首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
INTRODUCTION: Epidemiological evidence suggests an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD), in that one disease increases the risk of the other. T2DM and AD share several molecular processes which underlie the tissue degeneration in either disease. Disturbances in insulin signaling may be the link between the two conditions. Drugs originally developed for T2DM are currently being considered as possible novel agents in the treatment of AD. AREAS COVERED: This review discusses the potential role of glucagon-like peptide -1 (GLP-1) treatment in AD. GLP-1 receptors are expressed in areas of the brain important to memory and learning, and GLP-1 has growth-factor-like properties similar to insulin. A key neuropathological feature of AD is the accumulation of amyloid-beta (Aβ). In preclinical studies, GLP-1 and longer lasting analogues have been shown to have both neuroprotective and neurotrophic effects, and to protect synaptic activity in the brain from Aβ toxicity. EXPERT OPINION: A convincing amount of evidence has shown a beneficial effect of GLP-1 agonist treatment on cognitive function, memory and learning in experimental models of AD. GLP-1 analogues may therefore be the new therapeutic agent of choice for intervention in AD.  相似文献   

2.
The FDA-approved glucagon-like-peptide-1 receptor (GLP-1R) agonists exendin-4 and liraglutide reduce food intake and body weight. Nausea is the most common adverse side effect reported with these GLP-1R agonists. Whether food intake suppression by exendin-4 and liraglutide occurs independently of nausea is unknown. Further, the neurophysiological mechanisms mediating the nausea associated with peripheral GLP-1R agonist use are poorly understood. Using two established rodent models of nausea [conditioned taste avoidance (CTA) and pica (ingestion of nonnutritive substances)], results show that all peripheral doses of exendin-4 that suppress food intake also produce CTA, whereas one dose of liraglutide suppresses intake without producing CTA. Chronic (12 days) daily peripheral administration of exendin-4 produces a progressive increase in pica coupled with stable, sustained food intake and body weight suppression, whereas the pica response and food intake reduction by daily liraglutide are more transient. Results demonstrate that the nausea response accompanying peripheral exendin-4 occurs via a vagal-independent pathway involving GLP-1R activation in the brain as the exendin-4-induced pica response is attenuated with CNS co-administration of the GLP-1R antagonist exendin-(9-39), but not by vagotomy. Direct administration of exendin-4 to the medial subnucleus of the nucleus tractus solitarius (mNTS), but not to the central nucleus of the amygdala, reduced food intake and produced a pica response, establishing the mNTS as a potential GLP-1R-expressing site mediating nausea responses associated with GLP-1R agonists.  相似文献   

3.
Introduction: Epidemiological evidence suggests an association between type 2 diabetes (T2DM) and Alzheimer's disease (AD), in that one disease increases the risk of the other. T2DM and AD share several molecular processes which underlie the tissue degeneration in either disease. Disturbances in insulin signaling may be the link between the two conditions. Drugs originally developed for T2DM are currently being considered as possible novel agents in the treatment of AD.

Areas covered: This review discusses the potential role of glucagon-like peptide -1 (GLP-1) treatment in AD. GLP-1 receptors are expressed in areas of the brain important to memory and learning, and GLP-1 has growth-factor-like properties similar to insulin. A key neuropathological feature of AD is the accumulation of amyloid-beta (Aβ). In preclinical studies, GLP-1 and longer lasting analogues have been shown to have both neuroprotective and neurotrophic effects, and to protect synaptic activity in the brain from Aβ toxicity.

Expert opinion: A convincing amount of evidence has shown a beneficial effect of GLP-1 agonist treatment on cognitive function, memory and learning in experimental models of AD. GLP-1 analogues may therefore be the new therapeutic agent of choice for intervention in AD.  相似文献   

4.
Glucagon-like peptide-1 (GLP-1) is a peptide hormone from the gut that stimulates insulin secretion and protects beta-cells, inhibits glucagon secretion and gastric emptying, and reduces appetite and food intake. In agreement with these actions, it has been shown to be highly effective in the treatment of Type 2 diabetes, causing marked improvements in glycaemic profile, insulin sensitivity and beta-cell performance, as well as weight reduction. The hormone is metabolised rapidly by the enzyme dipeptidyl peptidase IV (DPP-IV) and, therefore, cannot be easily used clinically. Instead, resistant analogues of the hormone (or agonists of the GLP-1 receptor) are in development, along with DPP-IV inhibitors, which have been demonstrated to protect the endogenous hormone and enhance its activity. Agonists include both albumin-bound analogues of GLP-1 and exendin-4, a lizard peptide. Clinical studies with exendin have been carried out for > 6 months and have indicated efficacy in patients inadequately treated with oral antidiabetic agents. Orally active DPP-IV inhibitors, suitable for once-daily administration, have demonstrated similar efficacy. Diabetes therapy, based on GLP-1 receptor activation, therefore, appears very promising.  相似文献   

5.
Type 2 diabetes mellitus (T2DM) is a global public health problem. Due to the progressive nature of the disease, a combination(s) of two or more drugs acting on different pathophysiological process is often necessary to achieve early and sustained achievement of individualized glycemic targets. At the same time, choosing the safest option to avoid hypoglycemia is of paramount importance. GLP-1 analogues are a relatively recent class of anti-diabetic drugs, and are highly effective with an acceptable safety profile. Attempts have been made to combine GLP-1 analogues with basal insulin for management of T2DM. Presently GLP-1 analogues like exenatide/long acting exenatide and liraglutide have been co-administered with basal insulin like glargine and detemir respectively, and are approved by regulatory agencies. Currently a fixed dose combination (FDC) of insulin degludec and liraglutide is under development. GLP-1 analogue and insulin as FDC or by co-administration, is a rational method of controlling fasting and postprandial glucose effectively. The efficacy and safety of this combination has been studied in a wide population with promising outcomes. Innovative use of GLP-1 analogues beyond diabetes is also being attempted, and a variety of patents are filed or granted for the same. This review summarizes the current status of GLP-1 and insulin combination in the management of T2DM and highlights the new frontiers in research involving GLP-1. Patents on combination of GLP-1 and insulin which were granted earlier, and the ones which have been applied for, are also discussed.  相似文献   

6.
Glucagon-like peptide-1 (7-36)-amide (GLP-1) is an endogenous 30-amino acid gut peptide, which binds at the GLP-1 receptor coupled to the cyclic AMP second messenger pathway. GLP-1 receptor stimulation enhances pancreatic islet beta-cell proliferation, glucose-dependent insulin secretion and lowers blood glucose and food intake in patients with type 2 diabetes mellitus. Not limited to the pancreas, the chemoarchitecture of GLP-1 receptor distribution in the brain of rodents and humans correlates with a central role for GLP-1 in the regulation of food intake. However emerging evidence suggests that stimulation of neuronal GLP-1 receptors plays an important role in regulating neuronal plasticity and cell survival. GLP-1 has been documented to induce neurite outgrowth and to protect against excitotoxic cell death and oxidative injury in cultured neuronal cells. Moreover, GLP-1 and exendin-4, a naturally occurring more stable analogue of GLP-1 that likewise binds at the GLP-1 receptor, were shown to reduce endogenous levels of amyloid-beta peptide (Abeta) in mouse brain and to reduce levels of beta-amyloid precursor protein (betaAPP) in neurons. Collectively these data suggest that treatment with GLP-1 or a related peptide beneficially affects a number of the therapeutic targets associated with Alzheimer's disease (AD). Although much remains to be elucidated with regards to the downstream signaling pathways involved in the pro-survival properties of GLP-1, modulation of calcium homeostasis may be critical. This review will consider the potential therapeutic relevance of GLP-1 to CNS disorders, such as AD.  相似文献   

7.
The insulinotropic agent, exendin-4, is a long-acting analogue of glucagon-like peptide-1 (GLP-1) which improves glucose tolerance in humans and animals with diabetes, but the underlying mechanisms and the effects of exendin-4 on peripheral (muscle/fat) insulin action are unclear. Previous in vivo and clinical studies have been difficult to interpret because of complex, simultaneous changes in insulin and glucagon levels and possible effects on hepatic metabolism. Thus, the comparative effects of exendin-4 and GLP-1 on insulin-stimulated 2-[3H]deoxyglucose (2-DOG) uptake were measured in fully differentiated L6 myotubes and 3T3-adipocytes, including co-incubation with inhibitors of the PI-3-kinase (wortmannin) and mitogen-activated protein (MAP) kinase (PD098059) pathways. In L6 myotubes, there was a concentration-dependent and PI-3-kinase-dependent increase in insulin-stimulated 2-DOG uptake with exendin-4 and GLP-1, e.g. for exendin-4 the C(I-200) value (concentration of insulin required to increase 2-DOG uptake 2-fold) decreased from 1.3 +/- 1.4 x 10(-7)M (insulin alone, n=16) to 5.9 +/- 1.3 x 10(-8)M (insulin+exendin-4 0.1nM, n=18, P<0.03). A similar insulin-sensitizing effect was observed with exendin-4 in 3T3-adipocytes, but GLP-1 had no effect on adipocyte insulin sensitivity. In conclusion, this is the first direct evidence showing that exendin-4 increases insulin-stimulated glucose uptake in muscle and fat derived cells via a pathway that involves PI-3-kinase activation. Furthermore, the contrasting responses of exendin and GLP-1 in 3T3-adipocytes suggest that the peripheral insulin-sensitizing effect of exendin-4 (in contrast to the insulinotropic effect) does not involve the GLP-1 receptor pathway.  相似文献   

8.
Type 2 diabetes mellitus has been identified as a risk factor for Alzheimer's disease, and insulin signalling is often impaired in Alzheimer's disease, contributing to the neurodegenerative process. One potential strategy to help prevent this is the normalisation of insulin signalling in the brain. Therefore, the present study was designed to test the effects of the insulin-releasing gut hormone, glucagon-like peptide 1 (GLP-1). A protease-resistant form of GLP-1, (Val8)GLP-1, was also tested. Effects of both native GLP-1 and (Val8)GLP-1 on synaptic plasticity (LTP) in the hippocampus (15 nmol i.c.v.) were examined and results demonstrated for the first time that both peptides have enhancing effects on LTP. In sharp contrast, the inactive truncated form of GLP-1, GLP-1(9-36), had no effect on LTP. Injection of beta-amyloid (25-35) (100 nmol or 10 nmol i.c.v.), a peptide that aggregates in brains of Alzheimer's disease patients, impaired LTP. The injection of (Val8)GLP-1 (15 nmol i.c.v.) 30 min prior to injection of amyloid (25-35) (100 nmol i.c.v.) fully reversed the impairment of LTP induced by beta-amyloid. When (Val8)GLP-1 was administered 15 min prior to or simultaneously with beta-amyloid, no such reversal was observed. These results demonstrate for the first time that GLP-1 not only directly modulates neurotransmitter release and LTP formation, but also protects synapses from the detrimental effects of beta-amyloid fragments on LTP formation. Therefore, longer-acting GLP-1 agonists show great potential as a novel treatment for preventing neurodegenerative processes in neurodegenerative disorders.  相似文献   

9.
10.
蒋筠  彭永德 《世界临床药物》2010,31(2):74-77,97
人胰高血糖素样肽1(GLP-1)类似物已成为新一代降糖药。无论是上市的艾塞那肽和利拉鲁肽,还是处于临床研究阶段的taspoglutide,均在2型糖尿病临床研究中取得显著成果,如有效降糖、减轻体重和减少低血糖发生等。同时,人GLP—1类似物潜在的益处与风险还有待进一步研究。  相似文献   

11.
胰高血糖素样肽-1(GLP-1)是一种由30个氨基酸组成的肠肽,结合于GLP-1R,并与cAMP第二信使途径相偶联。神经系统GLP-1 R的激活在神经可塑性及神经细胞的存活中起着重要作用。GLP-1可以诱导神经元轴突的生长,抵御体外培养神经细胞的兴奋性死亡和氧化损伤。GLP-1及其天然类似物exend in-4均可以降低小鼠脑中内源性Aβ的水平及神经元β前体蛋白(βAPP)的水平。因此,以GLP-1或其相关肽来实施治疗可以影响到AD相关的多个治疗靶点。该文对GLP-1治疗阿尔采末病(AD)的潜力进行探讨。  相似文献   

12.
BackgroundCombination with suitable pharmacological agents can improve the antiobesity and antidiabetic actions of glucagon like peptide-1 (GLP-1) based therapies. GLP-1 agonist exendin-4 may have insulin-independent effects on amelioration of insulin resistance and hepatic steatosis by virtue of its action on hepatic GLP-1 receptors, and these effects can be improved by combination with proton pump inhibitors. However, it was not assessed whether omeprazole can improve the peripheral actions of exendin-4 in the state of insulin deficiency.MethodsWe investigated the effects of combination of omeprazole with GLP-1 agonist exendin-4 in multiple low-dose streptozotocin(STZ)-induced diabetes in C57BL/KsJ mice, a model of type 1 diabetes. Male diabetic mice were treated with exendin-4 and/or omeprazole for a period of 4 weeks.ResultsOmeprazole treatment had no significant effect on lowering the blood glucose levels of diabetic mice, when compared to control, although it improved the antihyperglycemic actions of exendin-4. Similarly, serum triglycerides and total cholesterols levels were significantly lower in the combination treated mice compared to either exendin-4 and omeprazole alone. In addition, the combination treatment significantly ameliorated lipid peroxidation and hepatic triglycerides in diabetic mice compared to either exendin-4 and omeprazole alone. The improvement in hepatic insulin sensitivity, as indicated by insulin tolerance test (ITT) and pyruvate tolerance test (IPPTT), was correlated with the expression of nuclear factor erythroid-related factor 2 (Nrf2) and insulin receptor substrate-1 (IRS-1) and the combination treatment significantly improved the insulin sensitivity in comparison to vehicle control.ConclusionWe conclude that combination with omeprazole improves the insulin sensitizing actions of GLP-1 therapy and these effects are partially mediated through the decrease in hepatic steatosis and improvement in antioxidant status in the liver.  相似文献   

13.
1. The receptor for glucagon-like peptide-1 (GLP-1) can be activated by both its physiological hormone and a peptide discovered in the venom of the Gila Monster, exendin-4, which shows promise as an antidiabetic agent. 2. Exendin-4 displays receptor-binding properties not observed for GLP-1. Firstly, exendin-4 can be truncated by up to eight residues at its N-terminus without a significant loss of affinity. Secondly, exendin-4 maintains high affinity for the isolated N-terminal domain of the receptor, suggesting that exendin-4 makes additional contacts with this domain of the receptor, which nullify the requirement for ligand-receptor interactions involving the extracellular loops and/or transmembrane helices of the receptor's core domain. 3. In order to further understand the nature of the receptor-peptide interaction, a variety of full length and truncated peptide analogues were used to quantify the contribution of each distinct region of exendin-4 and GLP-1 to receptor affinity. 4. Our data show that, for both exendin-4 and GLP-1, the primary interaction is between the putative helical region of the peptide and the extracellular N-terminal domain of the receptor. 5. However, we demonstrate that the contribution to receptor affinity provided by the N-terminal segment of GLP-1 is greater than that of exendin-4, while the C-terminal nine residue extension of exendin-4, absent in GLP-1, forms a compensatory interaction with the N-terminal domain of the receptor. 6. We describe a peptide-receptor binding model to account for these data.  相似文献   

14.
Introduction: Glucagon-like peptide-1 (GLP-1) receptor agonists have been used in clinical management of type 2 diabetes since 2005. Currently approved agents were initially developed and approved for combination therapy with oral antidiabetic drugs (OADs). The potential for combined use with insulin has garnered increasing attention due to the potential to reduce side effects associated with insulin therapy and improve glycemic control. Areas covered: We reviewed published and other publicly released data from controlled and uncontrolled studies that included subjects treated with insulin/GLP-1 analog combination therapy. The currently available guidance for clinical practice when combining insulin and GLP-1 analogs was also summarized. Expert opinion: Limited data currently available from placebo-controlled trials support the use of exenatide twice daily or liraglutide once daily in combination with basal insulin and metformin in subjects with type 2 diabetes unable to attain treatment goals. Several randomized controlled trials are currently studying combinations of insulin with various GLP-1 analogs. Additional guidance on the clinical use of these combinations will likely be forthcoming once these studies are reported. Insulin/GLP-1 analog combinations will require optimization of blood glucose monitoring strategies and delivery systems to decrease the risk of administration errors and reduce the potential complexity of these regimens.  相似文献   

15.
Introduction: A fixed combination of basal insulin degludec and glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide (IDegLira; 50 units degludec/1.8 mg liraglutide) has been developed as a once daily injection for the treatment of type 2 diabetes (T2D). In the phase 3a trial programme ‘Dual action of liraglutide and insulin degludec in type 2 diabetes’ (DUAL?), five trials of 26 weeks duration and one trial of 32 weeks duration have evaluated the efficacy and safety of IDegLira compared with administration of insulin degludec, insulin glargine, liraglutide alone or placebo.

Areas covered: Combination therapy with IDegLira reduces HbA1c more than monotherapy with a GLP-1RA (liraglutide) or insulin (degludec or glargine). Combination therapy leads also to weight loss, or a stable body weight, with no increase in hypoglycaemia. Rates of adverse events did not differ between treatment groups; however, gastrointestinal side effects were fewer with IDegLira compared with liraglutide treatment alone. A limitation of the DUAL? development programme is that patients receiving basal insulin doses in excess of 50 units were excluded from the studies.

Expert commentary: In conclusion, IDegLira combines the clinical advantages of basal insulin and GLP-1RA treatment, and is a treatment strategy that could improve the management of patients with T2D.  相似文献   

16.
Like type-2 diabetes mellitus (T2DM), neurodegenerative disorders and stroke are an ever increasing, health, social and economic burden for developed Westernized countries. Age is an important risk factor in all of these; due to the rapidly increasing rise in the elderly population T2DM and neurodegenerative disorders, both represent a looming threat to healthcare systems. Whereas several efficacious drugs are currently available to ameliorate T2DM, effective treatments to counteract pathogenic processes of neurodegenerative disorders are lacking and represent a major scientific and pharmaceutical challenge. Epidemiological data indicate an association between T2DM and most major neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Likewise, there is an association between T2DM and stroke incidence. Studies have revealed that common pathophysiological features, including oxidative stress, insulin resistance, abnormal protein processing and cognitive decline, occur across these. Based on the presence of shared mechanisms and signalling pathways in these seemingly distinct diseases, one could hypothesize that an effective treatment for one disorder could prove beneficial in the others. Glucagon-like peptide-1 (GLP-1)-based anti-diabetic drugs have drawn particular attention as an effective new strategy to not only regulate blood glucose but also to reduce apoptotic cell death of pancreatic beta cells in T2DM. Evidence supports a neurotrophic and neuroprotective role of GLP-1 receptor (R) stimulation in an increasing array of cellular and animal neurodegeneration models as well as in neurogenesis. Herein, we review the physiological role of GLP-1 in the nervous system, focused towards the potential benefit of GLP-1R stimulation as an immediately translatable treatment strategy for acute and chronic neurological disorders.  相似文献   

17.
Glucagon-like peptide-1 (7-36) amide (GLP-1) is released from the gut as an incretin hormone to stimulate glucose-stimulated insulin secretion. GLP-1 is also produced in the central nervous system (CNS) as a neurotransmitter that regulates feeding behaviour. By using polyclonal antiserum against GLP-1 and GLP-1 receptors, we identified the distribution of GLP-1 immunoreactive fibres and GLP-1 receptor immunoreactivity in the ventromedial hypothalamus of Suncus murinus (house musk shrew). In functional studies, subcutaneous administration of exendin-4 (1 - 30 nmol/kg) reduced blood glucose levels dose-dependently by up to 49% during an intraperitoneal glucose tolerance test (P<0.001). The glucose-lowering effects were also observed after an intracerebroventricular (i.c.v.; 0.3 - 3 nmol) or intracerebral ventromedial hypothalamic microinfusion (iVMH; 0.3 - 3 pmol) of exendin-4. The area under the curve values for glucose after i.c.v. and iVMH administrations of exendin-4 were reduced by up to 53% (P<0.01) and 46% (P<0.01), respectively. Exendin-4 (i.c.v.; 3 nmol) also increased glucose-stimulated insulin secretion by 20% compared to controls (P<0.05). The GLP-1 receptor antagonist, exendin (9-39) (10 nmol, i.c.v.) did not modify blood glucose levels but it antagonized the glucose-lowering effect of exendin-4 (1 nmol, i.c.v.; P<0.05). The data suggests that the central GLP-1 system may regulate glucose homeostasis by increasing insulin secretion. Further, GLP-1 receptors in the ventromedial hypothalamus appear to play an important role in the regulation of glucose homeostasis in S. murinus.  相似文献   

18.
Glucagon-like peptide-1(7-36)amide (GLP-1) is a 30-residue peptide hormone released from intestinal L cells following nutrient consumption. It potentiates the glucose-induced secretion of insulin from pancreatic beta cells, increases insulin expression, inhibits beta-cell apoptosis, promotes beta-cell neogenesis, reduces glucagon secretion, delays gastric emptying, promotes satiety and increases peripheral glucose disposal. These multiple effects have generated a great deal of interest in the discovery of long-lasting agonists of the GLP-1 receptor (GLP-1R) in order to treat type 2 diabetes. This review article summarizes the literature regarding the discovery of GLP-1 and its physiological functions. The structure, function and sequence-activity relationships of the hormone and its natural analogue exendin-4 (Ex4) are reviewed in detail. The current knowledge of the structure of GLP-1R, a Family B GPCR, is summarized and discussed, before its known interactions with the principle peptide ligands are described and summarized. Finally, progress in discovering non-peptide ligands of GLP-1R is reviewed. GLP-1 is clearly an important hormone linking nutrient consumption with blood sugar control, and therefore knowledge of its structure, function and mechanism of action is of great importance.  相似文献   

19.
Apoptosis is a prerequisite to model the developing nervous system. However, an increased rate of cell death in the adult nervous system underlies neurodegenerative disease and is a hallmark of multiple sclerosis (MS) Alzheimer's- (AD), Parkinson- (PD), or Huntington's disease (HD). Cell surface receptors (e.g., CD95/APO-1/Fas; TNF receptor) and their ligands (CD95-L; TNF) as well as evolutionarily conserved mechanisms involving proteases, mitochondrial factors (e.g. , Bcl-2-related proteins, reactive oxygen species, mitochondrial membrane potential, opening of the permeability transition pore) or p53 participate in the modulation and execution of cell death. Effectors comprise oxidative stress, inflammatory processes, calcium toxicity and survival factor deficiency. Therapeutic agents are being developed to interfere with these events, thus conferring the potential to be neuroprotective. In this context, drugs with anti-oxidative properties, e.g., flupirtine, N-acetylcysteine, idebenone, melatonin, but also novel dopamine agonists (ropinirole and pramipexole) have been shown to protect neuronal cells from apoptosis and thus have been suggested for treating neurodegenerative disorders like AD or PD. Other agents like non-steroidal anti-inflammatory drugs (NSAIDs) partly inhibit cyclooxygenase (COX) expression, as well as having a positive influence on the clinical expression of AD. Distinct cytokines, growth factors and related drug candidates, e.g., nerve growth factor (NGF), or members of the transforming growth factor-beta (TGF-beta ) superfamily, like growth and differentiation factor 5 (GDF-5), are shown to protect tyrosine hydroxylase or dopaminergic neurones from apoptosis. Furthermore, peptidergic cerebrolysin has been found to support the survival of neurones in vitro and in vivo. Treatment with protease inhibitors are suggested as potential targets to prevent DNA fragmentation in dopaminergic neurones of PD patients. Finally, CRIB (cellular replacement by immunoisolatory biocapsule) is an auspicious gene therapeutical approach for human NGF secretion, which has been shown to protect cholinergic neurones from cell death when implanted in the brain. This review summarises and evaluates novel aspects of anti-apoptotic concepts and pharmacological intervention including gene therapeutical approaches currently being proposed or utilised to treat neurodegenerative diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号