首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of multidrug resistance (MDR) and p53 functional status in the treatment of paediatric rhabdomyosarcoma is unclear. We have characterized a panel of seven human rhabdomyosarcoma cell lines for MDR and p53 phenotype. None of the cell lines had P-glycoprotein (P-gp) or multidrug resistance-related protein (MRP) detectable by Western blotting, whereas immunohistochemistry suggested that very low levels of MDR proteins may be present in some of the lines. RT-PCR studies indicated that mdr-1, mrp-1 and Irp mRNA was present in 5/7, 7/7 and 5/7 lines respectively. The function of p53 is compromised in six of the lines, either through mutation of the p53 gene or by overexpression of mdm-2. The sensitivity of many of the cell lines to vincristine could be modulated above 2-fold and as high as 16-fold using two modulating agents, PSC833 and VX710 (with VX710 being a significantly more potent modulator of the rhabdomyosarcoma lines). PSC833 also increased vincristine accumulation in all of the lines from 1.2- to 2.2-fold. These results suggest that some of these cell lines have low levels of multidrug resistance. The level of MDR proteins is very low and therefore difficult to detect, but may be sufficient to confer low-level, but clinically relevant, resistance to some cytotoxic agents, especially vincristine. These cell lines will therefore provide a suitable model to test new strategies in treatment and for further understanding relationships between protein expression and drug resistance.  相似文献   

2.
The MDM2 protein is known to be overexpressed in some sarcomas including rhabdomyosarcoma. However, the extent to which the MDM2 protein influences sensitivity to chemotherapeutic drugs is unclear. We have analysed this further using stable transfection of the mdm2 gene into 4 well-characterised human paediatric rhabdomyosarcoma cell lines. Transfection with the mdm2 gene resulted in increased levels of the MDM2 protein in all the cell lines. In 2 of the lines, SCMC and RD, the mdm2 gene caused between 2-fold and 61-fold increase in resistance to vincristine, etoposide and doxorubicin but not to cisplatin. In these lines there was an increase in expression of the mdr-1 gene which encodes P-glycoprotein, but not the mrp1 gene which encodes the multidrug resistance protein (MRP). The resistance was reversible using the MDR modulator PSC833, confirming the presence of P-glycoprotein. We conclude that MDM2 overexpression may be a mechanism by which multidrug resistance is regulated in some rhabdomyosarcomas.  相似文献   

3.
4.
Multidrug resistance transporters and modulation   总被引:21,自引:0,他引:21  
Multidrug resistance (MDR), whereby tumor cells simultaneously possess intrinsic or acquired cross-resistance to diverse chemotherapeutic agents, hampers the effective treatment of cancer. Molecular investigations in MDR resulted in the isolation and characterization of genes coding for several proteins associated with MDR, including P-glycoprotein (P-gp), the multidrug resistance associated protein (MRP1), the lung resistance protein (LRP), and, more recently, the breast cancer resistance protein (BCRP). These transmembrane proteins cause MDR either by decreasing the total intracellular retention of drugs or redistributing intracellular accumulation of drugs away from target organelles. These proteins are expressed at varying degrees in different neoplasms, including the AIDS-associated non-Hodgkin lymphoma and Kaposi sarcoma and are generally associated with poor prognosis. Several MDR-reversing agents are in various stages of clinical development. First-generation modulators such as verapamil, quinidine, and cyclosporin required high doses of drugs to reverse MDR and were associated with unacceptable toxicities. Second- and third-generation MDR inhibitors include PSC 833, GF120918, VX-710, and LY335979, among others. Limitations to the use of these modulators include multiple and redundant cellular mechanisms of resistance, alterations in pharmacokinetics of cytotoxic agents, and clinical toxicities. Studies to validate the role of MDR reversal in the treatment of various malignancies are underway. A potential use of these agents may be to enhance intestinal drug absorption and increase drug penetration to biologically important protective barriers, such as the blood-brain, blood-cerebrospinal fluid, and the maternal-fetal barriers. The use of MDR modulators with drugs such as the antiviral protease inhibitors and cytotoxics may enhance drug accumulation in sanctuary sites that are traditionally impenetrable to these agents.  相似文献   

5.
SDZ PSC 833 (PSC 833) is a new multidrug resistance modulator. Recent studies have shown that the principal mechanism of action of PSC 833 is to bind P-glycoprotein (P-gp) and prevent cellular efflux of chemotherapeutic drugs. We previously reported that PSC 833 increases cellular ceramide levels. The present study was conducted to determine whether the impact of PSC 833 on ceramide generation is dependent on P-gp. Work was carried out using the drug-sensitive P-gp-deficient human breast adenocarcinoma cell line, MCF-7, and drug resistant MCF-7/MDR1 clone 10.3 cells (MCF-7/MDR1), which show a stable MDR1 P-gp phenotype. Overexpression of P-gp in MCF-7/MDR1 cells did not increase the levels of glucosylceramide, a characteristic which has been associated with multidrug resistant cells. Treatment of MCF-7 and MCF-7/MDR1 cells with PSC 833 caused similar ceramide elevation, in a dose-responsive manner. At 5.0 microM, PSC 833 increased ceramide levels 4- to 5-fold. The increase in ceramide levels correlated with a decrease in survival in both cell lines. The EC50 (concentration of drug that kills 50% of cells) for PSC 833 in MCF-7 and MCF-7/MDR1 cells was 7.2 +/- 0.6 and 11.0 +/- 1.0 microM, respectively. C6-Ceramide exposure diminished survival of MCF-7 cells; whereas, MCF-7/MDR1 cells were resistant to this short chain ceramide analog. Preincubation of cells with cyclosporine A, which has high affinity for P-gp, did not diminish the levels of ceramide generated upon exposure to PSC 833. These results demonstrate that PSC 833-induced cellular ceramide formation occurs independently of P-gp. As such, these data indicate that reversal of drug resistance by classical P-gp blockers may be modulated by factors unrelated to drug efflux parameters.  相似文献   

6.
Among the mechanisms that induce multidrug resistance (MDR), one of those most frequent is over-expression of a phosphoglycoprotein (Pgp) encoded in the mouse by the mdr-1 and mdr-3 genes. We have demonstrated that cyclosporin-A (CsA) as well as its analogue PSC 833 were able to revert the MDR phenotype in murine cell lines resistant to vincristine (LBR-V160) or doxorubicin (LBR-D160). The aim of this work was to evaluate the ability of PSC 833 and CsA to modulate mdr-1, mdr-3 and mrp-1 genes as well as to induce apoptosis analyzing the mechanism involved in the above tumor cell lines. By semi-quantitative RT-PCR, we demonstrated that mdr-3 was over-expressed in both resistant lines while mdr-1 was over-expressed only in LBR-V160; in contrast, mrp-1 expression was not evidenced in any of the cell lines. After treatment with 0.1 microg ml(-1) of either PSC 833 or CsA, LBR-V160 showed no changes in mdr-1 but decreased mdr-3 expression, while LBR-D160 failed to display any modification in the expression of these genes. Apoptosis was evidenced by fluorescence microscopy, S minuscule accumulation and agarose gel electrophoresis. Our results demonstrated that CsA (1 microg ml(-1)) was able to induce apoptosis in all cell lines: 18.31% (+/-4.46) for LBR-, 25.96% (+/-5.24) for LBR-V160 and 27.36% (+/-4.12) for LBR-D160, while PSC 833 (1 microg ml(-1)) only induced apoptosis 21.51% (+/-5.73) in LBR-V160 cell line. The expression of Bcl-2 family proteins (Bcl-2, Bax and Bcl-x(L)) was analyzed by flow cytometry showing high expression of the three proteins which was not significantly modified after treatment with either PSC 833 or CsA on the sensitive as well as on the resistant cell lines. Single stranded conformation polymorphisms analysis of p53 (Trp53) gene in the cell lines showed no mutation in exons 5-8 of the tumor suppressor gene. We conclude that depending on the concentration used, PSC 833 and CsA may act either by modulating the mdr-3 gene (0.1 microg ml(-1)) or by direct impact on the cells through induction of apoptosis (1 microg ml(-1)), in the latter case through a mechanism that might act independent of the Bcl-2 family proteins.  相似文献   

7.
Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.  相似文献   

8.
Multidrug resistance (MDR) in tumour cells is often caused by the overexpression of the plasma membrane drug transporter P-glycoprotein (P-gp) or the recently discovered multidrug resistance-associated protein (MRP). In this study we investigated the specificity and sensitivity of the fluorescent probes rhodamine 123 (R123), daunorubicin (DNR) and calcein acetoxymethyl ester (calcein-AM) in order to detect the function of the drug transporters P-gp and MRP, using flow cytometry. The effects of modulators on the accumulation and retention of these probes were compared in several pairs of sensitive and P-gp- as well as MRP-overexpressing cell lines. R123, in combination with the modulator PSC833, provided the most sensitive test for detecting P-gp-mediated resistance. Moreover, in a 60 min drug accumulation assay R123 can be regarded as a P-gp-specific probe, since R123 is not very efficiently effluxed by MRP. In contrast to R123, a 60 min DNR or calcein-AM accumulation test could be used to detect MRP-mediated resistance. The MRP-specific modulator genistein could be used in combination with DNR, but not with calcein-AM. Vincristine (VCR) can be used to increase the cellular uptake of calcein-AM in MDR cells, but is not specific for MRP. Thus, although the combination of DNR with genistein appeared to be as sensitive as the combination of calcein-AM with VCR, the former may be used to probe specific MRP activity whereas the latter provides a combined (P-gp + MRP) functional MDR parameter. With these functional assays the role and relative importance of P-gp and MRP can be studied in, for example, haematological malignancies.  相似文献   

9.
PURPOSE/OBJECTIVES: To review the mechanisms of multidrug resistance (MDR) in human cancer and the clinical use of MDR modulators to overcome or reverse P-glycoprotein (P-gp)-mediated MDR. DATA SOURCES: Current literature, ongoing clinical trials, and clinical experience. DATA SYNTHESIS: Agents, such as valspodar, that block the activity of P-gp can reverse or overcome MDR caused by overexpression of P-gp. The MDR modulator valspodar (PSC 833; Novartis Pharmaceuticals Corporation, East Hanover, NJ) is examined as a model for establishing nursing guidelines for this new class of therapeutic agents. CONCLUSIONS: The dose of some chemotherapy agents must be modified with concurrent valspodar administration. Studies examining the safety and efficacy of valspodar as a prototype of MDR modulators provide the basis for establishing nursing care guidelines. IMPLICATIONS FOR NURSING PRACTICE: Nursing care for the administration of valspodar includes understanding patient selection, criteria, dosing, and administration; side-effect management; patient monitoring and follow-up; and patient education.  相似文献   

10.
STI571, an Abl-specific tyrosine kinase inhibitor, selectively kills Bcr-Abl-containing cells in vitro and in vivo . However, some chronic myelogenous leukemia (CML) cell lines are resistant to STI571. We evaluated whether STI571 interacts with P-glycopro-tein (P-gp) and multidrug resistance protein 1 (MRP1), and examined the effect of agents that reverse multidrug resistance (MDR) on the resistance to SI571 in MDR cells. STI571 inhibited the [125l]azidoagosterol A-photolabeling of P-gp, but not that of MRP1. K562/MDR cells that overexpress P-gp were 3.67 times more resistant to STI571 than the parental Philadelphia-chromosome-positive (Ph+) CML K562 cells, and this resistance was most effectively reversed by cepharanthine among the tested reversing agents. The concentration of STI571 required to completely inhibit tyrosine phosphorylation in K562/MDR cells was about 3 times higher than that in K562 cells, and cepharanthine abolished the difference. In KB-G2 cells that overexpress P-gp, but not Bcr-Abl, 2.5 μM STI571 partly reversed the resistance to vincristine (VCR), paclitaxel, etoposide (VP-16) and actinomycin D (ACD) but not to Adriamycin (ADM) or colchicine. STI571 increased the accumulation of VCR, but not that of ADM in KB-G2 cells. STI571 did not reverse resistance to any agent in KB/MRP cells that overexpress MRP1. These findings suggest that STI571 is a substrate for P-gp, but is less efficiently transported by P-gp than VCR, and STI571 is not a substrate for MRP1. Among the tested reversing agents that interact with P-gp, cepharanthine was the most effective agent for the reversal of the resistance to STI571 in K562/ MDR cells. Furthermore, STI571 itself was a potent reversing agent for MDR in P-gp-expressing KB-G2 cells.  相似文献   

11.
A non-immunosuppressive cyclosporin, SDZ PSC 833 (PSC833), shows a reversal effect on multidrug resistance (MDR) by functional modulation of MDR1 gene product, P-glycoprotein. The objective of the present study was to compare the reversal efficacy of three multidrug resistance modulators, PSC833, cyclosporin A (CsA) and verapamil (Vp). PSC833 has approximately 3-10-fold greater potency than CsA and Vp with respect to the restoring effect on reduced accumulation of doxorubicin (ADM) and vincristine (VCR) in ADM-resistant K562 myelogenous leukemia cells (K562/ADM) in vitro and also on the sensitivity of K562/ADM to ADM and VCR in in vitro growth inhibition. The in vivo efficacy of a combination of modifiers (PSC833 and CsA: 50 mg/kg, Vp 100 mg/kg administered p.o. 4 h before the administration of anticancer drugs) with anticancer drugs (ADM 2.5 mg/kg i.p., Q4D days 1, 5 and 9, VCR 0.05 mg/kg i.p., QD days 1-5) was tested in ADM-resistant P388-bearing mice. PSC833 significantly enhanced the increase in life span by more than 80%, whereas CsA and Vp enhanced by less than 50%. This reversal potency, which exceeded that of CsA and Vp, was confirmed by therapeutic experiments using colon adenocarcinoma 26-bearing mice. These results demonstrated that PSC833 has signficant potency to reverse MDR in vitro and in vivo, suggesting that PSC833 is a good candidate for reversing multidrug resistance in clinical situations.  相似文献   

12.
A Lucci  T Y Han  Y Y Liu  A E Giuliano  M C Cabot 《Cancer》1999,86(2):300-311
BACKGROUND: To provide insight for the development of more effective clinical agents, the authors attempted to elucidate the mechanisms of action of multidrug resistance (MDR) modulators. Previously, the authors found that MDR modulators blocked the conversion of ceramide to glucosylceramide in MDR cells, thereby enhancing cytotoxicity. Because ceramide is a critical component of the apoptosis signaling cascade, the current study examined the impact of therapy using agents that elicit ceramide formation combined with agents that block ceramide glycosylation. METHODS: Doxorubicin-resistant human breast carcinoma cells (MCF-7-AdrR) were treated with either doxorubicin, tamoxifen, cyclosporine A, or the cyclosporine A analog SDZ PSC 833 (PSC 833) or with combinations thereof, and ceramide and glucosylceramide metabolisms were measured by cell radiolabeling. Cell viability was quantitated spectrophotometrically and apoptosis was evaluated analyzing DNA integrity by gel electrophoresis. RESULTS: Whereas cyclosporine A blocked the generation of glucosylceramide in MCF-7-AdrR cells, a chemical cousin, PSC 833, elicited a 3-fold increase in glucosylceramide and a 5-fold increase in ceramide levels at 24 hours. The PSC 833 response was time-dependent(as early as 30 minutes) and dose-dependent (as low as 0.1 microM). The appearance of ceramide foreran the generation of glucosylceramide. Sphingomyelin levels were not decreased in response to PSC 833; however, Fumonisin B1, a ceramide synthase inhibitor, blocked PSC 833-induced ceramide generation. Adding tamoxifen, which blocks ceramide glycosylation, to the PSC 833 regimen boosted ceramide levels 11-fold over controls and caused DNA fragmentation. A 3-component regimen comprised of tamoxifen, doxorubicin, and PSC 833 increased ceramide levels 26-fold and brought cell viability to zero. CONCLUSIONS: These results demonstrate that MDR modulators can be used separately, in combination, or in conjunction with chemotherapy at clinically relevant concentrations to manipulate cellular ceramide levels and restore sensitivity in the drug resistant setting. As such, this represents a new direction in the treatment of cancer.  相似文献   

13.
A newly synthesized 1,4-benzothiazipine derivate, 4-[3-(4-benzylpiperidin-1-yl) propionyl]-7-methoxy-2,3,4,5-tetrahydro-1, 4-benzothiazepine monohydrochloride (JTV-519) was examined for its ability to reverse P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) mediated multidrug resistance (MDR) in K562/MDR and KB/MRP cells, respectively. JTV-519 at 3 microM reversed the resistance of K562/MDR cells to vincristine (VCR), taxol, etoposide (VP16), adriamycin (ADM) and actinomycin D and at 0.5 or 1 microM reversed their resistance to STI571. JTV-519 at 10 microM enhanced the accumulation of ADM in K562/MDR cells to the level in parental K562 cells and inhibited the efflux of ADM from K562/MDR cells. Photoaffinity labeling of P-gp with 3H-azidopine was almost completely inhibited by 500 microM JTV-519. JTV-519 at 3 microM also partially reversed the resistance of KB/MRP cells to VCR and at 500 microM partially inhibited the photoaffinity labeling of MRP1 with (125)I-II-azidophenyl agosterol A (125I-azidoAG-A). These results suggest that JTV-519 reversed the resistance to the anti-cancer agents in P-gp and MRP1 overexpressing multidrug-resistant cells by directly binding to P-gp and MRP1, and competitively inhibiting transport of the anti-cancer agents.  相似文献   

14.
Multidrug resistance (MDR) to anti-cancer drugs has been associated with the overexpression of P-glycoprotein (P-gp) and the multidrug resistance-associated protein (MRP), both being members of the ATP-binding cassette (ABC) superfamily of transporters. We investigated whether in addition to P-gp and MRP, another ABC transporter, the transporter associated with antigen processing (TAP), is associated with MDR. TAP plays a major role in MHC class I-restricted antigen presentation by mediating peptide translocation over the endoplasmic reticulum membrane. TAP1 and P-gp share a significant degree of homology among their transmembrane domains, which are thought to be the primary determinants of substrate specificity, and both can apparently mediate the translocation of peptides. Using immunocytochemistry and Western blot, TAP was overexpressed in parallel with MHC class I in several MDR human cancer cell lines. TAP was overexpressed more frequently in MRP-positive MDR cell lines (three out of three) than in P-gp positive MDR cells (two out of five). Reversal of resistance resulted in a decrease in TAP levels. Transfection of the TAP genes into TAP-deficient lymphoblastoid T2 cells conferred mild resistance to etoposide, vincristine and doxorubicin (2- to 2.5-fold). Furthermore, etoposide and vincristine inhibited TAP-dependent peptide translocation to the endoplasmic reticulum. Collectively, our results suggest that TAP may modestly contribute to the MDR phenotype, in particular in MRP- overexpressing MDR cells. Further insight into the role of TAP in MDR will require the study of other transfectants, as well as the investigation of TAP expression in P-gp and MRP-negative MDR cancer cell lines.  相似文献   

15.
In murine erythroleukemia (MEL) A20 cells (grown in 20 ng/ml adriamycin), mutation(s) producing 10-fold adriamycin (doxorubicin) resistance emerged via an unknown mechanism. Exposure of A20 cells to further stepwise increasing concentrations of ADR in combination with MDR modulators (PSC833 and verapamil) aimed to amplify the undetermined A20 mechanism while controlling P-glycoprotein (P-gp) overexpression. The growth of the derived cell lines A30P, A40P and A60P (grown in 30, 40 and 60 ng/ml ADR with PSC833 and verapamil) was initially slow, but eventually reached near WT rates. The new cell lines A30P and A40P were only 1.3- and 1.6-fold more resistant to adriamycin than PC4 A20. Resistance to vincristine was unchanged, but resistance to etoposide (VP-16) was 3.7-fold higher in A40P than A20 (itself 97-fold higher than wild-type). Expression of mdr3 and mrp mRNA tested by RT-PCR showed no increase. Daunorubicin and etoposide accumulation was not different among the cell lines, and no changes were detected in the number of daunorubicin fluorescent lysosomes. In comparison to WT, reduced topoisomerase IIalpha (EC 5.99.1.3) activity (20%) and protein expression (80%) was similar to the parental A20 cells. No mutations in the coding sequence of topoisomerase IIalpha could be located to account for the high etoposide resistance levels. The inhibitor combination of verapamil and PSC833 prevented the emergence of transporter mediated MDR, but not ADR selection of cell lines highly resistant to etoposide.  相似文献   

16.
Melanoma cells exhibit, both in vivo and in vitro, intrinsic drug resistance to various chemotherapeutic agents. Cultured human melanoma cells (M14) intrinsically express significant amounts of multidrug resistance-related protein (MRP1) and P-glycoprotein (P-gp) in the Golgi apparatus, but do not express these drug transporters on the plasma membrane. A panel of multidrug resistant (MDR) melanoma cell lines (M14Dx), showing different degrees of resistance to doxorubicin (DOX), were isolated. In M14Dx lines, the appearance of surface P-gp, but not of MRP1 or lung resistance related protein (LRP), occurred in cells grown in the presence of DOX concentrations higher than 60 nM. Furthermore, P-gp levels appeared to be dose-dependent. Flow cytometry, laser scanning confocal microscopy and cytotoxicity studies demonstrated that the activity of the drug extrusion system was related to both surface P-gp expression and resistance to DOX. In conclusion, P-gp, but not MRP1 or LRP, might play a pivotal role in the pharmacologically-induced MDR phenotype of melanoma cells.  相似文献   

17.
The expression of drug efflux mechanisms by cancer cells during chemotherapy leads to multidrug resistance (MDR) and constitutes a major obstacle in the effective treatment of cancer. The most widely characterized drug efflex pump is P-glycoprotein (P-gp) and efforts are being directed towards identifying agents that reverse P-gp mediated drug resistance. PSC-833 is a non-immunosuppressive cyclosporin derivative that potently and specifically inhibits P-gp. The current review focuses on the elucidation of the mechanism of action of PSC-833 as a potential MDR reversing agent, using syngeneic multidrug resistant sublines of MDA435 human breast adenocarcinoma cell line that express increasing levels of P-gp. In vitro experiments indicate that PSC-833 interacts directly with P-gp with high affinity and probably interferes with the ATPase activity of P-gp. Studies in multidrug resistant tumor models confirm P-gp as the in vivo target of PSC-833 and demonstrate the ability of PSC-833 to reverse MDR leukemias and solid tumors in mice. Presently, PSC-833 is being evaluated in the clinic.  相似文献   

18.
Idarubicin (IDA) is an anthracycline anticancer drug utilized in the treatment of acute leukemias. There are conflicting data published with regard to the cross-resistance of IDA in multidrug-resistant (MDR) cells expressing P-glycoprotein (P-gp). We evaluated the cytotoxicity and cellular accumulation of IDA in a panel of anthracycline-selected MDR cell lines. Leukemia K562/R7 cells and sarcoma MES-SA/Dx5 cells expressing high levels of the MDR1 (ABCB1) gene were resistant to IDA (42-fold and 150-fold, respectively). In both of these cell lines, resistance to IDA was equivalent to that for doxorubicin, the drug used to select for the MDR variants. The P-gp inhibitor PSC 833 (valspodar) at 2 microM completely restored sensitivity to IDA. IDA accumulation was decreased 12-fold in MES-SA/Dx5 cells vs parental cell line, and drug uptake was restored to control levels by PSC 833. Reduced intracellular IDA was correlated with P-gp content by flow cytometry. Experiments in NIH3T3 murine cells transfected with the human MDR1 gene substantiated the findings of cross-resistance to IDA and reversal of resistance by PSC 833. Our data indicate that IDA is a high-affinity substrate for P-gp.  相似文献   

19.
Gemtuzumab ozogamicin (CMA-676), a calicheamicin-conjugated humanized anti-CD33 mouse monoclonal antibody, has recently been introduced clinically as a promising drug for the treatment of patients with acute myeloid leukemia (AML), more than 90% of which express CD33 antigen. However, our recent study suggested that CMA-676 was excreted by a multi- drug-resistance (MDR) mechanism in P-glycoprotein (P-gp)-expressing leukemia cell lines. We analyzed the in vitro effects of CMA-676 on leukemia cells from 27 AML patients in relation to the amount of P-gp, MDR-associated protein 1 (MRP1), CD33 and CD34, using a multi-laser-equipped flow cytometer. The cytocidal effect of CMA-676, estimated by the amount of hypodiploid portion on cell cycle, was inversely related to the amount of P-gp estimated by MRK16 monoclonal antibody (P = 0.004), and to the P-gp function assessed by intracellular rhodamine-123 accumulation in the presence of PSC833 or MS209 as a MDR modifier (P = 0.0004 and P = 0.002, respectively). In addition, these MDR modifiers reversed CMA-676 resistance in P-gp-expressing CD33(+) leukemia cells (P = 0.001 with PSC833 and P = 0.0007 with MS209). In CD33(+) AML cells from 13 patients, CMA-676 was less effective on CD33(+)CD34(+) than CD33(+)CD34(-) cells (P = 0.002). PSC833 partially restored the effect of CMA-676 in CD33(+)CD34(+) cells. These results suggest that the combined use of CMA-676 and a MDR modifier will be more effective on CD33(+) AML with P-gp-related MDR.  相似文献   

20.
ATP-binding cassette (ABC) proteins include the best known mediators of resistance to anticancer drugs. In particular, ABCB1 [MDR1/P-glycoprotein (P-gp)] extrudes many types of drugs from cancer cells, thereby conferring resistance to those agents. Attempts to overcome P-gp-mediated drug resistance using specific inhibitors of P-gp has had limited success and has faced many therapeutic challenges. As an alternative approach to using P-gp inhibitors, we characterize a thiosemicarbazone derivative (NSC73306) identified in a generic screen as a compound that exploits, rather than suppresses, P-gp function to induce cytotoxicity. Cytotoxic activity of NSC73306 was evaluated in vitro using human epidermoid, ovarian, and colon cancer cell lines expressing various levels of P-gp. Our findings suggest that cells become hypersensitive to NSC73306 in proportion to the increased P-gp function and multidrug resistance (MDR). Abrogation of both sensitivity to NSC73306 and resistance to P-gp substrate anticancer agents occurred with specific inhibition of P-gp function using either a P-gp inhibitor (PSC833, XR9576) or RNA interference, suggesting that cytotoxicity was linked to MDR1 function, not to other, nonspecific factors arising during the generation of resistant or transfected cells. Molecular characterization of cells selected for resistance to NSC73306 revealed loss of P-gp expression and consequent loss of the MDR phenotype. Although hypersensitivity to NSC73306 required functional expression of P-gp, biochemical assays revealed no direct interaction between NSC73306 and P-gp. This article shows that NSC73306 kills cells with intrinsic or acquired P-gp-induced MDR and indirectly acts to eliminate resistance to MDR1 substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号