首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference.  相似文献   

2.
Perfusion imaging with pulsed arterial spin labeling techniques, like flow-sensitive alternating inversion recovery (FAIR), may suffer from inflow of fresh, i.e., unlabeled, spins. Inflow of fresh spins is caused by the arrival of unlabeled spins in the image slice and can lead to underestimation of the perfusion if not taken into account. In this study it was shown that a decrease in B(1) field strength toward the edge of the transmit coil and the consequent reduction in the inversion efficiency leads to a narrowing of the arterial delivery function and a reduction in FAIR signal. Increasing the B(1) amplitude of the adiabatic inversion pulse from 2.3 to 5.7 times its minimum amplitude requirement resulted in an observed increase of 40 to 80% in the rat brain FAIR signal at inflow times longer than 0.65 s. For coils with limited dimensions and significant B(1) inhomogeneity over the perfusion labeling slab, the application of an excessively large B(1) amplitude in combination with adiabatic inversion is recommended to optimize the FAIR perfusion contrast.  相似文献   

3.
Flow-sensitive alternating inversion recovery (FAIR) is a recently introduced MRI technique for assessment of perfusion that uses blood water as an endogenous contrast agent. To characterize the FAIR signal dependency on spin tagging time (inversion time (Tl)) and to validate FAIR for cerebral blood flow (CBF) quantification, studies were conducted on the rat brain at 9.4 T using a conventional gradient-recalled echo sequence. The 71, of cerebral cortex and blood was found to be 1.9 and 2.2 s, respectively, and was used for CBF calculations. At short Tls (<0.8 s), the FAIR signal originates largely from vascular components with fast flows, resulting in an overestimation of CBF. For Tl > 1.5 s, the CBF calculated from FAIR is independent of the spin tagging time, suggesting that the observed FAIR signal originates predominantly from tissue/capillary components. CBF values measured by FAIR with Tl of 2.0 s were found to be in good agreement with those measured by the iodoantipyrine technique with autoradiogra-phy in rats under the same conditions of anesthesia and arterial pCO2. The measured pCO2 index on the parietal cortex using the FAIR technique was 6.07 ml/100 g/min per mmHg, which compares well with the pCO2 index measured by other techniques. The FAIR technique was also able to detect the regional reduction in CBF produced by middle cerebral artery occlusion in rats.  相似文献   

4.
PURPOSE: To investigate and evaluate a new rapid dark-blood vessel-wall imaging method using random bipolar gradients with a radial steady-state free precession (SSFP) acquisition in carotid applications. MATERIALS AND METHODS: The carotid artery bifurcations of four asymptomatic volunteers (28-37 years old, mean age = 31 years) were included in this study. Dark-blood contrast was achieved through the use of random bipolar gradients applied prior to the signal acquisition of each radial projection in a balanced SSFP acquisition. The resulting phase variation for moving spins established significant destructive interference in the low-frequency region of k-space. This phase variation resulted in a net nulling of the signal from flowing spins, while the bipolar gradients had a minimal effect on the static spins. The net effect was that the regular SSFP signal amplitude (SA) in stationary tissues was preserved while dark-blood contrast was achieved for moving spins. In this implementation, application of the random bipolar gradient pulses along all three spatial directions nulled the signal from both in-plane and through-plane flow in phantom and in vivo studies. RESULTS: In vivo imaging trials confirmed that dark-blood contrast can be achieved with the radial random bipolar SSFP method, thereby substantially reversing the vessel-to-lumen contrast-to-noise ratio (CNR) of a conventional rectilinear SSFP "bright-blood" acquisition from bright blood to dark blood with only a modest increase in TR (approximately 4 msec) to accommodate the additional bipolar gradients. CONCLUSION: Overall, this sequence offers a simple and effective dark-blood contrast mechanism for high-SNR SSFP acquisitions in vessel wall imaging within a short acquisition time.  相似文献   

5.
Flow-sensitive alternating inversion recovery (FAIR) is a noninvasive method for perfusion imaging. It has been shown that the FAIR signal may depend on hemodynamic parameters other than perfusion, the most important one being transit delays of labeled spins to the observed tissue. These parameters are expected to change with ischemia. The goal of this study was to assess the effect of these changes on the interpretation of FAIR results in the case of altered perfusion. This was investigated in a rat model of transient cerebral ischemia. It was shown that the ratio of FAIR signal in the infarct compared to the contralateral side was lower at short inflow times, which suggests that transit times affected the effective FAIR signal. The FAIR results were compared with those from functional histology and dynamic susceptibility contrast MRI, and the findings indicated that the altered kinetics of the FAIR signal were related to reduced and delayed inflow in the infarct region--not to a decrease in the number of functional vessels.  相似文献   

6.
Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels.  相似文献   

7.
This study investigates the impact of imaging coil length and consequent truncation of the arterial input function on the perfusion signal contrast obtained in the flow-sensitive alternating inversion recovery (FAIR) perfusion imaging measurement. We examined the difference in perfusion contrast achieved with head, head and neck, and body imaging coils based on the hypothesis that the standard head coil provides a truncated input function compared with that provided by the body coil and that this effect will be accentuated at long inversion times. The TI-dependent cerebral response of the FAIR sequence was examined at 1.5 T by varying the TI from 200 to 3500 msec with both the head and whole body coils (n = 5) as well as using a head and neck coil (n = 3). Difference signal intensity DeltaM and quantitative cerebral blood flow (CBF) were plotted against TI for each coil configuration. Despite a lower signal-to-noise ratio, relative CBF was significantly greater when measured with the body or head and neck coil compared with the standard head coil for longer inversion times (two-way ANOVA, P < or = 0.002). This effect is attributed to truncation of the arterial input function of labeled water by the standard head coil and the resultant inflow of unlabeled spins to the image slice during control image acquisition, resulting in overestimation of CBF. The results support the conclusion that the arterial input function depends on the anatomic extent of the inversion pulse in FAIR, particularly at longer mixing times (TI > 1200 msec at 1.5 T). Use of a head and neck coil ensures adequate inversion while preserving SNR that is lost in the body coil.  相似文献   

8.
For the in vivo measurement of the apparent diffusion coefficient (ADC), it is desirable for the total imaging time to be as short as possible. One technique is based on a TurboFLASH acquisition in which the diffusion gradients are inserted into a driven equilibrium Fourier transform (DEFT) combination of hard pulses. However, this sequence has the disadvantage that eddy current-induced inhomogeneities lead to incomplete refocusing of the magnetization during the diffusion preparation and to incorrect ADC values. A modification to the sequence is suggested that eliminates this error by phase-cycling the second 90° pulse of the preparation. This study also investigates the effect of a reduced delay time between acquisitions on the accuracy of the measurement. The quality of the TurboFLASH sequence is demonstrated by experimental validation on an agar phantom and in vivo on the rat brain using a high-field (8.5 T) system. Reduction of the interexperiment delay time is shown to be achievable to a certain degree without compromising the measurement accuracy.  相似文献   

9.
PURPOSE: To estimate cerebral blood perfusion in areas of strong magnetic susceptibility changes with high spatial and temporal resolution using a flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling (ASL) method. MATERIALS AND METHODS: We implemented an ASL method that is capable of imaging perfusion in areas of high magnetic susceptibility changes by combining a FAIR spin preparation with a true fast imaging in steady precession (TrueFISP) data acquisition strategy. A TrueFISP readout sequence was applied especially in regions with magnetic field inhomogeneities and compared with corresponding FAIR measurements obtained with a standard echo-planar imaging (EPI) readout. Quantitative perfusion images were obtained at 1.5 Tesla (1.5T) from eight healthy volunteers (24-42 years old) and one patient (23 years old). FAIR-TrueFISP perfusion images were compared with FAIR echo-planar images. T1 maps, which are necessary for quantitative perfusion estimation, were obtained with inversion recovery (IR) TrueFISP and IR EPI. Additionally, high-resolution perfusion measurements were performed on four volunteers at 3T. RESULTS: The two ASL perfusion imaging modalities yielded comparable diagnostic image quality in brain areas with low susceptibility differences at 1.5T. Cerebral perfusion of gray matter (GM) areas was 105.7 +/- 5.2 mL/100 g/minute for FAIR-TrueFISP and 88.8 +/- 14.6 mL/100 g/minute for FAIR-EPI at 1.5T, and 70.4 +/- 7.1 mL/100 g/minute for FAIR-TrueFISP and 63.5 +/- 6.9 mL/100 g/minute for FAIR-EPI at 3.0T. Higher perfusion values at 1.5T were due to more pronounced partial-volume effects from fast moving spins at lower spatial resolution. The FAIR-TrueFISP sequence showed no significant distortions and markedly reduced signal void artifacts in areas of high susceptibility changes (e.g., near brain-bone transitions and close to metallic clips) compared to FAIR-EPI. At 3T, highly resolved FAIR-TrueFISP perfusion images were acquired with an in-plane resolution of up to 1.3 mm. CONCLUSION: FAIR-TrueFISP allows for assessment of cerebral perfusion in areas of critically high susceptibility changes with conventional ASL methods.  相似文献   

10.
Blood flow in large vessels can be noninvasively evaluated with phase-contrast (PC) MRI by encoding the spin velocity to the image phase. Conventional phase-difference processing of the flow-encoded image data yields velocity images. Complex-difference processing is an alternative to phase-difference methods, and has the advantage of eliminating signal from stationary spins. In this study, two acquisitions with differential flow encoding are subtracted to yield a single projection that contains signal from only those spins moving in the direction of the flow-encoding gradients. The increase in acquisition efficiency allows real-time flow imaging with a temporal window as short as two acquisition lengths (60 ms). Validation of the complex-difference method by comparison with conventional gated-segmented PC-MRI in a flow phantom yielded a correlation of r > 0.99. Peak arterial flow rates in the popliteal artery and desending aorta measured in vivo with the complex-difference method were 0.92 +/- 0.06 of the values measured with conventional PC imaging. Real-time in vivo volumetric flow imaging of transient flow events is also presented.  相似文献   

11.
A method is presented for multislice measurements of quantitative cerebral perfusion based on magnetic labeling of arterial spins. The method combines a pulsed arterial inversion, known as the FAIR (Flow-sensitive Alternating Inversion Recovery) experiment, with a fast spiral scan image acquisition. The short duration (22 ms) of the spiral data collection allows simultaneous measurement of up to 10 slices per labeling period, thus dramatically increasing efficiency compared to current single slice acquisition protocols. Investigation of labeling efficiency, suppression of unwanted signals from stationary as well as intraarterial spins, and the FAIR signal change as a function of inversion delay are presented. The assessment of quantitative cerebral blood flow (CBF) with the new technique is demonstrated and shown to require measurement of arterial transit time as well as suppression of intraarterial spin signals. CBF values measured on normal volunteers are consistent with results obtained from H2O15 positron emission tomography (PET) studies and other radioactive tracer approaches. In addition, the new method allows detection of activation-related perfusion changes in a finger-tapping experiment, with locations of activation corresponding well to those observed with blood oxygen level dependent (BOLD) fMRI.  相似文献   

12.
A saturation-based approach is proposed to image the arterial blood flow signal with temporal resolution of 1 to 2 s and in-plane spatial resolution of a few millimeters. Using a saturation approach to suppress the undesired background stationary signal allows the blood water that enters the slice to be imaged at some specified later time. Since the blood protons that are being imaged are not restricted to the intravascular space, this technique is also sensitive to tissue perfusion signal contributions. The signal uptake characteristics of the saturation method proposed were used to study the different signal contributions as a function of the acquisition parameters. A typical perfusion acquisition (FAIR) was also used for comparison. The proposed method was demonstrated in a functional motor activation experiment and the observed signal changes were smaller than those obtained using the FAIR acquisition. The dynamics of the saturation method and FAIR temporal signal changes were investigated and time constants between 2 and 44 s were estimated. The tissue signal contribution to the saturation method's signal was small over the range of acquisition parameters that sensitized it to the arterial compartment.  相似文献   

13.
Cardiac-phase-specific data acquisition is used to reduce signal loss in MR Angiography resulting from disturbed flow. RF pulses are delivered continuously throughout the cardiac cycle, but incrementation of phase-encoding gradients and data storage are enabled only during the chosen part of the cycle. Studies in a stenotic pulsatile flow phantom demonstrate that poststenotic signal loss is primarily determined by the mean flow velocity, and is not appreciably affected by acceleration or deceleration of the mean flow rate. The signal loss is least in diastole. In vivo studies in patients with carotid artery disease show that data acquisition in diastole reduces the apparent degree and extent of carotid bifurcation stenosis and provides a crisper definition of the vascular lumen. The additional time required for cardiac-phase-specific acquisition can be reduced by gating only the lower-order phase-encoding lines while retaining acceptable image quality.  相似文献   

14.
?Vascular”? artifacts can have substantial effects on human cerebral blood flow values calculated by using arterial spin tagging approaches. One vascular artifact arises from the contribution of ?tagged”? arterial water spins to the observed change in brain water MR signal. This artifact can be reduced if large bipolar gradients are used to ?crush”? the MR signal from moving arterial water spins. A second vascular artifact arises from relaxation of ?tagged”? arterial blood during transit from the tagging plane to the capillary exchange site in the imaging slice. This artifact can be corrected if the arterial transit times are measured by using ?dynamic”? spin tagging approaches. The mean transit time from the tagging plane to capillary exchange sites in a gray matter region of interest was calculated to be ~0.94 s. Cerebral blood flow values calculated for seven normal volunteers agree reasonably well with values calculated by using radioactive tracer approaches.  相似文献   

15.
FAIR true-FISP perfusion imaging of the kidneys.   总被引:7,自引:0,他引:7  
Most arterial spin labeling (ASL) techniques apply echoplanar imaging (EPI) because this strategy provides relatively high SNR in short measuring times. Unfortunately, those techniques are very susceptible to static magnetic field inhomogeneities and perfusion signals from organs with fast transverse relaxation might decrease due to the exchange of water molecules in capillaries and organ tissue combined with relatively long echo times of EPI sequences. To overcome these problems a novel imaging technique, FAIR True-FISP, was developed. It combines a FAIR (flow-sensitive alternating inversion recovery) perfusion preparation and a true fast imaging with steady precession (True-FISP) data acquisition strategy. True-FISP was chosen since this sequence type does not show the mentioned disadvantages of EPI, but provides a similar SNR per measuring time. An important problem of this approach is that True-FISP sequences usually work in a steady state which is independent of a previous preparation of magnetization. For this reason a sequence structure had to be developed which keeps the advantages of True-FISP and makes the signal intensity sensitive to the FAIR preparation. Breathhold and nonbreathhold examinations of kidneys are presented and possible strategies to quantitative flow measurements are reported. It is shown that correction of spatially inhomogeneous receiver coil characteristics is easily feasible and leads to clinically valuable perfusion examinations of kidneys without application of potentially nephrotoxic contrast media.  相似文献   

16.
Radiofrequency (RF)‐spoiled gradient‐echo imaging provides a signal intensity close to pure T1 contrast by using spoiler gradients and RF phase cycling to eliminate net transverse magnetization. Generally, spins require many RF excitations to reach a steady‐state magnetization level; therefore, when unsaturated flowing spins enter the imaging slab, they can cause undesirable signal enhancement and generate image artifacts. These artifacts can be reduced by partially saturating an outer slab upstream to drive the longitudinal magnetization close to the steady state, while the partially saturated spins generate no signal until they enter the imaging slab. In this work, magnetization evolution of flowing spins in RF‐spoiled gradient‐echo sequences with and without partial saturation was simulated using the Bloch equations. Next, the simulations were validated by phantom and in vivo experiments. For phantom experiments, a pulsatile flow phantom was used to test partial saturation for a range of flip angles and relaxation times. For in vivo experiments, the technique was used to image the carotid arteries, abdominal aorta, and femoral arteries of normal volunteers. All experiments demonstrated that partial saturation can provide consistent T1 contrast across the slab while reducing inflow artifacts. Magn Reson Med, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
PURPOSE: To compare dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) and the flow-sensitive alternating inversion recovery (FAIR) technique for measuring brain perfusion. MATERIALS AND METHODS: We investigated 12 patients with acute stroke, and 10 healthy volunteers with FAIR and DSC maps of regional cerebral blood volume (rCBV), mean transit time (MTT), and regional cerebral blood flow (rCBF). RESULTS: In volunteers good gray/white-matter contrast was observed in FAIR, rCBF, and rCBV maps. Regions with high signal intensities in FAIR matched well with high values of rCBV and rCBF. In ischemic stroke patients a high correlation (r = 0.78) of the ipsi- to contralateral signal intensity ratios in FAIR and rCBF was observed in areas with perfusion abnormalities. In contrast, FAIR and rCBV (r = 0.50), and FAIR and MTT (r = -0.22) correlated only modestly. Furthermore, FAIR and rCBF demonstrated similar sizes of perfusion abnormality. CONCLUSION: This study demonstrates for the first time that FAIR and rCBF depict similar relations of perfusion in ischemic stroke patients and healthy subjects.  相似文献   

18.
PURPOSE: To investigate the effectiveness of slab-selective inversion in pulsed arterial spin labeling with body coil excitation as a means to reduce large vessel contamination of the perfusion signal. MATERIALS AND METHODS: Studies were conducted by varying the tagging width in multislice flow-sensitive alternating inversion recovery (FAIR) in conjunction with body coil excitation on a Siemens Sonata whole-body 1.5-T scanner. The results of spatially-confined tagging were then compared with conventional nonselective tagging in the presence and absence of a bipolar gradient crusher pair in order to determine the effectiveness of suppressing vascular signal and to estimate the bolus width that reaches the capillary bed. RESULTS: It is shown in five volunteers, ages 23-38 years, that depending on the average velocity of the arterial blood flow in the tagging region, a bolus of 6-8 cm in width reaches the capillary bed at a fixed inversion time TI of 1.4 seconds, while a bolus of 11.2-16.5 cm in width enters the imaging region. Further, noticeable velocity differences have been found among the participating subjects, with averages ranging from 10.1 to 13.9 cm/second. CONCLUSION: The data suggest that it is advantageous to replace nonselective global tagging in FAIR perfusion imaging with body coil excitation by spatially-confined tagging to reduce undesired residual tagged blood in large vessels.  相似文献   

19.
Flow-sensitive alternating inversion recovery (FAIR) is a pulsed arterial spin labeling magnetic resonance imaging method for perfusion quantification. In its standard implementation for quantification with full longitudinal relaxation between acquisitions, its use in time-course investigations of rapidly changing flow values is limited. The time efficiency can be improved by decreasing the repetition time but quantification becomes problematic. This situation is further complicated if a whole-body radiofrequency transmit coil is not used since fresh blood spins will flow in from outside the coil. To alleviate these problems, the use of global pre-saturation is proposed. The resulting expression for the flow signal depends on the relationship between the imaging parameters and the coil inflow time and can be significantly simplified under certain combinations of these parameters. With this implementation of FAIR, quantitative flow maps of gerbil brains were obtained with a 3 minute time resolution in a study of the effects of reperfusion. The pre-occlusion flow measurements were in good agreement with values obtained by the standard FAIR implementation and by other techniques, but the low values following occlusion were underestimated due to the increased transit times.  相似文献   

20.
When a single coil is used to measure perfusion by arterial spin labeling, saturation of macromolecular protons occurs during the labeling period. Induced magnetization transfer contrast (MTC) effects decrease tissue water signal intensity, reducing the sensitivity of the technique. In addition, MTC effects must be properly accounted for in acquiring a control image. This forces the image to a single slice centered between the labeling plane and the control plane. In this work, a two-coil system is presented as a way to avoid saturation of macromolecular spins during arterial spin labeling. The system consists of one small surface coil for labeling the arterial water spins, and a head coil for MRI, actively decoupled from the labeling coil by using PIN diodes. It is shown that no signal loss occurs due to MTC effects when the two-coil system is used for MRI of rat brain perfusion, enabling three-dimensional perfusion imaging. Using the two-coil system, a multi-slice MRI sequence was used to study the regional effects of amphetamine on brain perfusion. Amphetamine causes significant increases in perfusion in many areas of the brain including the cortex, cingulate, and caudate putamen, in agreement with previous results using deoxyglucose uptake to monitor brain activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号