首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using positron emission tomography, we investigated whether regional brain activations differ as a function of attending to pleasant versus unpleasant components of odors. There were two experimental (attention to pleasantness and attention to unpleasantness) and one control (baseline) condition. The stimuli presented during the two experimental conditions were exactly the same (three binary mixtures, each consisting of one pleasant and one unpleasant compound), but the affective property to which participants?? attention was directed was different: They indicated with a mouse click whether each stimulus contained a pleasant (during attention to pleasantness) or unpleasant (during attention to unpleasantness) odor. During baseline, odorless stimuli were presented, and participants pressed the mouse button randomly after each one. Several brain regions were involved in both types of attention, and these included ventral striatum, right orbitofrontal cortex, and anterior cingulate cortex. Subtle differences were also revealed: Attending to pleasantness was associated preferentially with a sensory/perceptual network (piriform cortex and amygdala), whereas attending to unpleasantness engaged a component of the attentional (right parietal) network. Thus, we delineate neural substrates of attending to olfactory pleasantness and unpleasantness, some of which are common to both and others that are specific to pleasantness or to unpleasantness. Our results suggest that the view of the mesolimbic dopaminergic system as the reward network that responds selectively to positive reinforcers is somewhat limited: Our findings are more in keeping with a view of this set of structures as the salience system of the brain.  相似文献   

2.
OBJECTIVE: To assist in the development of a model for the psychopathology of emotions, the present study sought to identify the neural circuits associated with the evaluation of visual stimuli for emotional valence. METHOD: Seventeen healthy individuals were shown three sets of emotionally laden pictures carrying pleasant, unpleasant, and neutral content. While subjects evaluated the picture set for emotional valence, regional cerebral blood flow was measured with the use of [15O] water positron emission tomography. Subjective ratings of the emotional valence of the picture sets were recorded. Data were analyzed by comparing the images acquired during the neutral condition with the unpleasant and pleasant image sets and the unpleasant and pleasant conditions with each other. RESULTS: Processing of pleasant stimuli was associated with increased blood flow in the dorsal-lateral, orbital, and medial frontal cortex relative to the unpleasant condition and in the cingulate, precuneus, and visual cortex relative to the neutral condition. Evaluation of unpleasant stimuli activated the amygdala, visual cortex, and cerebellum relative to the pleasant condition and the nucleus accumbens, precuneus, and visual cortex relative to the neutral condition. CONCLUSIONS: Observing and assigning emotional value to unpleasant stimuli produced activations in subcortical limbic regions, whereas evaluation of pleasant stimuli produced activations in cortical limbic areas. These findings are consistent with the notion of a subcortical and archaic danger recognition system and a system detecting pleasantness in events and situations that is phylogenetically younger, involving primarily the prefrontal cortex.  相似文献   

3.
Different representations of pleasant and unpleasant odours in the human brain   总被引:14,自引:0,他引:14  
Odours are important in emotional processing; yet relatively little is known about the representations of the affective qualities of odours in the human brain. We found that three pleasant and three unpleasant odours activated dissociable parts of the human brain. Pleasant but not unpleasant odours were found to activate a medial region of the rostral orbitofrontal cortex. Further, there was a correlation between the subjective pleasantness ratings of the six odours given during the investigation with activation of a medial region of the rostral orbitofrontal cortex. In contrast, a correlation between the subjective unpleasantness ratings of the six odours was found in regions of the left and more lateral orbitofrontal cortex. Moreover, a double dissociation was found with the intensity ratings of the odours, which were not correlated with the BOLD signal in the orbitofrontal cortex, but were correlated with the signal in medial olfactory cortical areas including the pyriform and anterior entorhinal cortex. Activation was also found in the anterior cingulate cortex, with a middle part of the anterior cingulate activated by both pleasant and unpleasant odours, and a more anterior part of the anterior cingulate cortex showing a correlation with the subjective pleasantness ratings of the odours. Thus the results suggest that there is a hedonic map of the sense of smell in brain regions such as the orbitofrontal cortex, and these results have implications for understanding the psychiatric and related problems that follow damage to these brain areas.  相似文献   

4.
Brain activity during expectancy of emotional stimuli: an fMRI study   总被引:2,自引:0,他引:2  
We studied the neural activation associated with the expectancy of emotional stimuli using whole brain fMRI. Fifteen healthy subjects underwent fMRI scanning during which they performed a warned reaction task using emotional pictures carrying pleasant, unpleasant, or neutral content. The task involved an expected or unexpected condition. Data were analyzed by comparing the images acquired under the different conditions. In the expected condition, compared with the unexpected condition, significant activation was observed in the medial, inferior and dorsolateral prefrontal cortex. Whereas the expectancy of pleasant stimuli produced activation in the left dorsolateral and left medial prefrontal cortex as well as in the right cerebellum, the expectancy of unpleasant stimuli produced activation in the right inferior and right medial prefrontal cortex, the right amygdala, the left anterior cingulate cortex, and bilaterally in the visual cortex. These results suggest that the expectancy of emotional stimuli is mediated by the prefrontal area including the medial, inferior, and dorsolateral prefrontal cortex. Furthermore, our data suggest that left frontal activation is associated with the expectancy of pleasant stimuli and that right frontal activation is associated with the expectancy of unpleasant stimuli. Finally, our findings suggest that the amygdala and anterior cingulate cortex may play an important role in the expectancy of unpleasant stimuli and that the input of this negative information is modulated by these specific brain areas.  相似文献   

5.
Adaptive neuroplastic changes have been well documented in congenitally blind individuals for the processing of tactile and auditory information. By contrast, very few studies have investigated olfactory processing in the absence of vision. There is ample evidence that the olfactory system is highly plastic and that blind individuals rely more on their sense of smell than the sighted do. The olfactory system in the blind is therefore likely to be susceptible to cross-modal changes similar to those observed for the tactile and auditory modalities. To test this hypothesis, we used functional magnetic resonance imaging to measure changes in the blood-oxygenation level-dependent signal in congenitally blind and blindfolded sighted control subjects during a simple odor detection task. We found several group differences in task-related activations. Compared to sighted controls, congenitally blind subjects more strongly activated primary (right amygdala) and secondary (right orbitofrontal cortex and bilateral hippocampus) olfactory areas. In addition, widespread task-related activations were found throughout the whole extent of the occipital cortex in blind but not in sighted participants. The stronger recruitment of the occipital cortex during odor detection demonstrates a preferential access of olfactory stimuli to this area when vision is lacking from birth. This finding expands current knowledge about the supramodal function of the visually deprived occipital cortex in congenital blindness, linking it also to olfactory processing in addition to tactile and auditory processing.  相似文献   

6.
OBJECTIVE: Schizophrenia is currently conceptualized as a disease of functional neural connectivity, leading to symptoms that affect aspects of mental activity, including perception, attention, memory, and emotion. The neural substrates of its emotional components have not been extensively studied with functional neuroimaging. Previous neuroimaging studies have examined medicated patients with schizophrenia. The authors measured regional cerebral blood flow (rCBF) during performance of a task that required unmedicated patients to recognize the emotional valence of visual images and to determine whether they were pleasant or unpleasant. METHOD: The authors examined rCBF in 17 healthy volunteers and 18 schizophrenia patients who had not received antipsychotic medications for at least 3 weeks during responses to pleasant and unpleasant visual stimuli. Areas of relative increases or decreases in rCBF were measured by using the [(15)O]H(2)O method. RESULTS: When patients consciously evaluated the unpleasant images, they did not activate the phylogenetically older fear-danger recognition circuit (e.g., the amygdala) used by the healthy volunteers, although they correctly rated them as unpleasant. Likewise, the patients showed no activation in areas of the prefrontal cortex normally used to recognize the images as pleasant and were unable to recognize them as such. Areas of decreased CBF were widely distributed and comprised subcortical regions such as the thalamus and cerebellum. CONCLUSIONS: This failure of the neural systems used to support emotional attribution is consistent with pervasive problems in experiencing emotions by schizophrenia patients. The widely distributed nature of the abnormalities suggests the importance of subcortical nodes in overall dysfunctional connectivity.  相似文献   

7.
《Epilepsia》2006,47(S3):257-258
1 A. Papanicolaou (   1 The University of Texas Medical School, USA )
Affective valence–specific spatiotemporal brain activation profiles: an MEG study
Regions of the brain involved in the generation of affect in response to picture sets rated as extremely unpleasant(disgusting and/or fearful), pleasant(sexually arousing), and affectively neutral, as well as the order of activation of each region, were investigated using magnetoencephalography (MEG) in a group of sixteen young normal adult male volunteers. We found spatiotemporal maps consisting of two basic components: An early one involving activation in the occipital and basal aspects of the temporal cortex, related to the perception of the stimuli was common to all three affect conditions. The second, later component, involving activation of the cingulate gyrus, the prefrontal cortex and the temporal lobes, differentiated the pleasant and unpleasant conditions, featuring more activity over right hemisphere structures during the unpleasant condition. These activation patterns are consistent with the notion of hemispheric specialization for affective valence and they demonstrate the utility of the MEG method in exploring both the structures involved in the generation of affective responses and the temporal order of their activation.  相似文献   

8.
In 1954, Penfield and Jasper briefly described that percepts of unpleasant odor were elicited by intraoperative electrical stimulation of the olfactory bulb in patients with epilepsy. Since then, few peer-reviewed studies have reported such phenomena elicited by stimulation mapping via subdural electrodes implanted on the ventral surface of the frontal lobe. Here, we determined what types of olfactory hallucinations could be reproduced by such stimulation in children with focal epilepsy. This study included 16 children (age range: 5 to 17 years) who underwent implantation of subdural electrodes to localize the presumed epileptogenic zone and eloquent areas. Pairs of electrodes were electrically stimulated, and clinical responses were observed. In case a patient reported a perception, she/he was asked to describe its nature. We also described the stimulus parameters to elicit a given symptom. Eleven patients reported a perception of smell in response to electrical stimulation while the remaining five did not. Nine patients perceived an unpleasant smell (like bitterness, smoke, or garbage) while two perceived a pleasant smell (like strawberry or good food). Such olfactory hallucinations were induced by stimulation proximal to the olfactory bulb or tract on either hemisphere but not by that of orbitofrontal gyri lateral to the medial orbital sulci. The range of stimulus parameters employed to elicit olfactory hallucinations was comparable to those for other sensorimotor symptoms. Our systematic study of children with epilepsy replicated stimulation-induced olfactory hallucinations. We failed to provide evidence that a positive olfactory perception could be elicited by conventional stimulation of secondary olfactory cortex alone.  相似文献   

9.
Tagging cortical networks in emotion: A topographical analysis   总被引:1,自引:0,他引:1  
Viewing emotional pictures is associated with heightened perception and attention, indexed by a relative increase in visual cortical activity. Visual cortical modulation by emotion is hypothesized to reflect re‐entrant connectivity originating in higher‐order cortical and/or limbic structures. The present study used dense‐array electroencephalography and individual brain anatomy to investigate functional coupling between the visual cortex and other cortical areas during affective picture viewing. Participants viewed pleasant, neutral, and unpleasant pictures that flickered at a rate of 10 Hz to evoke steady‐state visual evoked potentials (ssVEPs) in the EEG. The spectral power of ssVEPs was quantified using Fourier transform, and cortical sources were estimated using beamformer spatial filters based on individual structural magnetic resonance images. In addition to lower‐tier visual cortex, a network of occipito‐temporal and parietal (bilateral precuneus, inferior parietal lobules) structures showed enhanced ssVEP power when participants viewed emotional (either pleasant or unpleasant), compared to neutral pictures. Functional coupling during emotional processing was enhanced between the bilateral occipital poles and a network of temporal (left middle/inferior temporal gyrus), parietal (bilateral parietal lobules), and frontal (left middle/inferior frontal gyrus) structures. These results converge with findings from hemodynamic analyses of emotional picture viewing and suggest that viewing emotionally engaging stimuli is associated with the formation of functional links between visual cortex and the cortical regions underlying attention modulation and preparation for action. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Functional imaging technique using positron emission tomography (PET) has made it possible to localize functional brain regions in the human brain by detecting changes in regional cerebral blood flow (rCBF). Performing PET studies in the monkey will aid in integrating monkey electrophysiological research with human PET studies. We examined changes in rCBF during olfactory or combined olfactory and gustatory (flavour) stimulation using PET in the alert rhesus monkey. Olfactory or flavour stimulation with acetic acid or apple increased rCBF in the prepyriform area, substantia innominata and amygdala. Besides these areas, flavour stimulation increased rCBF in the anterior insula and frontal operculum, orbitofrontal cortex, inferior frontal gyrus and cerebellum. Apple odour or flavour stimuli increased rCBF in the inferior occipital gyrus in addition to the above areas. These findings suggest that the increases of rCBF in response to neural activities in the primary olfactory and gustatory cortices are detectable by the use of PET. In addition, regions activated by apple stimuli suggest that higher brain function might be detected with PET in the alert monkey.  相似文献   

11.
Anhedonia is the inability to experience pleasure from normally pleasant stimuli. Although anhedonia is a prominent feature of many psychiatric disorders, trait anhedonia is also observed dimensionally in healthy individuals. Currently, the neurobiological basis of anhedonia is poorly understood because it has been mainly investigated in patients with psychiatric disorders. Thus, previous studies have not been able to adequately disentangle the neural correlates of anhedonia from other clinical symptoms. In this study, trait anhedonia was assessed in well-characterized healthy participants with no history of Axis I psychiatric illness. Functional magnetic resonance imaging with musical stimuli was used to examine brain responses and effective connectivity in relation to individual differences in anhedonia. We found that trait anhedonia was negatively correlated with pleasantness ratings of music stimuli and with activation of key brain structures involved in reward processing, including nucleus accumbens (NAc), basal forebrain and hypothalamus which are linked by the medial forebrain bundle to the ventral tegmental area (VTA). Brain regions important for processing salient emotional stimuli, including anterior insula and orbitofrontal cortex were also negatively correlated with trait anhedonia. Furthermore, effective connectivity between NAc, VTA and paralimbic areas, that regulate emotional reactivity to hedonic stimuli, was negatively correlated with trait anhedonia. Our results indicate that trait anhedonia is associated with reduced reactivity and connectivity of mesolimbic and related limbic and paralimbic systems involved in reward processing. Critically, this association can be detected even in individuals without psychiatric illness. Our findings have important implications both for understanding the neurobiological basis of anhedonia and for the treatment of anhedonia in psychiatric disorders.  相似文献   

12.
Previous research indicates that abnormal attention-emotion interactions are related to symptom presentation in individuals with schizophrenia. However, the individual components of attention responsible for this dysfunction are unclear. In the current study we examined the possibility that schizophrenia patients with higher levels of negative symptoms (HI-NEG: n=14) have greater difficulty disengaging attention from unpleasant stimuli than patients with low negative symptoms (LOW-NEG: n=18) or controls (CN: n=27). Participants completed an exogenous emotional cueing task that required them to focus on an initial emotional or neutral cue and subsequently shift attention to a separate location outside of foveal vision to detect a target stimulus (letter). Results indicated that HI-NEG patients had greater difficulty disengaging attention from unpleasant stimuli than CN or LOW-NEG patients; however, behavioral performance did not differ among the groups for pleasant stimuli. Higher self-reported trait negative affect was also associated with greater difficulty disengaging attention from unpleasant stimuli. Abnormalities in disengaging attention from unpleasant stimuli may thus play a critical role in the formation and maintenance of both negative symptoms and trait negative affect in individuals with schizophrenia.  相似文献   

13.
During menopause, some women suffer from anhedonia. Anhedonia is an inability to experience pleasure from normally pleasurable life events, such as eating a favorite meal or smelling agreeable flowers. In this study, we explored whether degree of anhedonia in menopausal women was associated with performance on the European Test of Olfactory Capabilities (Thomas-Danguin et al., Rhinology, 41:142–151 2003). Also, we investigated whether degree of anhedonia predicted how menopausal women would appreciate pleasant, neutral or unpleasant odors. We found that women who were more anhedonic had a worst olfactory function than women who were less anhedonic. Also, we found that only the women in the less anhedonic group rated less odors as unpleasant than as neutral or pleasant. Anhedonia was correlated negatively with percentage of odors categorized as being pleasant but was not with percentage of odors perceived as neutral or unpleasant. Our results are consistent with studies showing that not all menopausal women exhibit disrupted affect, such as anhedonia. However, we suggest that when anhedonia occurs, it does so together with a decreased olfactory function and a shift in olfactory hedonism.  相似文献   

14.
AIM: To investigate neural and behavioral correlates of emotional experiences as potential vulnerability markers in remitted depression.METHODS: Fourteen remitted participants with a history of major depression and fourteen closely matched healthy control participants took part in the study. We used two psychiatric interviews (Hamilton Depression Rating Scale, Montgomery-Asberg Depression Rating Scale) and one self-report scale (Beck Depression Inventory) to assess remission. Healthy control participants were interviewed by an experienced psychiatrist to exclude those who showed any current or lifetime psychiatric or neurological disorders. To explore psychosocial and cognitive-interpersonal underpinnings of potential vulnerability markers of depression, early life stress, coping styles and alexithymia were also assessed. We induced pleasant and unpleasant emotional states using congruent combinations of music and human emotional faces to investigate neural and behavioral correlates of emotional experiences; neutral stimuli were used as a control condition. Brain responses were recorded using functional magnetic resonance imaging. Behavioral responses of pleasantness, arousal, joy and fear were measured via button-press inside the resonance imaging scanner.RESULTS: The mean age of the sample was 54.9 (± 11.3) years. There were no differences between remitted depressed (RD) (n = 14; 9 females and 5 males) and healthy participants (n = 14; 8 females and 6 males) regarding age, current degree of depression, early life stress, coping styles and alexithymia. On a neural level, RD participants showed reduced activations in the pregenual anterior cingulate cortex (pgACC) in response to pleasant [parameter estimates: -0.78 vs 0.32; t(26) = -3.41, P < 0.05] and unpleasant [parameter estimates: -0.88 vs 0.56; t(26)= -4.02, P < 0.05] emotional stimuli. Linear regression analysis revealed that pgACC activity was modulated by early life stress [β = -0.48; R2 = 0.23, F(1,27) = 7.83, P < 0.01] and task-oriented coping style [β = 0.63; R2 = 0.37, F(1,27) = 16.91, P < 0.001]. Trait anxiety modulated hippocampal responses to unpleasant stimuli [β = 0.62; R2 = 0.38, F(1,27) = 15.95, P < 0.001]. Interestingly, in their reported experiences of pleasantness, arousal, happiness and fear in response to pleasant, unpleasant and neutral stimuli, RD participants did not differ significantly from healthy control participants. Adding trait anxiety or alexithymia as a covariate did not change the results.CONCLUSION: The present study indicates that, in euthymic individuals, depression history alters neural correlates, but not the subjective dimension of pleasant and unpleasant emotional experiences.  相似文献   

15.
Recent work on odor hedonics in schizophrenia has indicated that patients display abnormalities in hedonic judgments of odors in comparison to healthy comparison participants. In the current study, identification accuracy for pleasant, neutral, and unpleasant odors in individuals with schizophrenia and healthy controls was examined. Thirty-three schizophrenia patients (63% male) and thirty-one healthy volunteers (65% male) were recruited. The groups were well matched on age, sex, and smoking status. Participants were administered the University of Pennsylvania Smell Identification Test, which was subsequently divided into 16 pleasant, 15 neutral, and 9 unpleasant items. Analysis of identification z-scores for pleasant, neutral, and unpleasant odors revealed a significant diagnosis by valence interaction. Post-hoc analysis revealed that schizophrenia participants made more identification errors on pleasant and neutral odors compared to healthy controls, with no differences observed for unpleasant odors. No effect was seen for sex. The findings from the current investigation suggest that odor identification accuracy in patients is influenced by odor valence. This pattern of results parallels a growing body of literature indicating that patients display aberrant pleasantness ratings for pleasant odors and highlights the need for additional research on the influence of odor valence on olfactory identification performance in individuals with schizophrenia.  相似文献   

16.
It is acknowledged that the emotional state created by visual inputs can modulate the way we feel pain; however, little is known about how acute pain influences the emotional assessment of what we see. In this study healthy subjects scored affective images while receiving painful or innocuous electrical shocks. Painful stimuli did not make unpleasant images more unpleasant, but rendered pleasant pictures significantly less pleasant. Brain responses to visual inputs (64-channels electroencephalogram) mirrored behavioural results, showing pain-induced effects in the orbitofrontal cortex, the subgenual portion of the cingulate gyrus, the anterior prefrontal and the temporal cortices, exclusively during presentation of pleasant images. In addition to this specific effect on pleasant pictures, pain also produced non-specific effects upon all categories of images, engaging cerebral areas associated with attention, alertness and motor preparation (middle-cingulate, supplemental motor, prefrontal cortex). Thus, pain appears to have a dual influence on visual processing: a non-specific effect related to orienting phenomena; and a more specific action exerted on supra-modal limbic areas involved in the production of affective states. The latter correlated with changes in the subjective appraisal of visual stimuli, and may underlie not only the change in their subjective assessment but also reactive processes aimed at coping with unpleasant contexts.  相似文献   

17.
Emotion plays a significant role in goal‐directed behavior, yet its neural basis is yet poorly understood. In several psychological models the cardinal dimensions that characterize the emotion space are considered to be valence and arousal. Here 3T functional magnetic resonance imaging (fMRI) was used to reveal brain areas that show valence‐ and arousal‐dependent blood oxygen level dependent (BOLD) signal responses. Seventeen healthy adults viewed pictures from the International Affective Picture System (IAPS) for brief 100 ms periods in a block design paradigm. In many brain regions BOLD signals correlated significantly positively with valence ratings of unpleasant pictures. Interestingly, partly in the same regions but also in several other regions BOLD signals correlated negatively with valence ratings of pleasant pictures. Therefore, there were several areas where the correlation across all pictures was of inverted U‐shape. Such correlations were found bilaterally in the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC) extending to anterior cingulate cortex (ACC), and insula. Self‐rated arousal of those pictures which were evaluated to be unpleasant correlated with BOLD signal in the ACC, whereas for pleasant pictures arousal correlated positively with the BOLD signal strength in the right substantia innominata. We interpret our results to suggest a major division of brain mechanisms underlying affective behavior to those evaluating stimuli to be pleasant or unpleasant. This is consistent with the basic division of behavior to approach and withdrawal, where differentiation of hostile and hospitable stimuli is crucial. Hum Brain Mapp, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
Functional imaging studies consistently find that emotional stimuli activate the posterior cingulate cortex, a region that appears to have memory-related functions. However, prior imaging studies have not controlled for non-emotional stimulus features that might activate this region by engaging memory processes unrelated to emotion. This study examined whether emotional words activated the posterior cingulate cortex when these potentially confounding factors were controlled. Sixty-four pleasant and 64 unpleasant words were matched with neutral words on non-emotional features known to influence memory. Eight subjects underwent block-designed functional magnetic resonance imaging scans while evaluating the valence of these words. The posterior cingulate cortex was significantly activated bilaterally during both unpleasant and pleasant compared to neutral words. The strongest activation peak with both unpleasant and pleasant words was observed in the left subgenual cingulate cortex. Anteromedial orbital and left inferior and middle frontal cortices were also activated by both pleasant and unpleasant words. Right amygdala and auditory cortex were activated only by unpleasant words, while left frontal pole was activated only by pleasant words. The results show that activation of the posterior cingulate cortex by emotional stimuli cannot be attributed to the memory-enhancing effects of non-emotional stimulus features. The findings are consistent with the suggestion that this region may mediate interactions of emotional and memory-related processes. The results also extend prior findings that evaluating emotional words consistently activates the subgenual cingulate cortex, and suggest a means of probing this region in patients with mood disorders.  相似文献   

19.
Expecting forthcoming events and preparing adequate responses are important cognitive functions that help the individual to deal with the environment. The emotional valence of an event is decisive for the resulting action. Revealing the underlying mechanisms may help to understand the dysfunctional information processing in depression and anxiety that are associated with negative expectation of the future. We were interested in selective brain activity during the expectation of unpleasant visual stimuli. Twelve healthy female subjects were biased to expect and then perceive emotionally unpleasant, pleasant or neutral stimuli during functional magnetic resonance imaging. Expecting unpleasant stimuli relative to expecting pleasant and neutral stimuli resulted in activation of mainly cingulate cortex, insula, prefrontal areas, thalamus, hypothalamus and striatum. While certain areas were also active during subsequent presentation of the emotional stimuli, distinct regions of the anterior cingulate gyrus and the thalamus were solely active during expectation of the unpleasant stimuli. The identified areas may reflect a network for internal adaptation and preparation processes in order to react adequately to expected unpleasant events. They are known as well to be altered in depression. Disorders of this network may be relevant for psychiatric disorders such as depression.  相似文献   

20.
Expecting forthcoming events and preparing adequate responses are important cognitive functions that help the individual to deal with the environment. The emotional valence of an event is decisive for the resulting action. Revealing the underlying mechanisms may help to understand the dysfunctional information processing in depression and anxiety that are associated with negative expectation of the future. We were interested in selective brain activity during the expectation of unpleasant visual stimuli. Twelve healthy female subjects were biased to expect and then perceive emotionally unpleasant, pleasant or neutral stimuli during functional magnetic resonance imaging. Expecting unpleasant stimuli relative to expecting pleasant and neutral stimuli resulted in activation of mainly cingulate cortex, insula, prefrontal areas, thalamus, hypothalamus and striatum. While certain areas were also active during subsequent presentation of the emotional stimuli, distinct regions of the anterior cingulate gyrus and the thalamus were solely active during expectation of the unpleasant stimuli. The identified areas may reflect a network for internal adaptation and preparation processes in order to react adequately to expected unpleasant events. They are known as well to be altered in depression. Disorders of this network may be relevant for psychiatric disorders such as depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号