首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous studies have demonstrated that cells from both multi-drug-resistant tuberculosis (MDR-TB) and non-tuberculous mycobacteria (NTM) patients respond poorly to mycobacterial antigens in vitro. In the present study, we compared the in vitro response of cells isolated from sensitive TB (NR-TB)-, MDR-TB- and NTM-infected patients. Analysis of T cell phenotype ex vivo revealed that both MDR-TB and NTM patients present an increased percentage of CD4+CD25+- forkhead box protein 3 (FoxP3)+ and CD4+CD25+CD127 regulatory T (Treg) cells when compared to NR-TB. Increased numbers of Treg cells and interleukin (IL)-10 serum levels were detected in MDR-TB, whereas elevated serum transforming growth factor (TGF)-β was found in the NTM group. Cells of MDR-TB patients stimulated with early secretory antigenic target (ESAT)-6, but not purified protein derivative (PPD), showed a lower frequency of CD4+/interferon (IFN)-γ+ T cells and enhanced CD4+CD25+FoxP3+, CD4+CD25+CD127 and CD4+CD25+IL-10+ T cell population. In addition, increased IL-10 secretion was observed in cultured MDR-TB cells following ESAT-6 stimulation, but not in NR-TB or NTM patients. In vitro blockade of IL-10 or IL-10Rα decreased the CD4+CD25+FoxP3+ frequencies induced by ESAT-6 in MDR-TB, suggesting a role of IL-10 on impaired IFN-γ responses seen in MDR-TB. Depletion of CD4+CD25+ T lymphocytes restored the capacity of MDR-TB T cells to respond to ESAT-6 in vitro, which suggests a potential role for Treg/T regulatory 1 cells in the pathogenesis of MDR-TB. Together, our results indicate that although the similarities in chronicity, NTM- and MDR-TB-impaired antigenic responses involve different mechanisms.  相似文献   

3.
Treatment of primary biliary cirrhosis (PBC) has lagged behind that of other autoimmune diseases. In this study we have addressed the potential utility of immunotherapy using regulatory T cells (Treg) to treat murine autoimmune cholangitis. In particular, we have taken advantage of our ability to produce portal inflammation and bile duct cell loss by transfer of CD8+ T cells from the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice to recombination-activating gene (Rag)1–/– recipients. We then used this robust established adoptive transfer system and co-transferred CD8+ T cells from dnTGF-βRII mice with either C57BL/6 or dnTGF-βRII forkhead box protein 3 (FoxP3+) T cells. Recipient mice were monitored for histology, including portal inflammation and intralobular biliary cell damage, and also included a study of the phenotypical changes in recipient lymphoid populations and local and systemic cytokine production. Importantly, we report herein that adoptive transfer of Treg from C57BL/6 but not dnTGF-βRII mice significantly reduced the pathology of autoimmune cholangitis, including decreased portal inflammation and bile duct damage as well as down-regulation of the secondary inflammatory response. Further, to define the mechanism of action that explains the differential ability of C57BL/6 Treg versus dnTGF-βRII Treg on the ability to down-regulate autoimmune cholangitis, we noted significant differential expression of glycoprotein A repetitions predominant (GARP), CD73, CD101 and CD103 and a functionally significant increase in interleukin (IL)-10 in Treg from C57BL/6 compared to dnTGF-βRII mice. Our data reflect the therapeutic potential of wild-type CD4+ FoxP3+ Treg in reducing the excessive T cell responses of autoimmune cholangitis, which has significance for the potential immunotherapy of PBC.  相似文献   

4.
Two groups of residents in an endemic area of Leishmania major infection in Iran with positive leishmanin skin tests who were either asymptomatic or had healed cutaneous leishmaniasis lesions were compared with respect to their T helper responses. The percentages of regulatory T cells (Treg; CD4+CD25high FoxP3+) from the peripheral blood and CD4+ T cells producing intracellular cytokines (IL-4, IL-10, IL-17 and IFN-γ) from the stimulated PBMCs were evaluated by flow cytometry and the expressions of RORC and FOXP3 genes were quantified by real-time RT-PCR. T responder (CD4+CD25) and Treg-enriched (CD4+CD25+) cells were isolated magnetically and the suppressive capacity of the latter and the cytokines (IFN-γ, TGF-β and IL-10) secreted from them were evaluated by in vitro assays. The results showed that the frequency of Treg in the studied groups were similar and Treg from both groups exhibited high yet similar suppressive capacities while significantly higher levels of FOXP3 expression was observed in the asymptomatic group. Taken together, similar frequency and suppressiveness of Treg combined with high ratios of IFN-γ/IL-10 producing CD4+ T cells were common in both groups; however the members of the asymptomatic group appeared to require higher expression of FOXP3 to maintain their immunity to re-infection.  相似文献   

5.
Thymosin alpha 1 (Tα1) has been shown to have beneficial effects on numerous immune system parameters, but little is known about the effects of Tα1 on patients with gastric carcinoma. The objective of this study was to determine the effect of Tα1 on subpopulations of Th1, Th2, Th17, and regulatory T cells (Tregs) in vitro, and to evaluate its efficacy as an immunoregulatory factor in patients with gastric carcinoma. We compared the effect of Tα1 on the frequency of CD4+ and CD8+ T cells, especially the CD4+CD25+Foxp3+ Tregs in peripheral blood mononuclear cells (PBMCs) from gastric carcinoma patients (N = 35) and healthy donors (N = 22). We also analyzed the changes in the proliferation of PBMCs in response to treatment with Tα1, and examined the production of Th1, Th2, and Th17 cytokines by PBMCs and tumor-infiltrating lymphocytes. The treatment of PBMCs from gastric cancer patients, with Tα1 (50 µg/mL) alone increased the percentage of CD4+CD25+Foxp3+ (suppressive antitumor-specific Tregs) from 1.68 ± 0.697 to 2.19 ± 0.795% (P < 0.05). Our results indicate that Tα1 increases the percentage of Tregs and IL-1β, TNF-α, and IL-6 in vitro.  相似文献   

6.
The prevalence of allergic asthma and incidences of helminth infections in humans are inversely correlated. Although experimental studies have established the causal relation between parasite infection and allergic asthma, the mechanism of the parasite-associated immunomodulation is not fully elucidated. Using a murine model of asthma and nematode parasite Heligmosomoides polygyrus, we investigated the roles of regulatory B cells (Breg) and T cells (Treg) in mediation of the protection against allergic asthma by parasite. H. polygyrus infection significantly suppressed ovalbumin (OVA)-induced allergic airway inflammation (AAI) evidenced by alleviated lung histopathology and reduced numbers of bronchoalveolar inflammatory cell infiltration, and induced significant responses of interleukin (IL)-10+ Breg, IL-10+ Treg and forkhead box protein 3 (FoxP3)+ Treg in mesenteric lymph node and spleen of the mice. Adoptive transfer of IL-10+ Breg and IL-10+ Treg cell prevented the lung immunopathology in AAI mice. Depletion of FoxP3+ Treg cells in FoxP3-diphtheria toxin (DT) receptor transgenic mice by diphtheria toxin (DT) treatment exacerbated airway inflammation in parasite-free AAI mice and partially abrogated the parasite-induced protection against AAI. IL-10+ Breg cells were able to promote IL-10+ Treg expansion and maintain FoxP3+ Treg cell population. These two types of Tregs failed to induce CD19+ B cells to transform into IL-10+ Breg cells. These results demonstrate that Breg, IL-10+ Treg and FoxP3+ Treg cells contribute in A discrepant manner to the protection against allergic airway immunopathology by parasiteS. Breg cell might be a key upstream regulatory cell that induces IL-10+ Treg response and supports FoxP3+ Treg cell population which, in turn, mediate the parasite-imposed immunosuppression of allergic airway inflammation. These results provide insight into the immunological relationship between parasite infection and allergic asthma.  相似文献   

7.
CD4+CD25+ forkhead box P3 (FoxP3)+regulatory T (Treg) cells are generated and play a key role in the induction and maintenance of transplant tolerance in organ recipients. It has been proposed that interleukin (IL)-2/IL-2 receptor (IL-2R) signalling was essential for the development and proliferation of antigen-activated T cells that included both effector T cells and Treg cells. Basiliximab (Simulect™), a chimeric monoclonal antibody directed against the α-chain of the IL-2R (CD25), can be expected to not only affect alloreactive effector T cells, but also reduce the number and function of Treg cells. We therefore examined the effect of basiliximab induction therapy on the number and function of the Treg cells in renal recipients. Basiliximab decreased the percentage of CD4+CD25+T cells, but failed to influence the percentage of CD4+FoxP3+ Treg cells. The cellular CD25 expression was decreased significantly by basiliximab injection, but CD4+CD25+ T cells was not depleted from the circulating pool through monoclonal antibody activation-associated apoptosis. Functional analysis revealed that inhibitory function of Treg cells from recipients with basiliximab injection was not significantly different from recipients without injection. These data indicate that the functional Treg population may not be influenced by short-term basiliximab treatment.  相似文献   

8.

Introduction

The aim of this study was to explore the relationships between TregFoxP3+ cells and Th17 cells and occurrence of lung cancer.

Material and methods

The proportions of TregFoxP3+ and Th17 cells, the expression of FoxP3 and RORγt mRNA, and the levels of related cell factors such as transforming growth factor-β (TGF-β), interleukin IL-17 (IL-17) and IL-23 were determined respectively by flow cytometry analysis, real-time-polymerase chain reaction (PCR), and ELISA in peripheral blood of 18 healthy people and 26 patients with non-small cell lung cancer (NSCLC).

Results

The levels of TregFoxP3+ and Th17, expression of FoxP3 and RORγt mRNA, and ratios of TregFoxP3+/Th17 and FoxP3/RORγt in peripheral blood with NSCLC were higher than those in healthy controls (p < 0.05). The proportion of Th17 cells from NSCLC patients was positively correlated with that of TregFoxP3+ (r = 0.81, p < 0.05). The receiver-operating characteristic (ROC) curve demonstrates that the increased level of TregFoxP3+/Th17 in the peripheral blood may be a useful indicator in early diagnosis of non-small cell lung carcinoma. The TregFoxP3+/Th17 and FoxP3/RORγt levels for patients in stage IV were higher than those of patients in stages I, II, and III (p < 0.05). The levels of TGF-β, IL-17, and IL-23 were higher in NSCLC patients than those in healthy controls.

Conclusions

The results suggest that ratios of Treg/Th17 correlate with the stage of NSCLC.  相似文献   

9.
Citrobacter rodentium is a murine pathogen that transiently colonizes the lumen of the large intestine. C. rodentium induces colitis, but the relative importance and temporal induction of the T helper type 17 (Th17) and regulatory T cell (Treg) pathways in protection from the infection and inflammation have not been assessed. Our aim was to investigate the key immunological signalling events associated with successful clearance of C. rodentium. Mice were challenged with luminescent-tagged C. rodentium and killed at days 3 (early infection), 10 (peak infection) and 21 (late infection) post-infection. Bioluminescent imaging and bacterial culture determined levels of C. rodentium. Distal colon mRNA expression of interleukin (IL)-17, IL-6, IL-1β, tumour necrosis factor (TNF)-α, forkhead box P3 (FoxP3) and ghrelin were assessed using real-time polymerase chain reaction. Results were compared with age-matched non-infected mice. Low levels of C. rodentium were found at day 3, high levels at day 10, with clearance from the majority of the mice by day 21. In the distal colon, there was up-regulation of TNF-α and FoxP3 throughout the study and increases in IL-6 and IL-17 during the peak and late stages of infection. Ghrelin expression was increased at the peak and late stages of infection. This study has characterized changes to the T helper cell pathways, following the course of C. rodentium infection in mice. There were significant immunological changes, with up-regulation of the Th17 and Treg pathways in the distal colon and an increase in ghrelin expression compared with non-infected control mice. These changes may play a role in the pathology and clearance of C. rodentium.  相似文献   

10.
Immune thrombocytopenic purpura (ITP) is acquired autoimmune disease in children characterized by the breakdown of immune tolerance. This work is designed to explore the contribution of different lymphocyte subsets in acute and chronic ITP children. Imbalance in the T helper type 1 (Th1)/Th2 cytokine secretion profile was investigated. The frequency of T (CD3+, CD4+, CD8+) and B (CD19+) lymphocytes, natural killer (NK) (CD16+56+) and regulatory T (Treg) [CD4+CD25+highforkhead box protein 3 (FoxP3)+] cells was investigated by flow cytometry in 35 ITP children (15 acute and 20 chronic) and 10 healthy controls. Plasma levels of Th1 cytokines [interferon (IFN-γ) and tumour necrosis factor (TNF-α)] and Th2 [interleukin (IL)-4, IL-6 and IL-10)] cytokines were measured using enzyme-linked immunosorbent assay (ELISA). The percentage of Treg (P < 0·001) and natural killer (NK) (P < 0·001) cells were significantly decreased in ITP patients compared to healthy controls. A negative correlation was reported between the percentage of Treg cells and development of acute (r = −0·737; P < 0·01) and chronic (r = −0·515; P < 0·01) disease. All evaluated cytokines (IFN-γ, TNF-α, IL-4, IL-6 and IL-10) were elevated significantly in ITP patients (P < 0·001, P < 0·05, P < 0·05, P < 0·05 and P < 0·001, respectively) compared to controls. In conclusion, our data shed some light on the fundamental role of immune cells and their related cytokines in ITP patients. The loss of tolerance in ITP may contribute to the dysfunction of Tregs. Understanding the role of T cell subsets will permit a better control of autoimmunity through manipulation of their cytokine network.  相似文献   

11.
The pathological significance of the mechanisms of tumour immune-evasion and/or immunosuppression, such as loss of T cell signalling and increase in regulatory T cells (Tregs), has not been well established in the nasopharyngeal carcinoma (NPC) microenvironment. To evaluate the Treg immunophenotypes in tumour-infiltrating lymphocytes (TILs), we performed a double-enzymatic immunostaining for detection of forkhead box P3 (FoxP3) and other markers including CD4, CD8, and CD25 on 64 NPC and 36 non-malignant nasopharyngeal (NP) paraffin-embedded tissues. Expression of CD3ζ and CD3ε was also determined. The prevalence of CD4+FoxP3+ cells in CD4+ T cells and the ratio of FoxP3+/CD8+ were increased significantly in NPC compared with those in NP tissues (P < 0·001 and P = 0·025 respectively). Moreover, the ratio of FoxP3+/CD25+FoxP3 in NPC was significantly lower than that in NP tissues (P = 0·005), suggesting an imbalance favouring activated phenotype of T cells in NPC. A significant negative correlation between the abundance of FoxP3+ and CD25+FoxP3 cells (P < 0·001) was also identified. When histological types of NPC were considered, a lower ratio of FoxP3+/CD25+FoxP3 was found in non-keratinizing and undifferentiated carcinomas. Increased CD4+FoxP3+/CD4+ proportion and FoxP3+/CD8+ ratio were associated with keratinizing squamous cell carcinoma. A reduced expression of CD3ζ in TILs was found in 20·6% of the NPC tissues but none of the NP tissues. These data provide evidence for the imbalances of Treg and effector T cell phenotypes and down-regulation of signal-transducing molecules in TILs, supporting their role in suppression of immune response and immune evasion of NPC.  相似文献   

12.
Uveitis is a serious intra-ocular inflammatory disease that can lead to visual impairment even blindness worldwide. Notch signaling can regulate the differentiation of naive CD4+ T cells, influencing the development of uveitis. DNA methylation is closely related to the autoimmune diseases. In this study, we measured the Notch1 DNA methylation level, determined the Notch1 and related DNA methylases mRNA expression and evaluated the ratio of T helper type 17 regulatory T cell (Th17/Treg) in peripheral blood mononuclear cells (PBMCs) from uveitis patients and normal control subjects; we also tested the levels of relevant inflammatory cytokines in serum from the participants. Results indicated that compared with those in normal control individuals, the expression of ten–eleven translocation 2 (TET2) and Notch1 mRNA is elevated in uveitis patients, whereas the methylation level in Notch1 DNA promotor region [−842 ~ −646 base pairs (bp)] is down-regulated, and is unrelated to anatomical location. Moreover, the Th17/Treg ratio is up-regulated in PBMCs from uveitis patients, accompanied by the elevated levels of proinflammatory cytokines [e.g. interleukin (IL)-2, IL-6, IL-17 and interferon (IFN)-γ] in serum from uveitis patients. These findings suggest that the over-expression of TET2 DNA demethylase may lead to hypomethylation of Notch1, activate the Notch1 signaling, induce naive CD4+ T cells to differentiate theTh17 subset and thus disturb the balance of the Th17/Treg ratio in uveitis patients. Overall, hypomethylation of Notch1 DNA is closely associated with the occurrence of uveitis. Our study preliminarily reveals the underlying mechanism for the occurrence of uveitis related to the hypomethylation of Notch1 DNA, providing a novel therapeutic strategy against uveitis in clinical practice.  相似文献   

13.
T helper type 17 (Th17) cells have been shown to be pathogenic in autoimmune diseases; however, their role in type 1 diabetes (T1D) remains inconclusive. We have found that Th17 differentiation of CD4+ T cells from BDC2·5 T cell receptor transgenic non-obese diabetic (NOD) mice can be driven by interleukin (IL)-23 + IL-6 to produce large amounts of IL-22, and these cells induce T1D in young NOD mice upon adoptive transfer. Conversely, polarizing these cells with transforming growth factor (TGF)-β + IL-6 led to non-diabetogenic regulatory Th17 (Treg17) cells that express high levels of aryl hydrocarbon receptor (AhR) and IL-10 but produced much reduced levels of IL-22. The diabetogenic potential of these Th17 subsets was assessed by adoptive transfer studies in young NOD mice and not NOD.severe combined immunodeficient (SCID) mice to prevent possible transdifferentiation of these cells in vivo. Based upon our results, we suggest that both pathogenic Th17 cells and non-pathogenic regulatory Treg17 cells can be generated from CD4+ T cells under appropriate polarization conditions. This may explain the contradictory role of Th17 cells in T1D. The IL-17 producing Treg17 cells offer a novel regulatory T cell population for the modulation of autoimmunity.  相似文献   

14.
The expansion of regulatory T cells (Treg) controls inflammation in children with acute Kawasaki disease (KD). Blockade of tumour necrosis factor (TNF)-α is an emerging therapy for KD patients with refractory inflammation, but there is concern that this therapy could impede the host immune regulation. To define the effect of TNF-α blockade, we conducted ex-vivo immune-monitoring in KD subjects who participated in a randomized, double-blind, placebo-controlled clinical trial of the addition of infliximab to standard intravenous immunoglobulin (IVIG) therapy. We enumerated circulating myeloid and plasmocytoid dendritic cells (DC), regulatory T cells (Treg) and memory T cells (Tmem) in 14 consecutive, unselected KD patients (seven treated with IVIG, seven with IVIG + infliximab) at three time-points: (i) acute phase prior to treatment, (ii) subacute phase and (iii) convalescent phase. Myeloid DC (mDC), but not plasmacytoid DC (pDC), were numerous in the peripheral blood in acute KD subjects and decreased in the subacute phase in both IVIG and IVIG + infliximab-treated groups. The co-stimulatory molecule for antigen presentation to T cells and CD86 decreased in mDC from acute to subacute time-points in both treatment groups, but not in the single patient who developed coronary artery aneurysms. We also defined tolerogenic mDC that expand in the subacute phase of KD not impaired by infliximab treatment. Treg and Tmem expanded after treatment with no significant differences between the two groups. Treatment of KD patients with infliximab does not adversely affect generation of tolerogenic mDC or the development of T cell regulation and memory.  相似文献   

15.
Helicobacter pylori is one of the most common infections in the world. Despite inciting inflammation, immunological clearance of the pathogen is often incomplete. CD4+CD25hiforkhead box protein 3 (FoxP3+) regulatory T cells (Tregs) are potent suppressors of different types of immune responses and have been implicated in limiting inflammatory responses to H. pylori. Investigating the influence of H. pylori on Treg function and proliferation, we found that H. pylori-stimulated dendritic cells (DCs) induced proliferation in Tregs and impaired their suppressive capability. This effect was mediated by interleukin (IL)-1β produced by H. pylori-stimulated DCs. These data correlated with in-vivo observations in which H. pylori+ gastric mucosa contained more Tregs in active cell division than uninfected stomachs. Inciting local proliferation of Tregs and inhibiting their suppressive function may represent a mechanism for the chronic gastritis and carcinogenesis attributable to H. pylori.  相似文献   

16.
Biomarkers that can identify tuberculosis (TB) disease and serve as markers for efficient therapy are requested. We have studied T cell cytokine production [interferon (IFN)-γ, interleukin (IL)-2, tumour necrosis factor (TNF)-α] and degranulation (CD107a) as well as subsets of CD4+ T regulatory cells (Tregs) after in-vitro Mycobacterium tuberculosis (Mtb) antigen stimulation [early secretory antigenic target (ESAT)-6, culture filtrate protein (CFP)-10, antigen 85 (Ag85)] in 32 patients with active tuberculosis (TB) disease throughout 24 weeks of effective TB treatment. A significant decline in the fraction of Mtb-specific total IFN-γ and single IFN-γ-producing T cells was already observed after 2 weeks of treatment, whereas the pool of single IL-2+ cells increased over time for both CD4+ and CD8+ T cells. The Treg subsets CD25highCD127low, CD25highCD147++ and CD25highCD127lowCD161+ expanded significantly after Mtb antigen stimulation in vitro at all time-points, whereas the CD25highCD127lowCD39+ Tregs remained unchanged. The fraction of CD25highCD127low Tregs increased after 8 weeks of treatment. Thus, we revealed an opposing shift of Tregs and intracellular cytokine production during treatment. This may indicate that functional signatures of the CD4+ and CD8+ T cells can serve as immunological correlates of early curative host responses. Whether such signatures can be used as biomarkers in monitoring and follow-up of TB treatment needs to be explored further.  相似文献   

17.
Forkhead box P3 (FoxP3)+ regulatory T cells (Tregs) are functionally deficient in systemic lupus erythematosus (SLE), characterized by reduced surface CD25 [the interleukin (IL)‐2 receptor alpha chain]. Low‐dose IL‐2 therapy is a promising current approach to correct this defect. To elucidate the origins of the SLE Treg phenotype, we studied its role through developmentally defined regulatory T cell (Treg) subsets in 45 SLE patients, 103 SLE‐unaffected first‐degree relatives and 61 unrelated healthy control subjects, and genetic association with the CD25‐encoding IL2RA locus. We identified two separate, uncorrelated effects contributing to Treg CD25. (1) SLE patients and unaffected relatives remarkably shared CD25 reduction versus controls, particularly in the developmentally earliest CD4+FoxP3+CD45ROCD31+ recent thymic emigrant Tregs. This first component effect influenced the proportions of circulating CD4+FoxP3highCD45RO+ activated Tregs. (2) In contrast, patients and unaffected relatives differed sharply in their activated Treg CD25 state: while relatives as control subjects up‐regulated CD25 strongly in these cells during differentiation from naive Tregs, SLE patients specifically failed to do so. This CD25 up‐regulation depended upon IL2RA genetic variation and was related functionally to the proliferation of activated Tregs, but not to their circulating numbers. Both effects were found related to T cell IL‐2 production. Our results point to (1) a heritable, intrathymic mechanism responsible for reduced CD25 on early Tregs and decreased activation capacity in an extended risk population, which can be compensated by (2) functionally independent CD25 up‐regulation upon peripheral Treg activation that is selectively deficient in patients. We expect that Treg‐directed therapies can be monitored more effectively when taking this distinction into account.  相似文献   

18.
The HIV-1 envelope glycoprotein (gp120) is known to induce antigen-specific and non-specific CD4+ T cell anergy. We found that early T cell activation, as indicated by HLA-DP expression in the early G1 (G1A) phase of the cell cycle, and the inhibition of mitogen-mediated IL-2 production induced by gp120, required TNF-α produced by gp120-stimulated macrophages. In the presence of an antibody to TNF-α, these changes induced by gp120 were inhibited, while recombinant TNF-α induced similar abnormalities of CD4+ T cells, even in the absence of gp120. On the other hand, inhibition of the mixed lymphocyte reaction (MLR) in CD4+ T cells by gp120, which may be related to gp120-mediated down-regulation of CD4 expression on T cells and activation of protein tyrosine kinase p56lck in CD4+ T cells, was observed even in the absence of macrophage-derived TNF-α induced by gp120. These observations indicate that both TNF-α-dependent and independent events contribute to gp120-mediated CD4+ T cell anergy, and TNF-α appears to play an important role in inducing CD4+ T cell anergy in HIV-1 infection.  相似文献   

19.
20.
Successful embryo implantation occurs followed by a local inflammatory/T helper type 1 (Th1) response, subsequently redirected towards a tolerogenic predominant profile. The lack of control of this initial local inflammatory response may be an underlying cause of early pregnancy complications as recurrent spontaneous abortions (RSA). Considering that vasoactive intestinal peptide (VIP) mediates anti-inflammatory and tolerogenic effects in several conditions we hypothesized that VIP might contribute to tolerance towards trophoblast antigens during the early interaction of maternal leucocytes and trophoblast cells. In this study we investigated VIP/VPAC system activity and expression on maternal peripheral blood mononuclear cells (PBMCs) after interaction with immortalized trophoblast cells (Swan-71 cell line) as an in-vitro model of feto–maternal interaction, and we analysed whether it modulates maternal regulatory T cell (Treg)/Th1 responses. We also investigated the contribution of the endogenous VIP/VPAC system to RSA pathogenesis. VIP decreased T-bet expression significantly, reduced monocyte chemotactic protein-1 (MCP-1) and nitrite production in co-cultures of PBMCs from fertile women with trophoblast cells; while it increased the frequency of CD4+CD25+ forkhead box protein 3 (Foxp3)+ cells, transforming growth factor (TGF)-β expression and interleukin (IL)-10 secretion. These effects were prevented by VIP-specific antagonist. Interestingly, PBMCs from RSA patients displayed significantly higher T-bet expression, lower Treg frequency and lower frequency of VIP-producer CD4 lymphocytes after the interaction with trophoblast cells. Moreover, the patients displayed a significantly lower frequency of endometrial CD4+VIP+ cells in comparison with fertile women. VIP showed a Th1-limiting and Treg-promoting response in vitro that would favour early pregnancy outcome. Because RSA patients displayed defects in the VIP/VPAC system, this neuropeptide could be a promising candidate for diagnostic biomarker or surrogate biomarker for recurrent spontaneous abortions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号