首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to skin sensitisation, there are no accepted tests for the identification of chemicals or proteins with the potential to cause sensitisation of the respiratory tract. Although progress has been made, the assessment of respiratory sensitisation potential remains associated with significant challenges and uncertainties. Nevertheless, there is interest in determining whether it is possible to assess the relative potency of respiratory sensitisers. The second Adaptation to Technical Progress (ATP) to the EU Classification, Labelling and Packaging (CLP) Regulation recently introduced changes to criteria for classification and labelling of chemicals and preparations, bringing it in line with the 3rd revision to the UN Globally Harmonised System of Classification and Labelling of Chemicals (GHS). Among other things, the second ATP introduces sub-categories for respiratory and skin sensitisers, discriminating between strong sensitisers and other sensitisers. Here we examine whether such categorisation of protein and/or chemical respiratory allergens is realistic and/or feasible. For this purpose comparisons have been drawn with skin sensitisation, where potency categorisation has now been widely accepted and successfully integrated into the regulatory process. The conclusion drawn is that, on the basis of the currently available information, potency categorisation for respiratory sensitisers is premature and could potentially be misleading.  相似文献   

2.
It is clear that contact allergens vary substantially with regard to the relative potency with which they are able to induce skin sensitisation. Considerations of potency will in the future become a significant factor in the classification of skin sensitising chemicals. It is therefore appropriate to establish what is known of potency and thresholds in the induction of skin sensitisation and the elicitation of allergic contact dermatitis, and to identify approaches that might be available for assessment of relative potency for the purposes of categorising chemical allergens. This paper was prepared by an ECETOC (European Centre for Ecotoxicology and Toxicology) Task Force that had the objective of recommending approaches for the measurement of potency and definition of thresholds for both the induction and elicitation of contact sensitisation. The deliberations recorded here build upon recommendations made previously by an ECETOC Task Force that considered the conduct of standard skin sensitisation test methods for the purposes of hazard identification and risk assessment (ECETOC, Monograph No. 29, Brussels, 2000). The emphasis in this present paper is also on standard and accepted methods for the assessment of skin sensitisation, and for which OECD guidelines are available: the local lymph node assay (LLNA), the guinea pig maximisation test and the occluded patch test of Buehler. For various reasons, discussed in detail herein, attention focused primarily upon consideration of categorisation of chemical allergens and the identification of thresholds with respect to the induction of skin sensitisation, rather than the elicitation of allergic contact dermatitis. It is concluded that although the LLNA is the method of choice for the determination of skin sensitisation potency for the purposes of categorisation, if data are already available from appropriate guinea pig tests then their judicious interpretation may provide information of value in determinations of potency and categorisation. Included here are detailed and specific recommendations for how best the results of the three test methods considered can be used for the categorisation of chemical allergens as a function of skin sensitisation potency.  相似文献   

3.
An essential step in ensuring the toxicological safety of chemicals used in consumer products is the evaluation of their skin sensitising potential. The sensitising potency, coupled with information on exposure levels, can be used in a Quantitative Risk Assessment (QRA) to determine an acceptable level of a given chemical in a given product. Where consumer skin exposure is low, a risk assessment can be conducted using the Dermal Sensitisation Threshold (DST) approach, avoiding the need to determine potency experimentally. Since skin sensitisation involves chemical reaction with skin proteins, the first step in the DST approach is to assess, on the basis of the chemical structure, whether the chemical is expected to be reactive or not. Our accompanying publication describes the probabilistic derivation of a DST of 64 μg/cm2 for chemicals assessed as reactive. This would protect against 95% of chemicals assessed as reactive, but the remaining 5% would include chemicals with very high potency. Here we discuss the chemical properties and structural features of high potency sensitisers, and derive an approach whereby they can be identified and consequently excluded from application of the DST.  相似文献   

4.
Asthma resulting from sensitisation of the respiratory tract to chemicals is an important occupational health issue, presenting many toxicological challenges. Most importantly there are no recognised predictive methods for respiratory allergens. Nevertheless, it has been found that all known chemical respiratory allergens elicit positive responses in assays for skin sensitising chemicals. Thus, chemicals failing to induce a positive response in skin sensitisation assays such as the local lymph node assay (LLNA) lack not only skin sensitising activity, but also the potential to cause respiratory sensitisation. However, it is unclear whether it will be possible to regard chemicals that are negative in in vitro skin sensitisation tests also as lacking respiratory sensitising activity. To address this, the behaviour of chemical respiratory allergens in the LLNA and in recently validated non-animal tests for skin sensitisation have been examined. Most chemical respiratory allergens are positive in one or more newly validated non-animal test methods, although the situation varies between individual assays. The use of an integrated testing strategy could provide a basis for recognition of most respiratory sensitising chemicals. However, a more complete picture of the performance characteristics of such tests is required before specific recommendations can be made.  相似文献   

5.
Covalent modification of skin proteins by electrophiles is a key event in the induction of skin sensitisation but not skin irritation although the exact nature of the binding mechanisms has not been determined empirically for the vast majority of sensitisers. It is also unknown whether immunologically relevant protein targets exist in the skin contributing to effecting skin sensitisation. To determine the haptenation mechanism(s) and spectra of amino acid reactivity in an intact protein for two sensitisers expected to react by different mechanisms, human serum albumin (HSA) was chosen as a model protein. The aim of this work was also to verify for selected non-sensitisers and irritants that no protein haptenation occurs even under forcing conditions. HSA was incubated with chemicals and the resulting complexes were digested with trypsin and analysed deploying matrix-assisted laser desorption/ionization mass spectrometry, reverse phase high performance liquid chromatography and nano-electrospray tandem mass spectrometry. The data confirmed that different residues (lysine, cysteine, histidine and tyrosine) are covalently modified in a highly selective and differential manner by the sensitisers 2,4-dinitro-1-chlorobenzene and phenyl salicylate. Additionally, non-sensitisers 2,4-dichloro-1-nitrobenzene, butyl paraben and benzaldehyde and irritants benzalkonium chloride and sodium dodecyl sulphate did not covalently modify HSA under any conditions. The data indicate that covalent haptenation is a prerequisite of skin sensitisation but not irritation. The data also suggest that protein modifications are targeted to certain amino acids residing in chemical microenvironments conducive to reactivity within an intact protein. Deriving such information is relevant to our understanding of antigen formation in the immunobiology of skin sensitisation and in the development of in vitro protein haptenation assays.  相似文献   

6.
Accurate risk assessment in allergic contact dermatitis is dependent on the successful prospective identification of chemicals which possess the ability to behave as skin sensitisers, followed by appropriate measurement of the relative ability to cause sensitisation; their potency. Tools for hazard identification have been available for many years; more recently, a novel approach to the quantitative assessment of potency--the derivation of EC3 values in the local lymph node assay (LLNA)--has been described. It must be recognised, however, that these evaluations of chemical sensitisers also may be affected by the vehicle matrix in which skin exposure occurs. In this article, our knowledge of this area is reviewed and potential mechanisms through which vehicle effects may occur are detailed. Using the LLNA as an example, it is demonstrated that the vehicle may have little impact on the accuracy of basic hazard identification; the data also therefore support the view that testing ingredients in specific product formulations is not warranted for hazard identification purposes. However, the effect on potency estimations is of greater significance. Although not all chemical allergens are affected similarly, for certain substances a greater than 10-fold vehicle-dependent change in potency is observed. Such data are vital for accurate risk assessment. Unfortunately, it does not at present appear possible to predict notionally the effect of the vehicle matrix on skin sensitising potency without recourse to direct testing, for example by estimation of LLNA EC3 data, which provides a valuable tool for this purpose.  相似文献   

7.
The potential risk of skin sensitisation, associated with the development of allergic contact dermatitis (ACD), is a consideration in the safety assessment of new ingredients for use in personal care products. Protein haptenation in skin by sensitising chemicals is the molecular initiating event causative of skin sensitisation. Current methods for monitoring skin sensitisation rely on limited reactivity assays, motivating interest in the development of proteomic approaches to characterise the skin haptenome. Increasing our mechanistic understanding of skin sensitisation and ACD using proteomics presents an opportunity to develop non-animal predictive methods and/or risk assessment approaches. Previously, we have used a novel stable isotope labelling approach combined with data independent mass spectrometry (HDMSE) to characterise the haptenome for a number of well-known sensitisers. We have now extended this work by characterising the haptenome of the sensitisers Diphenylcyclopropenone (DPCP) and Ethyl Acrylate (EA) with the model protein Human Serum Albumin (HSA) and the complex lysates of the skin keratinocyte, HaCaT cell line. We show that haptenation in complex nucleophilic models is not random, but a specific, low level and reproducible event. Proteomic analysis extends our understanding of sensitiser reactivity beyond simple reactivity assays and offers a route to monitoring haptenation in living cells.  相似文献   

8.
Skin sensitisation is a delayed hypersensitivity reaction caused by repeated exposure to common natural and synthetic chemical allergens. It is thought that small chemical sensitisers (haptens) are required to form a strong irreversible bond with a self protein/peptide and generate an immunogenic hapten-protein complex in order to be recognised by the immune system and stimulate T cell proliferation. The sensitisers are usually electrophilic chemicals that are directly reactive with proteins or reactive intermediates (metabolites) of chemically inert compounds (prohaptens). Sensitising chemicals are also capable of weak, non-covalent association with proteins and there is an ongoing debate about the role of weak interactions of chemicals and proteins in the chemistry of allergy. The non-covalent interactions are reversible and thus have a major impact on skin/epidermal bioavailability of chemical/reactive metabolites. We investigated the relationship between the relative level of non-covalent association to a model protein and their relative potencies as determined by the EC3 values in the murine local lymph node assay (LLNA) for a number of chemicals. Using human serum albumin as a model protein, we determined that no observable relationship exists between the two parameters for the chemicals tested. Therefore, at least for this model protein, non-covalent interactions appear not to be a key determinant of allergen potency.  相似文献   

9.
The Threshold of Toxicological Concern (TTC) is a useful concept that is becoming of increasing interest as an addition to the arsenal of tools used for characterising the toxicological risk of human exposure to chemicals. Traditionally used for low level indirect additives, flavours and contaminants in foods, the TTC obviates the need for toxicological testing of chemicals where human exposure is low. Proposals have recently been made for the use of the TTC for low level ingredients in cosmetic and personal care products. However, use of the TTC is only protective for systemic toxicity endpoints, and cannot be used for local endpoints such as contact sensitisation. In this paper a probabilistic analysis of available sensitisation data, similar to that used in the development of the TTC, is presented. The incidence of sensitisers in the world of chemicals was estimated using the ELINCS (European List of Notified Chemical Substances) data set, and a distribution for sensitisation potency was established using a recently published compilation of Local Lymph Node Assay data. From the analysis of these data sets it is concluded that a Dermal Sensitisation Threshold (DST) can be established below which there is no appreciable risk of sensitisation, even for an untested ingredient. Use of a DST would preclude the need for sensitisation testing of ingredients where dermal exposure is sufficiently low.  相似文献   

10.
Allergic contact dermatitis (ACD) is a condition that can have a serious impact on quality of life. The manifestation of ACD is dependent upon the primary sensitisation of an individual to a specific substance following skin exposure. It is important to identify and manage the risks associated with exposure to known skin sensitisers, in both the manufacture and use of consumer products. At present, the only validated approaches to conclusively identify sensitisation hazard and estimate potency are in vivo models such as the local lymph node assay. No in vitro test methods exist for this endpoint. There is an urgent need to develop novel in vitro/in silico testing or risk assessment strategies to replace animal testing. It is envisaged that such novel approaches can only be developed on the foundation of a good mechanistic understanding of skin sensitisation. Early stages of sensitisation are thought to be dependent upon the extent of compound absorption and bioavailability, rates of metabolic activation or detoxification and intrinsic reactivity of the bioavailable xenobiotic electrophile with skin protein nucleophiles. This review explores general chemical and metabolic aspects in relation to the potential formation of protein-hapten conjugates. Despite the complexities and poor understanding of some of the metabolic processes involved in skin sensitisation, it is possible to describe some of the relationships between chemical structures and the ability to form covalent conjugates with proteins. A prototypical group of xenobiotics that have been used to explore sensitisation mechanisms in some detail are selected cinnamic derivatives: a discussion of recent work using these compounds is presented as a case study. Novel aspects for future research in this area are also discussed.  相似文献   

11.
Current approaches to skin sensitisation risk assessment are dependent upon the availability of information regarding two fundamental parameters. Firstly, data relating to the relative skin sensitising potency of the chemical, and secondly, information regarding likely conditions of human exposure. During the past two decades, much has been achieved in terms of refining methods capable of informing these parameters. For example, the development of the local lymph node assay (LLNA) has made it possible to predict skin sensitising hazard, and to determine relative skin sensitising potency, in a way that was not possible previously. Taken together with accurate information about predicted exposure, such potency data can be used to facilitate the derivation of effective risk assessments. However, although the LLNA provides an integrated assessment of skin sensitising activity, it does require the use of experimental animals and there is growing enthusiasm for designing robust alternative approaches that will reduce or obviate that need. Progress is being made in defining alternative experimental strategies that avoid animal use, but it is clear that accurate characterisation of skin sensitisation hazards will require the effective integration of various sources of information. For this reason, we exemplify here one possible approach that, in theory, provides a framework for not only the identification of skin sensitising chemicals, but also the estimation of relative sensitising potency. This paradigm depends upon development of an understanding of the various biological, biochemical and chemical factors that impact on the allergenic properties of chemicals and the acquisition of skin sensitisation, and an ability to measure these in vitro.  相似文献   

12.
The Local Lymph Node Assay (LLNA) is the most common in vivo regulatory toxicology test for skin sensitisation, quantifying potency as the EC3, the concentration of chemical giving a threefold increase in thymidine uptake in the local lymph node. Existing LLNA data can, along with clinical data, provide useful comparator information on the potency of sensitisers. Understanding of the biological variability of data from LLNA studies is important for those developing non-animal based risk assessment approaches for skin allergy. Here an existing set of 94 EC3 values for 12 chemicals, all tested at least three times in the same vehicle have been analysed by calculating standard deviations (SD) for logEC3 values. The SDs range from 0.08 to 0.22. The overall SD for the 94 logEC3 values is 0.147. Thus the 95% confidence limits (2xSD) for LLNA EC3 values are within a factor of 2, comparable to those for physico-chemical measurements such as partition coefficients and solubility. The residual SDs of Quantitative Mechanistic Models (QMMs) based on physical organic chemistry parameters are similar to the overall SD of the LLNA, indicating that QMMs of this type are unlikely to be bettered for predictive accuracy.  相似文献   

13.
The mouse local lymph node assay (LLNA) has been developed and validated for the identification of chemicals that have the potential to induce skin sensitisation. In common with other predictive test methods the accuracy of the LLNA is not absolute and experience has revealed that a few chemicals, including for instance a minority of skin irritants, may elicit false-positive reactions in the assay. To improve further the performance of the LLNA, and to eliminate or reduce false-positives, there has been interest in an adjunct method in which the ability of chemicals to cause increases in the frequency of B220(+) lymphocytes in skin-draining lymph nodes is measured. Previous studies suggest that the use of B220 analyses aligned with the standard LLNA may serve to distinguish further between contact allergens and skin irritants. In the original predictive model, chemicals were regarded as being skin sensitisers if they were able to induce a 1.25-fold or greater increase in the percentage of B220(+) cells within lymph nodes compared with concurrent vehicle controls. Although this first prediction model has proven useful, in the light of more recent experience, and specifically as a consequence of some variability observed in the frequency of B220(+) lymphocytes in nodes taken from vehicle control-treated animals, it is timely now to reconsider and refine the model. As a result a new prediction model is proposed in which reliance on the use of absolute thresholds is reduced, and in which small changes in control values can be better accommodated.  相似文献   

14.
Although allergic sensitization of the respiratory tract induced by chemicals is not as common as skin sensitization, it is nevertheless an important occupational health issue. Respiratory allergy to chemicals, characterized typically by rhinitis and asthma, is associated with considerable morbidity and with related socioeconomic costs. Several experimental approaches have been proposed for the prospective identification of chemical respiratory allergens, but none of these has yet been validated formally. In the absence of a widely accepted method for respiratory allergen identification, it is appropriate and relevant to explore their relationship with skin‐sensitizing chemicals. A series of chemicals known to cause immune‐mediated respiratory allergy in humans has been examined. The majority of the respiratory allergens tested were found to elicit positive responses in one or more standard tests used for the identification of skin‐sensitizing potential (guinea pig maximization test, the Buehler test and/or the local lymph node assay). We suggest that this observation might form the basis of a potentially useful paradigm for initial characterization of the respiratory‐sensitizing potential of chemicals. Specifically, chemicals that fail to elicit positive responses in accepted skin‐sensitization test methods might also be regarded as lacking the inherent potential to cause allergic sensitization of the respiratory tract. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
T lymphocytes mediate skin sensitisation and allergic contact dermatitis. Not unexpectedly, therefore, there is considerable interest in the use of T lymphocyte-based assays as alternative strategies for the identification of skin sensitising chemicals. However, in addition to accurate identification of hazards the development of effective risk assessments requires that information is available about the relative skin sensitising potency of contact allergens. The purpose of this article is to consider the relationships that exist between the characteristics of T lymphocyte responses to contact allergens and the effectiveness/potency of sensitisation. We propose that there are 3 aspects of T lymphocyte responses that have the potential to impact on the potency of sensitisation. These are: (a) the magnitude of response, and in particular the vigour and duration of proliferation and the clonal expansion of allergen-reactive T lymphocytes, (b) the quality of response, including the balance achieved between effector and regulatory cells, and (c) the breadth of response and the clonal diversity of T lymphocyte responses. A case is made that there may be opportunities to exploit an understanding of T lymphocyte responses to contact allergens to develop novel paradigms for predicting skin sensitising potency and new approaches to risk assessment.  相似文献   

16.
We have investigated the cytokine response pattern following sensitisation (induction) of BALB/c mice with different chemicals (dinitrochlorobenzene, dinitrofluorobenzene, oxazolone, glutaraldehyde, formaldehyde, trimellitic anhydride, croton oil) and elicitation (challenge) of contact allergy in sensitised animals. The results of our investigations showed that different chemicals induced both T helper (Th) 1 cytokines [interleukin (IL) 2, interferon beta (IFNgamma) [corrected] and Th2 cytokines (IL-4, IL-10) at different stages during murine contact allergy. We also confirmed our previous findings that IL-4 and IL-10 release were up-regulated during the challenge phase regardless the contact allergen used, whereas the release of IFNgamma [corrected] did not show a clear preference for being up- or down-regulated. In our hands, the increased expression of Th2 cytokines after challenge exposure to contact allergens appeared as a stable marker of secondary contact allergenic responses. Quantitative differences in the expression of IL-4 were observed between different contact allergens. The present results clearly indicate that skin sensitisers were able to elicit cytokine response patterns, which could not be related to a clear-cut Th1 or Th2 type of cytokine response. Furthermore, dermal application of contact allergens produced different kinetics of cytokine secretion upon induction and challenge. In our hands, the co-expression of Th1 and Th2 type cytokines appeared as a universal consequence of dermal application of contact allergens to responsive mice. Our results indicate that co-expression of Th1 and Th2 cytokines during contact allergy is an important feature of murine contact allergy in responsive mice and that chemicals differ in their potency to induce the expression of these cytokines. Furthermore, the results do not support the view that different chemicals induce Th1 or Th2 cytokines in a mutually exclusive manner depending on their preference for inducing either contact or respiratory allergy. The results are expected to renew the discussion about the usefulness of the Th1/Th2 paradigm in certain areas of immunotoxicology.  相似文献   

17.
In the EU rosin is classified as a skin sensitiser, apparently on the basis of its oxidation to sensitising agents. Rosin (gum, tall oil or wood) is not a skin sensitiser when examined in the guinea pig maximisation test (GPMT). Oxidised rosins are sensitisers in the GPMT. Oxidised gum rosin was further tested in the mouse local lymph node assay (LLNA) and the Buehler test, but is not a sensitiser in either of these tests. Further, the outcome of the LLNA can be used to assess the potency of oxidised rosin as an inducing agent in humans, and oxidised rosin is, at most, a weak sensitiser in this test. Thus, oxidised rosin is not a potent inducing agent for skin sensitisation unless the dermal barrier is bypassed and/or there is deliberate use of Freund’s Complete Adjuvant to induce greater susceptibility.The material used for human patch testing (‘colophony’) is in oxidised form. A re-examination of epidemiological studies suggests that patients in dermatological clinics show higher response rates than do the general population or those occupationally exposed to presumably oxidised rosin. Thus, the differences seen in susceptibility in the regulatory tests may be reflected in the human population.These results are discussed in terms of possible testing and classification strategies for dealing with existing chemicals, with particular reference to the new European Union legislation.  相似文献   

18.
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment.  相似文献   

19.
Characterisation of the relative sensitizing potency of protein and chemical allergens remains challenging, particularly for materials causing allergic sensitization of the respiratory tract. There nevertheless remains an appetite, for priority setting and risk management, to develop paradigms that distinguish between individual respiratory allergens according to perceptions of the hazards and risks posed to human health. One manifestation thereof is recent listing of certain respiratory allergens as Substances of Very High Concern (SVHC) under the provisions of REACH (Registration, Evaluation, Authorisation and restriction of Chemicals). Although priority setting is a laudable ambition, it is important the process is predicated on evidence-based criteria that are transparent, understood and owned. The danger is that in the absence of rigorous criteria unwanted precedents can be created, and confidence in the process is compromised. A default categorisation of sensitisers as SVHC requiring assessment under the authorisation process is not desirable. We therefore consider here the value and limitations of selective assignment of certain respiratory allergens as being SVHC. The difficulties of sustaining such designations in a sound and equitable way is discussed in the context of the challenges that exist with respect to assessment of potency, and information available regarding the effectiveness of exposure-based risk management.  相似文献   

20.
Skin sensitisation which clinically is manifested as allergic contact dermatitis is an important health endpoint to be taken into account in the risk assessment of chemicals. In the new EU chemical policy REACH, information on skin sensitisation potential will have to be provided for chemicals manufactured or imported equal to or above 1 tonne/year and it is estimated that the highest number of substances will need to be tested for skin sensitisation. Within REACH, the use of (Q)SARs and other alternative methods is strongly encouraged in order to reduce the number of animal tests. The goal of this project was to test the applicability of SARs and structural alerts for skin sensitisation in the REACH framework. SARs and structural alerts which were found in the literature were analysed and further refined by using a number of examples (substances) that had not been previously used in the derivation of the published SARs. For substances which fit within the boundaries of the proposed alerts, it is assumed that they would be classified as sensitising in accordance with EU classification and labelling rules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号