首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Morphological bases for a role of nitric oxide in adult neurogenesis   总被引:9,自引:0,他引:9  
The subventricular zone (SVZ) of the adult mouse brain retains the capacity to generate new neurons from stem cells. The neuronal precursors migrate tangentially along the rostral migratory stream (RMS) towards the olfactory bulb, where they differentiate as periglomerular and granular interneurons. In this study, we have investigated whether nitric oxide (NO), a signaling molecule in the nervous system with a role in embryonic neurogenesis, may be produced in the proximity of the progenitor cells in the adult brain, as a prerequisite to proposing a functional role for NO in adult neurogenesis. Proliferating and immature precursor cells were identified by immunohistochemistry for bromo-deoxyuridine (BrdU) and PSA-NCAM, respectively, and nitrergic neurons by either NADPH-diaphorase staining or immunohistochemical detection of neuronal NO synthase (NOS I). Nitrergic neurons with long varicose processes were found in the SVZ, intermingled with chains of cells expressing PSA-NCAM or containing BrdU. Neurons with similar characteristics surrounded the RMS all along its caudo-rostral extension as far as the core of the olfactory bulb. No expression of NOS I by precursor cells was detected either in the proliferation or in the migration zones. Within the olfactory bulb, many small cells in the granular layer and around the glomeruli expressed either PSA-NCAM or NOS I and, in some cases, both markers. Colocalization was also found in a few isolated cells at a certain distance from the neurogenesis areas. The anatomical disposition shown indicates that NO may be released close enough to the neuronal progenitors to allow a functional influence of this messenger in adult neurogenesis.  相似文献   

2.
In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies.  相似文献   

3.
Role of nitric oxide in subventricular zone neurogenesis   总被引:3,自引:0,他引:3  
A possible role of nitric oxide (NO) in adult neurogenesis has been suggested based on anatomical findings showing that subventricular zone (SVZ) neuroblasts are located close to NO-producing cells, and on the known antiproliferative actions of NO in many cell types.Experiments have been performed in rodents with systemic and intracerebroventricular administrations of the NO synthase (NOS) inhibitor L-NAME. NOS inhibition leads to significant increases in the number of proliferating cells in the SVZ and olfactory bulb (OB). NO exerts its cytostatic action preferentially on the cell population expressing nestin but not βIII-tubulin, which may correspond to the type C cells described in the SVZ. The negative effect of NO on SVZ cell proliferation has also been confirmed in SVZ primary cultures.An inhibition of the tyrosine kinase activity of the epidermal growth factor receptor (EGFR) is described as one of the molecular mechanisms responsible for the antiproliferative effect of NO in SVZ cells. Biochemical data supporting this conclusion has been obtained using the neuroblastoma cell line NB69, which endogenously expresses the EGFR. In these cells, the antimitotic action of NO occurs upon inhibition of the EGFR tyrosine phosphorylation, probably by a direct S-nitrosylation of the receptor.The latest published reports on NO and neurogenesis indicate that NO physiologically participates in the control of adult neurogenesis by modulating the proliferation and fate of the SVZ progenitor cells. These effects might be partially due to a direct inhibition of the EGFR by S-nitrosylation.  相似文献   

4.
The stage of neurogenesis can be divided into three steps: proliferation, migration, and differentiation. To elucidate their detailed relations after ischemia, the three steps were comprehensively evaluated, in the subventricular zone (SVZ) through the rostral migratory stream (RMS) to the olfactory bulb (OB), in adult gerbil brain after 5 minutes of transient forebrain ischemia. Bromodeoxyuridine (BrdU), highly polysialylated neural cell adhesion molecule (PSA-NCAM), neuronal nuclear antigen (NeuN), and glial fibrillary acidic protein (GFAP) were used as markers for proliferation, migration, and differentiation, respectively. The number of BrdU-labeled cells that coexpressed PSA-NCAM and the size of PSA-NCAM-positive cell colony increased in the SVZ with a peak at 10 d after transient ischemia. In the RMS, the number of BrdU-labeled cells that coexpressed PSA-NCAM increased, with a delayed peak at 30 d, when the size of RMS itself became larger and the number of surrounding GFAP-positive cells increased. In the OB, BrdU + NeuN double positive cells were detected at 30 and 60 d. NeuN staining and terminal deoxynucleotidyl dUTP nick-end labeling staining showed no neuronal cell loss around the SVZ, and in the RMS and the OB after transient ischemia. These findings indicate that transient forebrain ischemia enhances neural stem cell proliferation in the SVZ without evident neuronal cell loss, and has potential neuronal precursor migration with activation of GFAP-positive cells through the RMS to the OB.  相似文献   

5.
The subventricular zone (SVZ) of rodents retains the capacity to generate new neurons throughout the entire life of the animal. Neural progenitors of the SVZ survive and proliferate in vitro in the presence of epidermal growth factor (EGF). Nitric oxide (NO) has been shown to participate in neural tissue formation during development and to have antiproliferative actions, mediated in part by inhibition of the EGF receptor. Based on these findings, we have investigated the possible effects of endogenously produced and exogenously added NO on SVZ cell proliferation and differentiation. Explants were obtained from postnatal mouse SVZ and cultured in the presence of EGF. Cells migrated out of the explants and proliferated in culture, as assessed by bromodeoxyuridine (BrdU) incorporation. After 72 h in vitro, the colonies formed around the explants were constituted by cells of neuronal or glial lineages, as well as undifferentiated progenitors. Immunoreactivity for the neuronal isoform of NO synthase was observed in neuronal cells with long varicose processes. Cultures treated with the NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) showed an increase in the percentage of BrdU-immunoreactive cells, whereas treatment with the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) led to a decrease in cell proliferation, without affecting apoptosis. The differentiation pattern was also altered by L-NAME treatment resulting in an enlargement of the neuronal population. The results suggest that endogenous NO may contribute to postnatal neurogenesis by modulating the proliferation and fate of SVZ progenitor cells.  相似文献   

6.
It is still being debated whether neurogenesis in the subventricular zone (SVZ) is enhanced in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injury in the adult mouse brain. Our previous studies provided evidence that MPTP induces apoptosis of migrating neuroblasts (neural progenitor cells, A cells) in the SVZ and rostral migratory stream (RMS). We investigated cellular kinetics in the adult SVZ and olfactory bulb (OB) after MPTP damage. Cells were labeled with bromodeoxyuridine (BrdU), and the effects of MPTP on the survival and fate of migrating and residing neuroblasts were evaluated. Two days after BrdU labeling and MPTP treatment, the number of BrdU-positive cells in the SVZ and OB of MPTP-treated mice was significantly lower than in the SVZ and OB of saline controls. Additionally, fewer BrdU-positive cells migrated to the OB of treated mice than to that of saline controls, and the cells that did migrate diffused radially into the granule cell layer (GCL) when observed at 7, 14, and 28 days. In the OB GCL, the differentiation of BrdU-positive cells into mature neurons significantly attenuated 14 and 28 days after MPTP injury. Moreover, the impaired neurogenesis was followed by a recovery of A cells in the SVZ and OB, suggesting activation of the self-repair process as a result of MPTP-induced depletion of BrdU-positive cells. Our findings clarify the kinetics underlying neurogenesis in MPTP-treated mice and may contribute to the development of an animal model of Parkinson's disease, and the demonstration of cellular kinetics in SVZ may also provide a new insight into assessing neurogenesis in MPTP-treated mouse.  相似文献   

7.
The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.  相似文献   

8.
F‐actin‐binding protein drebrin has two major isoforms: drebrin A and drebrin E. Drebrin A is the major isoform in the adult brain and is highly concentrated in dendritic spines, regulating spine morphology and synaptic plasticity. Conversely, drebrin E is the major isoform in the embryonic brain and regulates neuronal morphological differentiation, but it is also expressed in neurogenic regions of the adult brain. The subventricular zone (SVZ) is one of the brain regions where adult neurogenesis occurs. Neuroblasts migrate to the olfactory bulb (OB) and integrate into existing neuronal networks, after which drebrin expression changes from E to A, suggesting that drebrin E plays a specific role in neuroblasts in the adult brain. Therefore, to understand the role of drebrin E in the adult brain, we immunohistochemically analyzed adult neurogenesis using drebrin‐null‐mutant (DXKO) mice. In DXKO mice, the number of neuroblasts and cell proliferation decreased, although cell death remained unchanged. These results suggest that drebrin E regulates cell proliferation in the adult SVZ. Surprisingly, the decreased number of neuroblasts in the SVZ did not result in less neurons in the OB. This was because the survival rate of newly generated neurons in the OB increased in DXKO mice. Additionally, when neuroblasts reached the OB, the change in the migratory pathway from tangential to radial was partly disturbed in DXKO mice. These results suggest that drebrin E is involved in a chain migration of neuroblasts.  相似文献   

9.
In adult rodents stroke enhances neurogenesis resulting in the addition of neurons to forebrain regions such as striatum or cortex where postnatal neurogenesis under normal conditions plays a negligible role. In the cortex, new neurons are generated either from local cortical precursors that are activated by stroke or from precursors residing in the subventricular zone (SVZ) of lateral ventricles that under normal conditions supply neuroblasts by and large only for the olfactory bulb. In this study we used 5HT3A-EGFP transgenic mice in which all neuroblasts originating in the SVZ are EGFP-labeled. We induced stroke in these mice and by combination of EGFP detection with BrdU injections we labeled all post-stroke-generated SVZ-derived neuroblasts. We showed an increase in SVZ-derived neuroblasts 14 and 35 days after stroke in the ipsilateral hemisphere. Post-stroke-generated SVZ-derived neuroblasts migrated to the cortex and survived for at least 35 days representing 2% of BrdU-positive cells in peri-infarct area where they differentiate into mature neurons. Thus, stroke enhances SVZ neurogenesis and attracts newborn neurons to the injury zone.  相似文献   

10.
11.
In rodents and most other mammals studied, neuronal precursors generated in the subventricular zone (SVZ) migrate to the adult olfactory bulb (OB) to differentiate into interneurons called granule and periglomerular cells. How the newborn cells navigate in the postnatal forebrain to reach precisely their target area is largely unknown. However, it is often thought that postnatal neurogenesis recapitulates the neuronal development occurring during embryogenesis.During brain development, intracellular kinases are key elements for controlling cell polarization as well as the coupling between polarization and cellular movement. We show here that the polarity kinase MARK2 maintains its expression in the postnatal SVZ-OB system. We therefore investigated the potential role of this kinase in adjusting postnatal neuroblast migration. We employed mouse brain slices maintained in culture, in combination with lentiviral vector injections designed to label neuronal precursors with GFP and to diminish the expression of MARK2. Time-lapse video microscopy was used to monitor neuroblast migration in the postnatal forebrain from SVZ precursors to cells populating the OB.We found that reduced MARK2 expression resulted in altered migratory patterns and stalled neuroblasts in the rostral migratory stream (RMS). In agreement with the observed migratory defects, we report a diminution of the proportion of cells reaching the OB layers. Our study reveals the involvement of MARK2 in the maintenance of the migratory direction in postnatally-generated neuroblasts and consequently on the control of the number of newly-generated neurons reaching and integrating the appropriate target circuits.  相似文献   

12.
Neurons continue to be born in the subventricular zone (SVZ) of the lateral ventricles of adult mice. These cells migrate as a network of chains through the SVZ and the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into mature neurons. The OB is the only known target for these neuronal precursors. Here, we show that, after elimination of the OB, the SVZ and RMS persist and become dramatically larger. The proportion of dividing [bromodeoxyuridine (BrdU)-labeled] or dying (pyknotic or terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end-labeled) cells in the RMS was not significantly affected at 3 d or 3 weeks after bulbectomy (OBX). However, by 3 months after OBX, the percentage of BrdU-labeled cells in the RMS decreased by half and that of dying cells doubled. Surprisingly, the rostral migration of precursors continued along the RMS after OBX. This was demonstrated by focal microinjections of BrdU and grafts of SVZ cells carrying LacZ under the control of a neuron-specific promoter gene. Results indicate that the OB is not essential for proliferation and the directional migration of SVZ precursors.  相似文献   

13.
Neuronal activity has been identified as a key regulator of neuronal network development, but the impact of activity on migration and terminal positioning of interneuron subtypes is poorly understood. The absence of early subpopulation markers and the presence of intermingled migratory and postmigratory neurons make the developing cerebral cortex a difficult model to answer these questions. Postnatal neurogenesis in the subventricular zone (SVZ) offers a more accessible and compartmentalized model. Neural stem cells regionalized along the border of the lateral ventricle produce two main subtypes of neural progenitors, granule cells and periglomerular neurons that migrate tangentially in the rostral migratory stream (RMS) before migrating radially in the olfactory bulb (OB) layers. Here, we used targeted postnatal electroporation to compare the migration of these two populations in male and female mice. We do not observe any obvious differences regarding the mode of tangential or radial migration between these two subtypes. However, we find a striking increase of intrinsic calcium activity in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. By decreasing neuronal excitability in GC-Ps, we find that neuronal activity has little effect on migration but is required for normal positioning and survival of GC-Ps in the OB layers. Strikingly, decreasing activity of periglomerular neuron precursors (PGN-Ps) did not impact their positioning or survival. Altogether these findings suggest that neuronal excitability plays a subtype specific role during the late stage of migration of postnatally born OB interneurons.SIGNIFICANCE STATEMENT While neuronal activity is a critical factor regulating different aspects of neurogenesis, it has been challenging to study its role during the migration of different neuronal subpopulations. Here, we use postnatal targeted electroporation to label and manipulate the two main olfactory bulb (OB) interneuron subpopulations during their migration: granule cell and periglomerular neuron precursors (PGN-Ps). We find a very striking increase of calcium activity only in granule cell precursors (GC-Ps) when they switch from tangential to radial migration. Interestingly, blocking activity in GC-Ps affected mainly their positioning and survival while PGN-Ps were not affected. These results suggest that neuronal activity is required specifically for the recruitment of GC-Ps in the OB layers.  相似文献   

14.
Neurogenesis persists throughout life under normal and degenerative conditions. The adult subventricular zone (SVZ) generates neural stem cells capable of differentiating to neuroblasts and migrating to the site of injury in response to brain insults. In the present study, we investigated whether estradiol increases neurogenesis in the SVZ in an animal model of stroke to potentially promote the ability of the brain to undergo repair. Ovariectomized C57BL/6J mice were implanted with capsules containing either vehicle or 17beta-estradiol, and 1 week later they underwent experimental ischemia. We utilized double-label immunocytochemistry to identify the phenotype of newborn cells (5-bromo-2'-deoxyuridine-labeled) with various cellular markers; doublecortin and PSA-NCAM as the early neuronal marker, NeuN to identify mature neurons, and glial fibrillary acidic protein to identify astrocytes. We report that low physiological levels of estradiol treatment, which exert no effect in the uninjured state, significantly increase the number of newborn neurons in the SVZ following stroke injury. This effect of estradiol is limited to the dorsal region of the SVZ and is absent from the ventral SVZ. The proliferative actions of estradiol are confined to neuronal precursors and do not influence gliosis. Furthermore, we show that both estrogen receptors alpha and beta play pivotal functional roles, insofar as knocking out either of these receptors blocks the ability of estradiol to increase neurogenesis. These findings clearly demonstrate that estradiol stimulates neurogenesis in the adult SVZ, thus potentially facilitating the brain to remodel and repair after injury.  相似文献   

15.
16.
Neurogenesis persists throughout life in the rodent subventricular zone (SVZ)-olfactory bulb pathway and increases in the adult after brain insults. The influence of neonatal injury on SVZ neural precursors is unknown. We examined the effects of hypoxia-ischemia (HI) on neonatal mouse SVZ cell proliferation and neurogenesis. Postnatal day 10 (P10) mice underwent right carotid artery ligation followed by 10% O2 exposure for 45 min. The SVZ area and hemispheric injury were quantified morphometrically 1-3 weeks later. Bromodeoxyuridine (BrdU) was used to label proliferating cells, and cell phenotypes of the progeny were identified by immunohistochemistry. HI significantly enlarged the ipsilateral SVZ at P18, P24, and P31, and increases in the SVZ area correlated directly with the degree of hemispheric damage. HI also stimulated cell proliferation and neurogenesis in the SVZ and peri-infarct striatum. Some newborn cells expressed a neuronal phenotype at P24, but not at P31, indicating that neurogenesis was short-lived. These results suggest that augmenting SVZ neuroblast recruitment and survival may improve neural repair after neonatal brain injury.  相似文献   

17.
Neurogenesis continues throughout life in the hippocampus. To study postnatal neurogenesis in vitro, hippocampal slices from rats on postnatal day 5 (P5) were cultured on a porous membrane for 14 or 21 days. In the initial experiments, precursor cells were labeled with bromodeoxyuridine (BrdU) after 7 days in culture because hippocampal slices are generally used in experiments after 1-2 weeks in culture. Fourteen days after labeling, however, only about 10% of BrdU-labeled cells expressed neuronal markers, although in living rats, about 80% of cells labeled with BrdU on P5 had become neurons by P19. Next, rats were injected with BrdU 30 min before culture, after which hippocampal slices were cultured for 14 days to examine the capacity of in vivo-labeled neural precursors to differentiate into neurons in vitro. In this case, more than two-thirds of BrdU-labeled cells expressed neuronal markers, such as Hu, NeuN, and PSA-NCAM. Furthermore, precursor cells underwent early in vitro labeling by incubation with BrdU or a modified retrovirus vector carrying EGFP for 30 min from the beginning of the culture. This procedure resulted in a similar high rate of neuronal differentiation and normal development into granule cells. In addition, time-lapse imaging with retrovirus-EGFP revealed migration of neural precursors from the hilus to the granule cell layer. These results indicate that in vivo- and early in vitro-labeled cultures are readily available ex vivo models for studying postnatal neurogenesis and suggest that the capacity of neural precursors to differentiate into neurons is reduced during the culture period.  相似文献   

18.
In the adult brain, the subventricular zone (SVZ) is one of the regions where active neurogenesis occurs. Relatively few specific markers are available to distinguish different types of cells in the SVZ and rostral migratory stream (RMS) of adult brain. Here, we showed that trophinin and bystin, both of which are required for early embryo implantation during development, were expressed in the SVZ and RMS of the adult rat brain, but not in the brain of embryos and early postnatal animals. Trophinin-expressing cells were immunopositive for both Ki-67 and nestin in the SVZ. Some of the trophinin-positive cells did not express either the type A cell marker polysialylated weakly adhesive form of the neural cell adhesion molecule (PSA-NCAM) or the type B cell marker glial fibrillary acidic protein (GFAP). Double-label immunohistochemistry revealed that bystin-positive cells co-expressed GFAP, Ki-67 and nestin, but not PSA-NCAM, suggesting that they are likely type B cells. Intracerebroventricular infusion of cytosine-beta-d-arabiofuranoside (Ara-C) eliminated trophinin-positive cells in the SVZ. Following its depletion, however, the remaining bystin-positive cells continued to divide and generate actively dividing trophinin-positive cells that were negative for PSA-NCAM, leading to reconstruction of SVZ network. These characteristics indicate that this subset of trophinin-positive cells in the SVZ is type C cells. Conversely in the RMS, trophinin co-localized with nestin and PSA-NCAM, suggesting that it is expressed in neuroblasts. Cultured neural precursor cells derived from the adult SVZ also expressed both trophinin and bystin. These findings provide insight into the molecular basis of adult neurogenesis in the SVZ and RMS.  相似文献   

19.
Cadmium (Cd) is a heavy metal that is one of the most toxic environmental pollutants throughout the world. We previously reported that Cd exposure impairs olfactory memory in mice. However, the underlying mechanisms for its neurotoxicity for olfactory function are not well understood. Since adult Subventricular zone (SVZ) and Olfactory Bulb (OB) neurogenesis contributes to olfaction, olfactory memory defects caused by Cd may be due to inhibition of neurogenesis. In this study, using bromodeoxyuridine (BrdU) labeling and immunohistochemistry, we found that 0.6 mg/L Cd exposure through drinking water impaired adult SVZ/OB neurogenesis in C57BL/6 mice. To determine if the inhibition of olfactory memory by Cd can be reversed by stimulating adult neurogenesis, we utilized the transgenic caMEK5 mouse strain to conditional stimulate of adult neurogenesis by activating the endogenous ERK5 MAP kinase signaling pathway. This was accomplished by conditionally induced expression of active MEK5 (caMEK5) in adult neural stem/progenitor cells. The caMEK5 mice were exposed to 0.6 mg/L Cd for 38 weeks, and tamoxifen was administered to induce caMEK5 expression and stimulate adult SVZ/OB neurogenesis during Cd exposure. Short-term olfactory memory test and sand-digging based, odor-cued olfactory learning and memory test were conducted after Cd and tamoxifen treatments to examine their effects on olfaction. Here we report that Cd exposure impaired short-term olfactory memory and odor-cued associative learning and memory in mice. Furthermore, the Cd-impaired olfactory memory deficits were rescued by the tamoxifen-induction of caMEK5 expression. This suggests that Cd exposure impairs olfactory function by affecting adult SVZ/OB neurogenesis in mice.  相似文献   

20.
The ageing and degenerating brain show deficits in neural stem/progenitor cell (NSPC) plasticity that are accompanied by impairments in olfactory discrimination. Emerging evidence suggests that the gut hormone ghrelin plays an important role in protecting neurones, promoting synaptic plasticity and increasing hippocampal neurogenesis in the adult brain. In the present study, we investigated the role of ghrelin with respect to modulating adult subventricular zone (SVZ) NSPCs that give rise to new olfactory bulb (OB) neurones. We characterised the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHSR), using an immunohistochemical approach in GHSR‐eGFP reporter mice to show that GHSR is expressed in several regions, including the OB but not in the SVZ of the lateral ventricle. These data suggest that acyl‐ghrelin does not mediate a direct effect on NSPC in the SVZ. Consistent with these findings, treatment with acyl‐ghrelin or genetic silencing of GHSR did not alter NSPC proliferation within the SVZ. Similarly, using a bromodeoxyuridine pulse‐chase approach, we show that peripheral treatment of adult rats with acyl‐ghrelin did not increase the number of new adult‐born neurones in the granule cell layer of the OB. These data demonstrate that acyl‐ghrelin does not increase adult OB neurogenesis. Finally, we investigated whether elevating ghrelin indirectly, via calorie restriction (CR), regulated the activity of new adult‐born cells in the OB. Overnight CR induced c‐Fos expression in new adult‐born OB cells but not in developmentally born cells, whereas neuronal activity was absent following re‐feeding. These effects were not present in ghrelin?/? mice, suggesting that adult‐born cells are uniquely sensitive to changes in ghrelin mediated by fasting and re‐feeding. In summary, ghrelin does not promote neurogenesis in the SVZ and OB; however, new adult‐born OB cells are activated by CR in a ghrelin‐dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号