首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depression has been associated with abnormalities in glutamatergic neurotransmission and decreased astrocyte number in limbic areas. We previously demonstrated that global and prefrontal cortical blockade of the astrocytic glutamate transporter (GLT-1) induces anhedonia and c-Fos expression in areas that regulate anxiety, including the central amygdala (CEA). Given the role of the amygdala in anxiety and the high degree of comorbidity between anxiety and depression, we hypothesized that GLT-1 blockade in the CEA would induce symptoms of anhedonia and anxiety in rats. We microinjected the GLT-1 inhibitor, dihydrokainic acid (DHK), into the CEA and examined effects on intracranial self-stimulation (ICSS) as an index of hedonic state, and on behavior in two anxiety paradigms, elevated plus maze (EPM) and fear conditioning. At lower doses, intra-CEA DHK produced modest increases in ICSS responding (T0). Higher doses resulted in complete cessation of responding for 15 min, suggesting an anhedonic or depressive-like effect. Intra-CEA DHK also increased anxiety-like behavior such that percent time in the open arms and total entries were decreased in the EPM and acquisition of freezing behavior to the tone was increased in a fear-conditioning paradigm. These effects did not appear to be explained by non-specific changes in activity, because effects on fear conditioning were assessed in a drug-free state, and a separate activity test showed no significant effects of intra-CEA DHK on locomotion. Taken together, these studies suggest that blockade of GLT-1 in the CEA is sufficient to induce both anhedonia and anxiety and therefore that a lack of glutamate uptake resulting from glial deficits may contribute to the comorbidity of depression and anxiety.  相似文献   

2.
Mood disorders are associated with regional brain abnormalities, including reductions in glial cell and neuron number, glutamatergic irregularities, and differential patterns of brain activation. Because astrocytes are modulators of neuronal activity and are important in trafficking the excitatory neurotransmitter glutamate, it is possible that these pathologies are interrelated and contribute to some of the behavioral signs that characterize depression and related disorders. We tested this hypothesis by determining whether depressive-like signs were induced by blocking central astrocytic glutamate uptake with the astrocytic glutamate transporter (GLT-1) inhibitor, dihydrokainic acid (DHK), in behavioral tests that quantify aspects of mood, including reward and euthymia/dysthymia: intracranial self-stimulation (ICSS) and place conditioning. We found that DHK elevated ICSS thresholds, a depressive-like effect that could reflect reduced sensitivity to reward (anhedonia) or increased aversion (dysphoria). However, DHK treatment did not establish conditioned place aversions, suggesting that this treatment does not induce dysphoria. To identify the brain regions mediating the behavioral effects of DHK, we examined c-Fos expression in areas implicated in motivation and emotion. DHK increased c-Fos expression in many of these regions. The dentate gyrus of the hippocampus was robustly activated, which led us to explore whether DHK alters hippocampal learning. DHK impaired spatial memory in the MWM. These findings identify disruption of astrocyte glutamate uptake as one component of the complex circuits that mediate anhedonia and cognitive impairment, both of which are common symptoms of depression. These finding may have implications for the etiology of depression and other disorders that share the features of anhedonia and cognitive impairment.  相似文献   

3.
Introduction Recent evidence in clinical and preclinical studies has implicated glutamate neurotransmissions in pathophysiology of mood disorders. The regulation of amino acid neurotransmission, i.e., glutamate and gamma-aminobutyric acid (GABA) involves coordinated mechanisms of uptake and transport within a tripartite synaptic system that includes neurons and glia. Newly appreciated role of the glia, more specifically astrocytes on neuronal functions combined with reported postmortem abnormalities of glia in patients with mood disorders further supports the role of glia in mood disorders. Materials and methods This report presents some of our preliminary results utilizing glia-selective toxins and other pharmacological tools to suppress glial function within the limbic system to study the resulting behavioral abnormalities, and thus, elucidate glial involvement in the development of mood disorders. Results and discussion We demonstrate that chronic blockade of glutamate uptake by a glial/neuronal transporter antagonist l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) within the amygdala, a key area implicated in mood regulation, results in dose-dependent reduction in social exploratory behavior and disrupts circadian activity patterns consistent with symptoms of mood disorders. Similarly, the selective astrocytic glutamate transporter type 1 (GLT-1) blocker dihydrokainic acid (DHK) injected into the amygdala also results in reduced social interaction that is blocked by selective glutamate N-methyl-d-aspartate (NMDA) type receptor antagonist AP5. The results are discussed in the context of glial and glutamate mechanisms in mood disorders and potential therapeutic avenues to address these mechanisms.  相似文献   

4.
Bromocriptine, a dopamine D2 receptor agonist, has widely been used for patients with Parkinson's disease. The aim of the present study was to investigate the effect of bromocriptine on glutamate transporter. Since the astroglial glutamate transporter GLT-1 (EAAT2) is the predominant isoform in the forebrain, we generated EAAT2-expressing human embryonic kidney cells and immortalized mouse astrocytes. In the present studies, we observed a GLT-1-immunoreactive band and significant Na+-dependent d-[3H] aspartate uptake. Furthermore, the glutamate transporter inhibitors, dl-threo-β-benzyloxyaspartic acid (TBOA) and dihydrokainate (DHK), displayed a dose-dependent reduction of d-[3H] aspartate uptake in both types of cells. In contrast, cells exposed to either chemical anoxia or high KCl elicited a marked release of d-[3H] aspartate, and the release was inhibited by TBOA and DHK, implying the contribution of glutamate transporter reversal. Interestingly, we found that bromocriptine dose-dependently inhibits d-[3H] aspartate release elicited by chemical anoxia or high KCl, while no changes occurred in the uptake. The inhibitory action of bromocriptine was not affected by sulpiride, a dopamine D2 receptor antagonist. On the other hand, bromocriptine had no effect on swelling-induced d-[3H] aspartate release, which is mediated by volume-regulated anion channels. In vivo studies revealed that bromocriptine suppresses the excessive elevation of glutamate levels in gerbils subjected to transient forebrain ischemia in a manner similar to DHK. Taken together, these results provide evidence that bromocriptine inhibits excitatory amino acid release via reversed operation of GLT-1 without altering forward transport.  相似文献   

5.
Tetanic stimulation of the sciatic nerve produces spinal long-term potentiation (LTP) of C-fiber evoked field potentials, which is NMDA dependent and may be the substrate of inflammation- or nerve injury-produced central sensitization. Glial glutamate transporter GLT-1 has been considered as an important regulator of excitatory synaptic transmission and nociception. In the present study, we investigated the effects of GLT-1 on the spinal LTP and Fos expression induced by tetanically sciatic stimulation. Intrathecal administration of dihydrokainate (DHK), a GLT-1 selective inhibitor, partially inhibited (0.1 mM) or completely blocked (3.0 mM) the spinal LTP, which may be related to an accumulation of extracellular glutamate. Intrathecal DHK (3.0 mM) also suppressed tetanic stimulation-induced spinal Fos expression. Double immunofluorescence showed no Fos expression in glial fibrillary acidic protein (GFAP)-positive cells, and the cell DNA fragment study failed to detect a significant apoptosis of spinal neurons. These results suggest that disruption of GLT-1 may be associated with the inhibition of functional activation of spinal neurons expressing Fos, but not with glutamate excitotoxicity. In conclusion, glial GLT-1 may play an important role in tetanically sciatic stimulation-induced LTP of spinal nociceptive neurons via the regulation of extracellular levels of glutamate to an appropriate concentration.  相似文献   

6.
RATIONALE: The withdrawal of humans from high doses of psychostimulant drugs can result in a transient syndrome which appears isomorphic to endogenous depression. One of the more prominent symptoms is a loss of hedonic capacity; in animals, the anhedonia associated with amphetamine withdrawal has been measured objectively by decrements in responding for intracranial self-stimulation (ICSS). OBJECTIVE: To date, the effects of amphetamine withdrawal on ICSS responding have been reversed by different antidepressant drugs. In the present study, we sought to reverse withdrawal-induced anhedonia by administration of repeated electroconvulsive shocks (ECS). METHODS: Rats with electrodes in the lateral hypothalamus were trained on an ascending-series current intensity ICSS paradigm until stable levels of responding were attained. Half of the animals were then administered a 4-day escalating dose schedule of d-amphetamine, and tests for ICSS responding started 12 h after the final injection. During withdrawal, all animals received daily treatment with either ECS or sham-ECS. RESULTS: Amphetamine withdrawal was associated with reduced ICSS responding; animals treated with ECS exhibited a facilitated recovery compared to sham-ECS treated animals, and returned to control levels of ICSS responding 24 h earlier. CONCLUSIONS: ECS was able to mitigate the anhedonic effects of d-amphetamine withdrawal, and provides additional support for the use of psychostimulant withdrawal as a model of depression.  相似文献   

7.
Rationale Lactate, like glucose, has recently been found to be an energy substrate for neural activity. It is indicated that lactate is produced by astrocytes under the regulation of glutamatergic tone. Objectives Using in vivo microdialysis technique, we measured extracellular lactate concentrations in the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) of rats. To investigate the role of the glutamate transporter in the modulation of footshock stress-induced energy demands in both brain regions, we attempted to determine whether the footshock stress-induced changes of extracellular lactate concentrations are attenuated by local perfusion of the glutamate uptake inhibitor dihydrokainate (DHK). Results Perfusion of 1.0 mM DHK produced an increase in basal extracellular lactate levels in the mPFC and BLA, whereas 0.1 mM DHK did not affect lactate concentrations in either region. DHK also attenuated stress-induced increment of extracellular lactate concentrations in the mPFC, and completely prevented it in the BLA. Conclusions These results suggest that glutamate transporters regulate lactate availability in astrocytes and indicate that the rapid energy demand induced by glutamate contributes to local lactate production.  相似文献   

8.
Rationale Anhedonia is a core symptom of major depression. Deficits in reward function, which underlie anhedonia, can be readily assessed in animals. Therefore, anhedonia may serve as an endophenotype for understanding the neural circuitry and molecular pathways underlying depression. Objective Surprisingly, there is scant knowledge regarding alterations in brain reward function after olfactory bulbectomy (OB), an animal model which results in a behavioural syndrome responsive to chronic antidepressant treatment. Therefore, the present studies aimed to assess reward function after bulbectomy. Materials and methods The present study utilized sucrose preference, cocaine-induced hyperlocomotion and intra-cranial self-stimulation (ICSS) responding to examine reward processes in the OB model. Results Bulbectomized animals showed a marked preference (>90%) for 0.8% sucrose solution compared with water; similar to the preference exhibited by sham controls. Importantly, there were pronounced deficits in brain reward function, as assessed using ICSS, which lasted 8 days before returning to baseline levels. Furthermore, bulbectomized animals were hyper-responsive to the locomotor stimulating properties of an acute and a repeated cocaine regimen. However, no difference in ICSS facilitation was observed in response to an acute cocaine injection. Conclusions Taken together, these results suggest that bulbectomized rats display alterations in brain reward function, but these changes are not long-lasting and thus, not amenable to investigating the effects of pharmacological interventions. However, given that OB animals are hypersensitive to drugs of abuse, bulbectomy may be an appropriate inducing factor for the development of animal models of co-morbid depression and drug dependence.  相似文献   

9.

Aim:

To investigate the effects of rapamycin on glutamate uptake in cultured rat astrocytes expressing N-terminal 552 residues of mutant huntingtin (Htt-552).

Methods:

Methods: Primary astrocyte cultures were prepared from the cortex of postnatal rat pups. An astrocytes model of Huntington''s disease was established using the astrocytes infected with adenovirus carrying coden gene of N-terminal 552 residues of Huntingtin. The protein levels of glutamate transporters GLT-1 and GLAST, the autophagic marker microtubule-associated protein 1A/1B-light chain 3 (LC3) and the autophagy substrate p62 in the astrocytes were examined using Western blotting. The mRNA expression levels of GLT-1 and GLAST in the astrocytes were determined using Real-time PCR. 3H]glutamate uptake by the astrocytes was measured with liquid scintillation counting.

Results:

The expression of mutant Htt-552 in the astrocytes significantly decreased both the mRNA and protein levels of GLT-1 but not those of GLAST. Furthermore, Htt-552 significantly reduced 3H]glutamate uptake by the astrocytes. Treatment with the autophagy inhibitor 3-MA (10 mmol/L) significantly increased the accumulation of mutant Htt-552, and reduced the expression of GLT-1 and 3H]glutamate uptake in the astrocytes. Treatment with the autophagy stimulator rapamycin (0.2 mg/mL) significantly reduced the accumulation of mutant Htt-552, and reversed the changes in GLT-1 expression and 3H]glutamate uptake in the astrocytes.

Conclusion:

Rapamcin, an autophagy stimulator, can prevent the suppression of GLT-1 expression and glutamate uptake by mutant Htt-552 in cultured astrocytes.  相似文献   

10.

Rationale

Evidence suggests that glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger transporter (xCT) are critical in maintaining glutamate homeostasis. We have recently demonstrated that ceftriaxone treatment induced upregulation of GLT1 levels and attenuated ethanol intake; however, less is known about the involvement of xCT on ethanol intake. In this study, we investigated the effects of ceftriaxone on the levels of xCT in both continuous and relapse-like ethanol drinking, as well as GLT-1 isoforms, and glutamate aspartate transporter (GLAST) in relapse-like ethanol intake.

Methods

P rats received free choice of 15 and 30 % ethanol and water for 5 weeks and then deprived of ethanol for 2 weeks. Rats were treated with ceftriaxone (100 mg/kg, i.p.) or saline during the last 5 days of the 2-week deprivation period. After deprivation period, P rats were re-exposed to free choice of 15 and 30 % ethanol and water for nine consecutive days. A second group of P rats was given continuous ethanol access for 5 weeks, then ceftriaxone (100 mg/kg, i.p.) or saline throughout the week 6.

Results

Ceftriaxone significantly attenuated relapse-like ethanol intake. Importantly, this effect of ceftriaxone was associated in part with upregulation of the levels of GLT-1a and GLT-1b isoforms and xCT in the prefrontal cortex (PFC) and the nucleus accumbens (NAc). There were no significant differences in GLAST expression among all groups. We also found that ceftriaxone treatment increased xCT levels in both PFC and NAc in continuous ethanol intake.

Conclusion

These findings suggest that xCT and GLT-1 isoforms might be target proteins for the treatment of alcohol dependence.  相似文献   

11.
Rats were given nicotine (25 ppm) in their drinking water at the start of their mating period in order to study the expressions of glutamate transporter subtypes in cerebellar astrocytes following the chronic exposure of nicotine after mating. After the offspring were delivered, each group was divided into two subgroups. One group, the control group, was given distilled water only and the other group, the experimental group, was given distilled water containing nicotine. The cerebellar astrocytes were prepared from 7 day-old pups at each group. Ten days after the cells were cultured, the expression of the glutamate transporter subtypes (GLAST and GLT-1) was determined using immunochemistry and immunoblotting. During the continuous treatments, the developmental expression patterns of the GLAST and GLT-1 in the cerebellum were also determined from 2, 4 and 8 week-old rats. The expression levels of GLAST in cultured astrocytes of both the pre- or post-natally exposed groups were higher than those of the control group. However, these expression levels of the continuously exposed group were lower than those of the control group. Compared to those of the control group, the GLT-1 expression levels of all the nicotine-treated groups were higher, particularly in the continuously treated group. According to the results from the immochemistry procedure, the cerebellar GLAST and GLT-1 expression levels of all nicotine-treated groups were lower than those of the control group at each age. However, the immunoblotting procedure showed that the cerebellar GLT-1 expression levels of all the nicotine-treated groups were higher than those of the control group, except for the rats that were continuously exposed for 8 weeks using immunoblotting. These results suggest that the expression of the glial GLAST and GLT-1 are altered differently depending on the initial exposure time and the particular period of nicotine exposure. In addition, nicotine exposure during gestation has persistent effects on glial cells.  相似文献   

12.
13.
Drug dependence is characterized by dysregulation of brain reward systems and increased sensitivity to stress. Chronic exposure to drugs of abuse is associated with increased expression of the neuropeptide dynorphin, the endogenous ligand for kappa opioid receptors (KORs). Activation of KORs causes depressive- and aversive-like responses in rodents, raising the possibility that drug-induced upregulation of dynorphin plays a role independence-associated negative states. Here we used "binge" exposure to cocaine (3 daily intraperitoneal injections of 15 mg/kg for 14 days) to examine the development of dependence-like behavior in the intracranial self-stimulation (ICSS) test and the forced swim test (FST). When rats were tested 1 h before their first scheduled injection of each day-a period of drug withdrawal corresponding to 20 h after their last injection on the previous day-there were exposure-dependent increases in ICSS thresholds (a putative indicator of anhedonia) and decreases in latencies to immobility in the FST (a putative indicator of behavioral despair). Administration of the long-lasting KOR antagonist norBNI (20 μg, intracerebroventricular) before the beginning of the binge regimen attenuated the development of cocaine withdrawal-induced anhedonia in the ICSS test. In contrast, administration of norBNI in the midst of the binge regimen had no effect on expression of cocaine withdrawal-induced anhedonia in the ICSS test, although it did attenuate despair-like behavior in the FST. These data suggest that blockade of KORs before exposure to a stressor (in this case, cocaine withdrawal or forced swimming) can attenuate the development of stress-induced behavioral adaptations. This article is part of a Special Issue entitled 'Anxiety and Depression'.  相似文献   

14.
15.
A core symptom of human depressive disorder is anhedonia, the loss of interest or pleasure in daily activities. Anhedonia, measured as subsensitivity to reward, can be induced in rats by a regimen of repeated, mild, unpredictable stressors. Here, the hedonic state of rats was assessed using an intracranial self-stimulation (ICSS) procedure. The ICSS frequency threshold was determined before, during and after a period of exposure to the stress regimens. After 13 days of repeated mild stress, the ICSS threshold was significantly increased, suggesting a gradual decrease of sensitivity to reward. This anhedonic state lasted throughout the stress period. When stressed anhedonic animals were given electroshock treatment, the stress-induced increase in ICSS threshold was rapidly and completely reversed. Moreover, biological markers of human depression such as reduced latency to the first REM sleep episode or increased time spent in REM sleep were also found in electroencephalographic recordings of chronically stressed animals. These sleep abnormalities were observed beginning in the second week of a three-week stress regimen and progressively disappeared after termination of stress. In conclusion, these data provide further evidence supporting stress-induced anhedonia in rats as a unique animal model of human depression combining convergent elements of biological, etiological, symptomatological and therapeutic validity.  相似文献   

16.

Rationale

Glutamate receptor antagonists can improve the symptoms of Parkinson’s disease (PD) and reduce l-3,4-dihydroxyphenylalanine (l-DOPA)-induced dyskinesia (LID) in both animal models and humans, but usually produce intolerable side effects. Recent evidence suggests that upregulation of the major glutamate transporter, GLT-1, by the β-lactam antibiotic, ceftriaxone, can increase the removal of synaptic glutamate without producing noticeable side effects, and may provide an effective alternative to receptor antagonists for several neurodegenerative diseases.

Objectives

We examined whether repeated i.p. injections of ceftriaxone would, like glutamate antagonists, reduce the deficits in contralateral forepaw stepping produced by unilateral injections of 6-OHDA into the medial forebrain bundle of rats and reduce LID (as measured by abnormal involuntary movements).

Methods and results

In Experiment 1, daily injections of 100 mg/kg ceftriaxone improved contralateral forepaw stepping by 44 %, and these therapeutic effects were still apparent 29 days following the cessation of treatment. In Experiment 2, daily injections of 50 mg/kg ceftriaxone were as effective as daily injections of 10 mg/kg?l-DOPA in increasing contralateral forepaw stepping by 40 %. These therapeutic effects of ceftriaxone were decreased by an injection of 10 mg/kg of the selective GLT-1 antagonist, dihydrokainate (DHK), and were still evident 69 days after the cessation of ceftriaxone injections. Furthermore, ceftriaxone did not produce dyskinesia by itself and reduced the development, but not the expression, of LID.

Conclusions

These data suggest that ceftriaxone, by producing a long-term increase in GLT-1 function and increasing the removal of synaptic glutamate, may offer several advantages over l-DOPA as therapy for PD.  相似文献   

17.
Zhao F  Liao Y  Jin Y  Li G  Lv X  Sun G 《Toxicology in vitro》2012,26(1):24-31
The aim of this study was to explore the mechanisms that contribute to neurotoxicity induced by arsenite exposure focusing on the alteration of glutamate metabolism in primary cultured astrocytes. The cells were exposed to 0-30μM arsenite for 24h, and then cell viability, intracellular nonprotein sulfhydryl (NPSH) levels, mitochondrial membrane potential, activity of Na(+)/K(+)-ATPase, glutamine synthetase (GS) and glutamate transporter (GLAST and GLT-1), and protein expression of GS, GLAST and GLT-1 were examined. Compared with those in control, exposure to arsenite resulted in damages of astrocytes in a concentration dependent manner, which were shown by cell viabilities, and supported by morphological observation, mitochondrial membrane potential and intracellular NPSH levels. On the other hand, activities and protein expression of GS, GLAST and GLT-1 were significantly inhibited by arsenite exposure. Moreover, protein expression of GLAST and activities of GS were much more sensitive to arsenite. However, activities of Na(+)/K(+)-ATPase were not influenced obviously by arsenite exposure. In conclusion, findings from this study indicated that exposure to arsenite could inhibit glutamate metabolism in astrocytes, which might be related to arsenic-induced neurotoxicity.  相似文献   

18.
Growing evidence implicates a critical involvement of prefrontal glial modulation of extracellular glutamate (GLU) in aversive behaviors. However, nothing is known about whether prefrontal glial cells modulate GLU levels in rewarding behaviors. To address this question, we measured GLU efflux in the medial prefrontal cortex (PFC) of rats associated with rewarding behaviors. We used intracranial self-stimulation (ICSS) of the medial forebrain bundle (MFB) as the rewarding behavior. GLU was indirectly measured using microdialysis combined with on-line fluorometric detection of NADH resulting from the reaction of GLU and NAD+ catalyzed by GLU dehydrogenase with a time resolution of 1 min. ICSS caused a minute-by-minute change of extracellular GLU in the medial PFC, with a slight decrease during the stimulation, followed by an increase afterward. This bidirectional change was tetrodotoxin insensitive and abolished by the gliotoxin fluorocitrate. To confirm and extend the previous studies of aversion-induced increase of extracellular GLU in the medial PFC, we also measured prefrontal GLU efflux associated with an aversive stimulation, immobilization stress. The temporal change in extracellular GLU caused by this stress was markedly different from that observed during ICSS. A rapid increase in GLU was detected during the aversive stimulation, followed by a large increase afterward. This bimodal change was tetrodotoxin insensitive, similar to that detected for ICSS. These findings indicate a bidirectional regulation of extracellular GLU by prefrontal glial cells associated with rat ICSS behavior, and reveal that glial modulation of GLU neurochemistry in the medial PFC contributes to rewarding as well as aversive behaviors in rats.  相似文献   

19.
Cocaine use frequently occurs in episodic prolonged binges. Following such a cocaine binge, the user suffers from severe depression mixed with irritability, anxiety, anergia and anhedonia. These symptoms constitute the cocaine withdrawal syndrome. Since cocaine's rewarding effects are mediated by enhanced dopaminergic neurotransmission in the mesocorticolimbic system, it is possible that a long-acting dopamine agonist might block the withdrawal effects associated with the termination of a prolonged bout of cocaine self-administration. An animal model of post-cocaine anhedonia was developed using the elevation in intracranial self-stimulation (ICSS) thresholds following the termination of prolonged periods of cocaine self-administration as a measure of an animal's "anhedonic" state. In the present study, an attempt was made to reverse the postcocaine elevation in ICSS thresholds with acute administration of a dopaminergic agonist, bromocriptine. Rats were allowed to self-administer cocaine for 24 hours continuously. Four hours after the termination of the self-administration session, animals were injected with either vehicle or bromocriptine (1, 2, or 4 mg/kg, IP). Two hours later (6 hours post cocaine), the animals' self-stimulation thresholds were assessed. Confirming previous work, treatment with the vehicle following a cocaine "binge" resulted in elevated ICSS thresholds compared to predrug baseline levels or to control rats' thresholds. Bromocriptine, at doses that had no effect on ICSS thresholds in control rats, reversed the postcocaine anhedonia in a dose-related manner. These results indicate that bromocriptine-like drugs (pharmacological agents that enhance dopaminergic neurotransmission) may be able to ameliorate some of the effects of cocaine withdrawal on mood and motivational state. In addition, the results of the present study indicate that the proposed animal model of cocaine withdrawal could be useful in the discovery and development of new pharmacotherapies for cocaine withdrawal.  相似文献   

20.
Tobacco addiction is characterized by a negative mood state upon smoking cessation and relapse after periods of abstinence. Clinical studies indicate that negative mood states lead to craving and relapse. The partial α4/α6/β2* nicotinic acetylcholine receptor (nAChR) agonists varenicline and cytisine are widely used as smoking cessation treatments. Varenicline has been approved in the United States for smoking cessation and cytisine is used in Eastern European countries. Despite the widespread use of these compounds, very little is known about their effects on mood states. These studies investigated the effects of varenicline, cytisine, and the cytisine-derivative 3-(pyridin-3′-yl)-cytisine (3-pyr-Cyt) on brain reward function in nicotine-naive and nicotine-withdrawing rats. The cytisine-derivative 3-pyr-Cyt is a very weak α4β2* nAChR partial agonist and like cytisine and varenicline has antidepressant-like effects in animal models. The intracranial self-stimulation (ICSS) procedure was used to investigate the effects of these compounds on brain reward function. Elevations in ICSS thresholds reflect a dysphoric state and a lowering of thresholds is indicative of a potentiation of brain reward function. It was shown that acute administration of nicotine and varenicline lowered ICSS thresholds. Acute administration of cytisine or 3-pyr-Cyt did not affect ICSS thresholds. Discontinuation of chronic, 14 days, nicotine administration led to elevations in ICSS thresholds that lasted for about 2 days. Varenicline and cytisine, but not 3-pyr-Cyt, diminished the nicotine withdrawal-induced elevations in ICSS thresholds. In conclusion, these studies indicate that varenicline and cytisine diminish the dysphoric-like state associated with nicotine withdrawal and may thereby prevent relapse to smoking in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号