of primary spongiosa of the growth plate was 40% greater (1674+/-228 cells/mm2) than that in lamellar cancellous bone (1189+/-164). These findings demonstrate that lacunar density in woven bone varies depending on skeletal site and developmental history and appears to be elevated in endochondrally derived woven bone adjacent to marrow space. Given the considerable evidence supporting osteocytes as local initiators of bone remodeling, we suggest that woven bone with increased lacunar density may undergo remodeling at an accelerated rate.  相似文献   

17.
In this study morphologic techniques have been used to detail the angiogenic response that accompanies endochondral fracture healing in a clinically relevant, reproducible rat model. In this displaced fracture, the gap fills with cartilage that later is replaced by bone, via endochondral ossification. A transient periosteal circulation, followed by a permanent medullary circulation accompany this progression. From 2 to 6 weeks, vessels grow out from the periosteal tissue and give rise to vascular buds, which abut directly onto the avascular zone corresponding to the fracture defect. From 3 weeks onwards, a second wave of vessels grows out from the marrow to the cartilage-filled fracture defect, terminating as vascular buds and loops lined by endothelial and perivascular cells. The loops and buds stain strongly for laminin but transmission electron microscopy does not demonstrate an identifiable basement membrane, pointing to a region of active extracellular matrix turnover. These vessels are intimately associated with osteoblasts and newly formed woven bone forming finger-like composite structures that protrude into the mineralized cartilage matrix with which they form a clearly demarcated interface. Invading vessels and woven bone successively replace the cartilage matrix to mediate repair. Both the vascular structures and progression of endochondral ossification observed, closely resemble those described in the normal epiphyseal growth plate, indicating that the fundamental processes are similar. However, there is a difference in the spatial orientation of cells such that the healing front in the fracture model is relatively disorganized, compared to the orderly linear array of cells at the epiphyseal growth plate.  相似文献   

18.
19.
Damaged bone is sensitive to mechanical stimulation throughout the remodeling phase of bone healing. Muscle damage and muscular atrophy associated with open fractures and subsequent fixation are not beneficial to maintaining optimum conditions for mechanical stability. The aim of this study was to investigate whether local muscle atrophy and dysfunction affect fracture healing in a rat femur fracture model. We combined the rat model of a short period atrophy of the quadriceps with femur fracture. Forty-four-month-old male Wistar rats were adopted for this study. Two units of botulinum toxin-A (BXTA) were administered locally into the right side of the quadriceps of each rat, while the same dose of saline was injected into the contralateral quadriceps. After BXTA had been fully absorbed by the quadriceps, osteotomy was performed in both femurs with intramedullary fixation. Gross observation and weighing of muscle tissue, X-ray analysis, callus histology, and bone biomechanical testing were performed at different time points up to 8 weeks post-surgery. Local injection of BXTA led to a significant decrease in the volume and weight of the quadriceps compared to the control side. At the eighth week, the left side femurs of the saline-injected quadriceps almost reached bony union, and fibrous calluses were completely calcified into woven bone. However, a gap was still visible in the BXTA-treated side on X-ray images. As showed by bone histology, there were no mature osseous calluses or woven bone on the BXTA-treated side, but a resorption pattern was evident. Biomechanical testing indicated that the femurs of the BXTA-treated side exhibited inferior mechanical properties compared with the control side. The inferior outcome following BXTA injection, compared with saline injection, in terms of callus resistance may be the consequence of unexpected load and mechanical unsteadiness caused by muscle atrophy and dysfunction.  相似文献   

20.
Fluoride is able to augment cancellous bone mass in vertebral osteoporosis but is responsible for osteoarticular side effects in which microfractures are thought to be involved. During healing of these microfractures, a callus is formed all around the cancellous fracture line. Our hypothesis is that in fluoride-treated osteoporotic patients, calluses are bone sites where fluoride is focally deposited at a high concentration, and this could induce a local defect of calcification with a poor healing of microfractures. Our aim was to validate this hypothesis on several calluses following microfractures in undecalcified iliac cancellous bone from six women with osteoporosis (four fluoride treated and two untreated). Histologically normal iliac cancellous bone tissue, taken from a subject having neither fluoride treatment nor microfracture, was also examined. Selected areas, including new woven bone (calluses) and old lamellar bone, were carbon-coated and analyzed using an electron microprobe. Fluoride K alpha and calcium K alpha radiations were detected with wavelength and energy-dispersive spectrometers, respectively. In old lamellar bone at a distance from microfractures, the fluoride level was similar in normal and untreated osteoporotic patients but was slightly increased in treated osteoporotic patients. In untreated osteoporotic patients, the fluoride level was slightly higher (about 1.2 times) at the site of microfractures (lamellar and woven bone) than in lamellar bone far from such fractures, but fluoride was homogeneously distributed in lamellar and woven bone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号