首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intraventricular injections of 6-hydroxydopamine in 3-day-old rats resulted in the near-total loss of tyrosine-hydroxylase-immunoreactive processes in the striatum when examined 2-6 months later. This destruction of dopamine (DA) afferents was accompanied by an increase in the density of serotonin (5-HT)-immunoreactive fibers in the striatum. The hyperinnervation was most striking in the rostral striatum, an area containing few 5-HT-immunoreactive fibers in control rats. Retrograde tracing, with either horse-radish peroxidase or rhodamine-labelled microspheres, indicated a significant increase in the number of neurons projecting to the rostral striatum from the dorsal raphe nucleus of lesioned animals. The increase was largely confined to the rostral extent of the dorsal raphe, and overlapped the distribution of cells labelled after injections of HRP into caudal striatum of control and lesioned animals. In sections additionally processed for immunocytochemistry, 80-90% of retrogradely labelled raphe neurons in both groups of animals were found to be 5-HT-immunoreactive. None of changes encountered in infant-lesioned rats were observed 2-4 weeks after 6-HDA was given to adult animals. These findings demonstrate that removal of DA afferents during development leads to an enlargement of the serotoninergic projection from the raphe nucleus to the striatum.  相似文献   

2.
The use of PAP immunohistochemistry in combination with HRP retrograde transport is described, allowing the transmitter characterization of identified projection neurons. To assess the validity of this procedure the dorsal raphe nucleus has been studied. It has been possible in single sections to stain for 5-HT immunoreactivity cells which have been retrogradely labeled following injection of HRP into the striatum. The presence of such neurons and their distribution in the dorsal raphe demonstrated with this dual staining technique agrees very well with previous results obtained from separately performed retrograde labeling and histochemical or immunohistochemical staining. The procedure described has some advantages over other traditional and recently described methods and in addition should be applicable to electron microscopic studies.  相似文献   

3.
We examined changes in 5-hydroxytriptamine (5-HT, serotonin) neurons in pyrithiamine-induced thiamine deficiency in mice immunohistochemically. Extensive decreases in the densities of 5-HT-immunoreactive fibers were detected in the lateral septal nucleus, the thalamus, the medial mammillary nucleus, the dorsal and the median raphe nuclei, the raphe obscurus nucleus, the tegmental area, the cerebellum and the vestibular nucleus, though only a small decrease was detected in the inferior colliculus. Most remarkably, degenerative winding fibers were detected between the deep mesencephalic nucleus and the ventral tegmental area. Increases in intensity of 5-HT immunoreactivity in the dorsal raphe nucleus and decreases in the number of 5-HT-immunoreactive cell bodies in the dorsal and the median raphe nuclei were detected. These results demonstrated the differential vulnerability of 5-HT neurons in thiamine-deficient mice. This is the first report to demonstrate changes in 5-HT neurons immunohistochemically throughout the brain of pyrithiamine-induced thiamine deficient mouse. Received: 15 January 1999 / Revised 22 March 1999 / Accepted: 24 March 1999  相似文献   

4.
Brainstem afferents to the magnocellular basal forebrain were studied by using tract tracing, immunohistochemistry and extracellular recordings in the rat. WGA-HRP injections into the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic area (MgPA) retrogradely labelled many neurons in the pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe nucleus, and ventral tegmental area. Areas with moderate numbers of retrogradely labelled neurons included the median raphe nucleus, and area lateral to the medial longitudinal fasciculus in the pons, the locus ceruleus, and the medial parabrachial nucleus. A few labelled neurons were seen in the substantia nigra pars compacta, mesencephalic and pontine reticular formation, a midline area in the pontine central gray, lateral parabrachial nucleus, raphe magnus, prepositus hypoglossal nucleus, nucleus of the solitary tract, and ventrolateral medulla. A similar but not identical distribution of labelled neurons was seen following WGA-HRP injections into the nucleus basalis magnocellularis. The possible neurotransmitter content of some of these afferents to the HDB/MgPA was examined by combining retrograde Fluoro-Gold labelling and immunofluorescence. In the mesopontine tegmentum, many retrogradely labelled neurons were immunoreactive for choline acetyltransferase. In the dorsal raphe nucleus, some retrogradely labelled neurons were positive for serotonin and some for tyrosine hydroxylase (TH); however, the majority of retrogradely labelled neurons in this region were not immunoreactive for either marker. The ventral tegmental area, substantia nigra pars compacta, and locus ceruleus contained retrogradely labelled neurons which were also immunoreactive for TH. Of the retrogradely labelled neurons occasionally observed in the nucleus of the solitary tract, prepositus hypoglossal nucleus, and ventrolateral medulla, some were immunoreactive for either TH or phenylethanolamine-N-methyltransferase. To characterize functionally some of these brainstem afferents, extracellular recordings were made from antidromically identified cortically projecting neurons, mostly located in the HDB and MgPA. In agreement with most previous studies, about half (48%) of these neurons were spontaneously active. Electrical stimulation in the vicinity of the pedunculopontine tegmental and dorsal raphe nuclei elicited either excitatory or inhibitory responses in 21% (13/62) of the cortically projecting neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The origin and organization of supraspinal afferents to the lateral reticular nucleus (LRN) in the rat were studied by means of the retrograde axonal transport of horseradish peroxidase (HRP). HRP was deposited into the LRN via both dorsal (stereotaxic) and ventral (microsurgical) routes. The entire cerebrum, brainstem, and cerebellum were surveyed for retrogradely labelled neurons. Significant projections arose from the contralateral red nucleus and the contralateral frontoparietal cortex. The rubral projection arose from neurons in the caudal two-thirds of the red nucleus. Ventrally and ventrolaterally located neurons projected to rostrolateral LRN, while dorsal and dorsomedial neurons projected to rostromedial LRN. The projection from the cerebral cortex arose from neurons located in layer V of the frontoparietal region. Rubral and cerebrocortical projections overlap in the rostral LRN, making this region of the nucleus a site of integration of descending inputs with ascending spinal signals.  相似文献   

6.
HRP was injected by pressure from glass capillary micropipettes unilaterally into the lateral nucleus of rat so as to encompass the entire nucleus, but without spread into the interpositus nuclei. The cells of origin of the afferents to the lateral nucleus were studied after retrograde transport of the HRP. The reticulotegmental nucleus of the pons was labelled bilaterally and is the major source of crossed and uncrossed reticular imputs. The pontine nuclei also provide extensive crossed and uncrossed afferents. The inferior olive gives a large crossed olivo-lateral nucleus projection and a minor uncrossed input. The trigeminal nuclear complex--the nucleus of the spinal tract and the mesencephalic, principal sensory, and motor nuclei--all provide uncrossed afferents. The rostral portion of the lateral reticular nucleus gives a small crossed and uncrossed projection while the perihypoglossal nuclei and the dorsal parabrachial body give crossed afferents to the lateral nucleus. The norepinephrine afferent system from the locus coeruleus is represented by one or two heavily labelled cells and the serotonin raphe systems come from at least five raphe subgroups, the dorsal, superior centralis, pontis, obscurus and magnus nuclei. No evidence was found for commissural fibers between ipsilateral or contralateral cerebellar nuclei, or afferent axons from the spinocerebellar nuclei and the paramedian retricular nucleus. The significance of these sources of afferent imputs to the lateral cerebellar nucleus is discussed. The question is raised of the direct relationship between size of terminal axonal arborization and the quantity of HRP granules present in a cell retrograde transport. The limitations of the HRP method for detecting subtle local differences in the distribution of afferents within the heterogeneous groups of neurons in the lateral nucleus are discussed.  相似文献   

7.
Diverse physiological actions have been reported for 5-hydroxytryptamine (5-HT, serotonin) in the medial prefrontal cortex (MPFC) and the nucleus accumbens (Acb) suggesting that the 5-HT innervation of these forebrain areas may be derived from different populations of neurons. We examined this possibility by mapping the distribution of 5-HT-immunoreactive (ir) and non-5HT-ir neurons containing retrograde labeling following injections of different tracers into both these target regions. The analysis was focused in the dorsal raphe nucleus (DRN) of the midbrain, since 5-HT pathways to the MPFC and Acb primarily originate from this area. Volume microinjections of the fluorescent retrograde tracer, Fluoro-Gold (FG), were placed into the MPFC and microinjections of cholera toxin B subunit coupled to 15 nm gold particles (CT-Au) were placed into the Acb of the same animal. Sections through the DRN containing retrogradely labeled neurons were further processed for immunofluorescent localization of 5-HT using a rhodamine marker. Neurons retrogradely labeled from the Acb were greater in number overall than those projecting to the MPFC. In addition, Acb-projecting neurons extended into the lateral wings of the DRN, whereas MPFC-projecting neurons were more restricted to the midline. Both groups of retrogradely labeled neurons, however, were more numerous in the caudal aspect of the dorsal raphe nucleus and were scattered amongst 5-HT immunoreactive perikarya. Of783 ± 69 CT-Au labeled cells, 15% also contained the FG label and 11% contained FG and 5-HT immunoreactivity. Of613 ± 48 FG labeled cells, 24% also contained the CT-Au label and 21% were also immunoreactive to 5-HT. The results suggest a more prominent input to the Acb from both 5-HT-ir and non-5-HT-ir neurons in the caudal aspect of the DRN and further indicate that while most 5-HT-ir and non-5-HT-ir neurons project differentially to both forebrain regions, a few cells also show collateralization to the MPFC and Acb. Such collateralization of single serotonergic neurons to divergent targets mey integrate cognitive and motor activities in response to pharmacological manipulations of ascending serotonergic pathways.  相似文献   

8.
Combined fluorescence serotonin immunohistochemistry and retrograde transport labelling with Fast blue and Fluoro-gold were used to identify serotonin-immunoreactive neurons in the midbrain and pons which project to the region of the arcuate and ventrome-dial hypothalamic nuclei. Approximately 90% of doubly labelled neurons were located in the 3 major mesencephalic serotonin-containing cell groups: dorsal raphe (38%), median raphe (21%) and medial lemniscus group (29%). Within these groups, there were numerous non-retrogradely labelled serotonin-immunoreactive neurons as well as numerous non-serotonin-immunoreactive retrogradely labelled neurons. No doubly labelled neurons were observed caudal to raphe pontis although non-serotonin-immunoreactive neurons were retrogradely labelled in the more caudal raphe nuclei.  相似文献   

9.
To determine if fetal transplants can substitute for or suppress intrinsic serotonergic (5-HT) innervation, we studied the relationship between transplanted and the endogenous raphe neurons projecting to the hippocampus. Fetal raphe transplants produced a 5-HT hyperinnervation of dorsal hippocampus in adult rats. Yet, transplants of fetal raphe tissue did not affect the number of median raphe nucleus (MRN) neurons, approximately 300, which retrogradely transported HRP from the hippocampus. This provides evidence that transplanted 5-HT neurons can co-exist with intrinsic 5-HT nerve terminals in the target area for at least one month. In the second part of this study, fetal hippocampal tissue was transplanted into the host hippocampus. Intrinsic 5-HT immunoreactive fibers innervated the transplanted fetal tissue. Nevertheless, the number of MRN neurons innervating the host tissue as revealed by HRP retrograde transport remained unchanged. Changes in the innervation pattern and 5-HT level in the dorsal hippocampus occur following transplantation of fetal tissue. These changes are discussed and suggest that both the target tissue and afferent neurons readjust to accommodate extrinsic transplanted tissue.  相似文献   

10.
Using the retrograde transport of horseradish peroxidase (HRP), a study has been made of projections to the ventral tegmental area of Tsai (VTA) and related dopaminergic cell groups (A 10). In order to minimise the possibility of damage to fibres of passage, a technique was evolved for the microiontophoresis of HRP such that minimal current strengths and durations were applied. In addition to a sham injection, control injections were also made to the medial lemnisuc, red nucleus, deep tegmental decussations, mesencephalic reticular formation and brachium conjunctivum. Following HRP injections confined to the areas of the VTA containing the dopamine cell groups, labelled neurons appeared in prefrontal cortex, dorsal bank of rhinal sulcus, nucleus accumbens, bed nucleus of stria terminalis, amygdala, diagonal band of Broca, substantis innominata, magnocellular preoptic area, medial and lateral preoptic areas, anterior, lateral and postero-dorsal hypothalamus, lateral habenular, nucleus parafascicular nucleus of thalamus, superior colliculus, nucleus raphe dorsalis, nucleus raphe nagnus and pontis, dorsal and ventral parabrachial nuclei, locus coeruleus and deep cerebellar nuclei. Regions containing catecholamine groups A 1, A 5, A 6, A 7, A 9, A 13 and the serotonin group B 7 corresponded to the topography of labeled cell groups. Injections of HRP to the interfascicular nucleus resulted in labeling predominantly confined to the medial habenular and median raphe nuclei. The results are discussed in relation to the known connections of these regions. Other regions of the brain labelled by VTA injections are assessed in relation to control injections and the limitations of the HRP technique. A review of the organisation of some of these afferents in relation to the known cortical-subcortical-mesencephalic projection systems, suggests that the VTA is in a position to recieve information from a massively convergent system derived ultimately from the entire archi-, paleo-, and neo-cerebral cortices. In addition A 10 dopaminergic neurons are known to project to restricted regions of both pre-frontal and entorhinal cortices, which themselves also recieve massively convergent association cortico-cortical connections. It would appear reasonable to propose that these neurons perform a correspondingly important integrative function.  相似文献   

11.
Horseradish peroxidase was injected into the cervical vagus nerve or stomach wall of adult squirrel monkeys. Following cervical vagus nerve injections, labelled afferent fibres were present in the tractus solitarius and labelled fibres and terminals were present in medial and lateral parts of the nucleus of the tractus solitarius (NTS) ipsilaterally. Afferent labelling was also seen in the ipsilateral commissural nucleus and in the area postrema. Labelling was present contralaterally in caudal levels of the medial parts of the NTS, in the commissural nucleus, and in the area postrema. Afferent projections to the ipsilateral pars interpolaris of the spinal trigeminal nucleus and to the substantia gelatinosa of the C1 segment of the spinal cord were also labelled. Following injections of HRP into the anterior and posterior stomach walls, the tractus solitarius was labelled bilaterally. Afferent labelling was concentrated bilaterally in the dorsal parts of the medial division of the NTS, i.e., in the subnucleus gelatinosus, and in the commissural nucleus. The regions of NTS immediately adjacent to the tractus solitarius were largely unlabelled. Injections of HRP into the cervical vagus nerve resulted in heavy retrograde labelling of neurons in the ipsilateral dorsal nucleus of the vagus (DMX) and in the nucleus ambiguus (NA). In addition a few neurones were labelled in the intermediate zone between these two nuclei. Retrogradely labelled neurons were also present in the nucleus dorsomedialis in the rostral cervical spinal cord and in the spinal nucleus of the accessory nerve. Injections of HRP into the left cricothyroid muscle in two cases resulted in heavy retrograde labelling of large neurons in the left NA. Following stomach wall injections of HRP retrograde labelling of neurons was seen throughout the rostrocaudal and mediolateral extent of the DMX; there was no apparent topographical organization of the projection. In these cases, a group of labelled smaller neurons was found lying ventrolateral to the main part of the NA through its rostral levels. This study in a primate indicates that a large vagal afferent projection originates in the stomach wall and terminates primarily in the subnucleus gelatinosus of the NTS and in the commissural nucleus with a distribution similar to that described previously in studies in several subprimate mammalian species. The present results and those of other studies suggest some degree of segregation of visceral input within different subnuclei of the NTS.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Retrograde tracer injections of fluorescein- and rhodamine-labelled latex microspheres centered in the parvicellular zone of the hypothalamic paraventricular nucleus and pontine lateral parabrachial nucleus revealed that 36% of the labelled neurons in the dorsal raphe nucleus send collaterals to both structures. These cells were organized in a well-distinguishable cluster within the dorsal raphe nucleus. By combining retrograde tracing with immunocytochemistry, it was found that less than 8% of the double-labelled cells stained positively for serotonin. Of the remaining raphe nuclei that were examined, only the median raphe nucleus contributed a minor nonserotoninergic projection to the paraventricular or lateral parabrachial nuclei. Few of the retrogradely labelled cells in the median raphe nucleus contained both tracers. These results suggest that nonserotoninergic and serotoninergic neurons in the dorsal raphe nucleus, via collateral branching, may simultaneously influence the activity of two central nervous system nuclei involved in autonomic control.  相似文献   

13.
We examined the afferent projections to the subnuclei of the interpeduncular nucleus (IPN) in the rat by means of retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). We observed locations of retrogradely labeled cells following injections of WGA-HRP into the IPN, and distributions of anterogradely labeled fibers and terminals within the IPN following injections into the areas that contain cells of origin of afferents. Results of the retrograde and anterograde experiments have clarified the detailed organization of the IPN afferents. A part of the nucleus incertus, located dorsomedial to the dorsal tegmental nucleus, projects to the contralateral half of the rostral subnucleus of the IPN; the pars caudalis of the dorsal tegmental nucleus projects sparsely to the rostral lateral, dorsal lateral, lateral, caudal, and apical subnuclei predominantly contralaterally; the laterodorsal tegmental nucleus, to most of the subnuclei predominantly contralaterally; the ventromedial central gray rostral to the dorsal tegmental nucleus and lateral to the dorsal raphe nucleus projects to the rostral lateral and dorsal lateral subnuclei predominantly contralaterally; the median raphe nucleus, substantially to all subnuclei; the medial habenular nucleus, in a topographic manner, to the rostral, central, and intermediate subnuclei, to the rostral lateral and lateral subnuclei predominantly ipsilaterally, and to the dorsal lateral subnucleus predominantly contralaterally; the supramammillary nucleus and areas around the origin of the mammillothalamic tract and near the third ventricle project sparsely to the ventral part of the rostral subnucleus and to the central, lateral, caudal and apical subnuclei; the nucleus of the diagonal band, sparsely to the rostral, central, dorsal lateral, caudal, and apical subnuclei. These differential projections of the afferents to the subnuclei of the IPN may reflect its complex functions within the limbic midbrain circuit.  相似文献   

14.
This paper describes the quantitative areal and laminar distribution of identified neuron populations projecting from areas of prefrontal cortex (PFC) to subcortical autonomic, motor, and limbic sites in the rat. Injections of the retrograde pathway tracer wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP) were made into dorsal/ventral striatum (DS/VS), basolateral amygdala (BLA), mediodorsal thalamus (MD), lateral hypothalamus (LH), mediolateral septum, dorsolateral periaqueductal gray, dorsal raphe, ventral tegmental area, parabrachial nucleus, nucleus tractus solitarius, rostral/caudal ventrolateral medulla, or thoracic spinal cord (SC). High-resolution flat-map density distributions of retrogradely labelled neurons indicated that specific PFC regions were differentially involved in the projections studied, with medial (m)PFC divided into dorsal and ventral sectors. The percentages that WGA-HRP retrogradely labelled neurons composed of the projection neurons in individual layers of infralimbic (IL; area 25) prelimbic (PL; area 32), and dorsal anterior cingulate (ACd; area 24b) cortices were calculated. Among layer 5 pyramidal cells, approximately 27.4% in IL/PL/ACd cortices projected to LH, 22.9% in IL/ventral PL to VS, 18.3% in ACd/dorsal PL to DS, and 8.1% in areas IL/PL to BLA; and 37% of layer 6 pyramidal cells in IL/PL/ACd projected to MD. Data for other projection pathways are given. Multiple dual retrograde fluorescent tracing studies indicated that moderate populations (<9%) of layer 5 mPFC neurons projected to LH/VS, LH/SC, or VS/BLA. The data provide new quantitative information concerning the density and distribution of neurons involved in identified projection pathways from defined areas of the rat PFC to specific subcortical targets involved in dynamic goal-directed behavior.  相似文献   

15.
Connections of the habenular complex to the nuclei of the midline in the midbrain (interpeduncularis, medianus raphe, and dorsalis raphe) have been studied classically by anterograde degeneration in the monkey, the cat, and marsupials. Passing fibers from the medial septal nucleus and lateral preoptic area, however, have also been demonstrated which can complicate interpretation of these results. In this paper the habenular projections were studied in the rat by the retrograde axonal transport of horseradish peroxidase (HRP). After HRP injections in the medianus raphe nucleus labelled neurons appeared in the lateral habenular nucleus and parafascicular nucleus. Labelled neurons were also found in the lateral habenular nucleus after injections in either the dorsalis raphe nucleus or the caudal central gray substance. The habenular projections were always bilateral. There were no labelled neurons in the medial habenular nucleus after HRP injections in the medianus raphe nucleus, dorsalis raphe nucleus, or central gray. These data stress the lateral habenular influences upon the raphe nuclei, especially on the dorsalis raphe neurons which have usually been thought of as functionally related to other brainstem structures. The present results suggest also that in the rat the lateral habenular nucleus might be the link between basal forbrain inputs and the limbic midbrain area. Thus, the raphe nuclei of the midbrain appear to be crucial regions for integrating two descending circuits: first, a limbic (through septum) circuit, and, second, a basal forebrain (through lateral habenular-preoptic area) circuit.  相似文献   

16.
Increasingly strong evidence suggests that cholinergic neurons in the mesopontine tegmentum play important roles in the control of wakefulness and sleep. To understand better how the activity of these neurons is regulated, the potential afferent connections of the laterodorsal (LDT) and pedunculopontine tegmental nuclei (PPT) were investigated in the rat. This was accomplished by using retrograde and anterograde axonal transport methods and NADPH-diaphorase histochemistry. Immunohistochemistry was also used to identify the transmitter content of some of the retrogradely identified afferents. Following injections of the retrograde tracer wheatgerm agglutinin-conjugated horseradish peroxidase (WGA-HRP) into either the LDT or the PPT, labelled neurons were seen in a number of limbic forebrain structures. The medial prefrontal cortex and lateral habenula contained more retrogradely labelled neurons from the LDT, whereas in the bed nucleus of the stria terminalis and central nucleus of the amygdala, more cells were labelled from the PPT. Moderate numbers of neurons were seen in the magnocellular regions of the basal forebrain, and many labelled neurons were observed in the lateral hypothalamus, the zona incerta, and the midbrain central gray from both the LDT and the PPT. Accessory oculomotor nuclei in the midbrain as well as eye movement-related structures in the lower brainstem contained some neurons labelled from the LDT, and fewer neurons from the PPT. A few labelled neurons were seen in somatosensory and other sensory relay nuclei in the brainstem and the spinal cord. Retrograde labelling was seen in a number of extrapyramidal structures, including the globus pallidus, entopenduncular and subthalamic nuclei, and substantia nigra following PPT injections; with LDT injections, labelling was similar in density in the substantia nigra but virtually absent in the entopeduncular and subthalamic nuclei. Data with the fluorescent retrograde tracer fluorogold combined with immunofluorescence indicated that many neurons in the zona incerta-lateral hypothalamic region that were retrogradely labelled from the LDT contained alpha-melanocyte-stimulating hormone. Numerous neurons were labelled throughout the reticular formation of the brainstem following either LDT or PPT injections. Many neurons retrogradely labelled in the LDT and PPT, the dorsal and median raphe nuclei, and the locus ceruleus contained choline acetyltransferase, serotonin, and tyrosine hydroxylase, respectively. The anterograde tracers WGA-HRP and phaseolus vulgaris leucoagglutinin were used to confirm some of the projections indicated by the retrograde labelling data; anterograde labelling was seen in the LDT and PPT following injections of one of these tracers into the medial prefrontal cortex, lateral hypothalamus, and the contralateral LDT.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Fluorescence immunohistochemistry was used to analyze the medulla oblongata of colchicine-treated rats that had been incubated with guinea pig antibodies to serotonin (5-HT) and either rabbit or sheep antibodies to glutamic acid decarboxylase (GAD). Numerous cells in the rostral ventrolateral medulla in the region of nucleus raphe magnus were immunostained for either 5-HT or GAD. A substantial number of neurons showed positive immunoreactivity for both substances, and were most frequently observed in the lateral aspect of nucleus raphe magnus. In addition, a number of the 5-HT/GAD-containing neurons were retrogradely labelled with Fast blue dye that had been injected into the thoracic spinal cord. This work provides evidence for colocalization of the classical neurotransmitters 5-HT and GABA in single cells of the ventral medulla oblongata, some of which project to the spinal cord.  相似文献   

18.
Ascending projections from the pedunculopontine tegmental nucleus (PPT) and the surrounding mesopontine tegmentum to the forebrain in the rat are here examined by using both retrograde and anterograde tracing techniques combined with choline acetyltransferase (ChAT) immunohistochemistry. The anterogradely transported lectin Phaseolus vulgaris-leukoagglutinin (PHA-L) was iontophoretically injected into the PPT in 12 rats. Anterogradely labelled fibers and varicosities were observed in the thalamic nuclei, confirming the findings of our previous retrograde studies (Hallanger et al: J. Comp. Neurol. 262:105-124, '87). In addition, PHA-L-labelled fibers and varicosities suggestive of terminal fields were observed in the anterior, tuberal, and posterior lateral hypothalamic regions, the ventral pallidum in the region of the nucleus basalis of Meynert, the dorsal and intermediate lateral septal nuclei, and in the central and medial nuclei of the amygdala. To determine whether these were cholinergic projections, the retrograde tracer WGA-HRP was injected into terminal fields in the hypothalamus, septum, ventral pallidum, and amygdala. Numerous ChAT-immunoreactive neurons in the PPT and laterodorsal tegmental nucleus (LDT) were retrogradely labelled from the lateral hypothalamus. These cholinergic neurons constituted over 20% of those retrogradely labelled in the dorsolateral mesopontine tegmentum; the balance consisted of noncholinergic neurons of the central tegmental field, retrorubral field, and cuneiform nucleus. Following placement of WGA-HRP into dorsal and intermediate lateral septal regions, the vast majority (greater than 90%) of retrogradely labelled neurons were cholinergic neurons of the PPT and LDT, with few noncholinergic retrogradely labelled neurons in the adjacent tegmentum. In contrast, fewer cholinergic neurons were retrogradely labelled following placement of tracer into the nucleus basalis of Meynert or into the central, medial, and basolateral nuclei of the amygdala, while numerous noncholinergic neurons of the central tegmental field rostral to the PPT and of the retrorubral field adjacent to the PPT were retrogradely labelled in these cases. These anterograde and retrograde studies demonstrate that cholinergic PPT and LDT neurons provide a substantial proportion of mesopontine tegmental afferents to the hypothalamus and lateral septum, while projections to the nucleus basalis and the amygdala are minimal.  相似文献   

19.
The entorhinal cortex (EC) of the rat has been divided into medial (MEA) and lateral (LEA) subdivisions. In order to analyze its afferent connections, small deposits of horseradish peroxidase (HRP) were placed at various loci within EC. The patterns of retrograde cell-labeling charted in 18 such cases suggested that EC is projected upon by several allocortical and subcortical structures and that there are differences in the afferent connections of the two subdivisions. Thus, although HRP injection of either division of EC led to cell-labeling in the hippocampal formation, most in ammonic field CA1 and the subiculum, several cells of the presubiculum were preferentially labeled by injection of MEA. Injections of LEA, but not those in MEA, resulted in substantial cell-labeling in the anterior piriform cortex of both hemispheres. Regardless of the location of its injection site within EC, the enzyme labeled cells in the diagonal band nucleus of Broca, amygdala and claustrum. The pattern of cell-labeling in the diagonal band nucleus extended into the ventrolaterally contiguous nucleus basalis after injection of LEA and into the dorsally contiguous medial septal nucleus after injection of MEA Whereas HRP deposits in either division of EC resulted in cell-labeling in the cortical and medial nuclei of the amygdala, only those deposits which involved LEA led to cell-labeling in the posterior part of the lateral nucleus. In the thalamus, labeled cells were found in the rostral part of the paratenial, periventricular and reuniens nuclei. Finally, at midbrain levels, numerous labeled cells appeared in the dorsal raphe nucleus, a few in the median raphe and locus coeruleus, and, only after rostral EC injection, in the ventral tegmental area.  相似文献   

20.
The efferent projections from nucleus caudalis of the spinal trigeminal complex in cats were studied with retrograde and anterograde axonal transport techniques combined with localization of recording sites in the thalamus and marginal zone of nucleus caudalis to innocuous skin cooling. Results showed brainstem projections from nucleus caudalis to rostral levels of the spinal trigeminal complex, to the ventral division of the principal trigeminal nucleus, the parabrachial nucleus, cranial motor nuclei 7 and 12, solitary complex, contralateral dorsal inferior olivary nucleus, portions of the lateral reticular formation, upper cervical spinal dorsal horn and, lateral cervical nucleus. Projections to the thalamus included: a dorsomedial region of VPM (bilaterally) and to the main part of VPM and PO contralaterally. Neuronal activity was recorded in the dorsomedial region of VPM to cooling the ipsilateral tongue. HRP injections in this thalamic region retrogradely labeled marginal neurons in nucleus caudalis. These results show that marginal neurons of nucleus caudalis provide a trigeminal equivalent of spinothalamic projections to the ventroposterior nucleus in cats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号