首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Nanofiber scaffolds have been useful for engineering tissues derived from mesenchymal cells, but few studies have investigated their applicability for epithelial cell-derived tissues. In this study, we generated nanofiber (250 nm) or microfiber (1200 nm) scaffolds via electrospinning from the polymer, poly-l-lactic-co-glycolic acid (PLGA). Cell-scaffold contacts were visualized using fluorescent immunocytochemistry and laser scanning confocal microscopy. Focal adhesion (FA) proteins, such as phosphorylated FAK (Tyr397), paxillin (Tyr118), talin and vinculin were localized to FA complexes in adult cells grown on planar surfaces but were reduced and diffusely localized in cells grown on nanofiber surfaces, similar to the pattern observed in adult mouse salivary gland tissues. Significant differences in epithelial cell morphology and cell clustering were also observed and quantified, using image segmentation and computational cell-graph analyses. No statistically significant differences in scaffold stiffness between planar PLGA film controls compared to nanofibers scaffolds were detected using nanoindentation with atomic force microscopy, indicating that scaffold topography rather than mechanical properties accounts for changes in cell attachments and cell structure. Finally, PLGA nanofiber scaffolds could support the spontaneous self-organization and branching of dissociated embryonic salivary gland cells. Nanofiber scaffolds may therefore have applicability in the future for engineering an artificial salivary gland.  相似文献   

2.
There is no effective treatment for the loss of functional salivary tissue after irradiation for head and neck cancer or the autoimmune disease Sj?gren's syndrome. One possible approach is the regeneration of salivary glands from stem cells. The present study aimed to investigate whether small pieces of human submandiblar gland tissue contain elements necessary for the reconstruction of salivary rudiments in vitro via acinar and ductal cell differentiation. Primary submandibular gland (primary total human salivary gland; PTHSG) cells were isolated from human tissue and cultured in vitro using a new method in which single cells form an expanding epithelial monolayer on plastic substrates. Differentiation, morphology, number, and organization of these cells were then followed on basement membrane extract (BME) using RNA quantitation (amylase, claudin-1 (CLN1), CLN3, kallikrein, vimentin), immunohistochemistry (amylase and occludin), viability assay, and videomicroscopy. On the surface of BME, PTHSG cells formed acinotubular structures within 24 h, did not proliferate, and stained for amylase. In cultures derived from half of the donors, the acinar markers amylase and CLN3 were upregulated. The PTHSG culture model suggests that human salivary gland may be capable of regeneration via reorganization and differentiation and that basement membrane components play a crucial role in the morphological and functional differentiation of salivary cells.  相似文献   

3.
Proliferation and phenotypic preservation of rat parotid acinar cells   总被引:3,自引:0,他引:3  
The purpose of this study is to develop an initial step in salivary gland tissue engineering through proliferation and phenotypic preservation of rat parotid acinar cells in vitro. By using the explant outgrowth technique and M199 medium with the addition of sialic acid, acinar cells not only survived for more than 30 days in the absence of basement membrane substrates but also proliferated to yield cells with acinar phenotypic expression. Furthermore, we tested whether chitosan can be used as a synthetic extracellular matrix to culture salivary acinar cells. Chitosan is a deacetylated product of chitin, which is a plentiful polysaccharide found in nature and is safe for the human body, but little is known about the utility of chitosan in culturing salivary acinar cells. It was found that coating fibronectin on chitosan membrane improved the attachment of acinar cells in the initial stage. However, the poor attachment of acinar cells on pure chitosan membrane did not affect cell growth after longer culture times, indicating that chitosan is potentially useful as a tissue-engineering scaffold of the salivary gland. These in vitro results are encouraging because such a culture system may serve as an artificial salivary gland for future use in the treatment of patients with salivary hypofunction.  相似文献   

4.
Sjogren's syndrome and radiotherapy for head and neck cancer result in severe xerostomia and irreversible salivary gland damage for which no effective treatment is currently available. Cell culture methods of primary human salivary gland epithelial cells (huSGs) are slow and cannot provide a sufficient number of cells. In addition, the majority of cultured huSGs are of a ductal phenotype and thus not fluid/saliva secretory cells. Some reports indicated that mesenchymal stem cells (MSCs) possessed the potential to differentiate into epithelial cells. To test this hypothesis with huSGs, a coculture system containing 2 chambers separated by a polyester membrane was used to study the capacity of human MSCs to adopt an epithelial phenotype when cocultured with human salivary gland biopsies. Results were that 20%-40% of cocultured MSCs expressed tight junction proteins [claudin-1 (CLDN-1), -2, -3, and -4; occludin; junctional adhesion molecule-A; and zonula occludens-1] as well as other epithelial markers [aquaporin-5, α-amylase (α-AMY), and E-cadherin], and generated a higher transepithelial electrical resistance. Electron microscopy demonstrated that these MSCs had comparable cellular structures to huSGs, such as tight junction structures and numerous secretory granules. Quantitative real time (RT)-polymerase chain reaction revealed an upregulation of several salivary genes (aquaporin-5, AMY, and CLDN-2). Moreover, the amounts of α-AMY detected in cocultured MSCs were comparable to those detected in huSGs control cultures. These data suggest that cocultured MSCs can demonstrate a temporary change into a salivary gland acinar phenotype.  相似文献   

5.
We investigated the mRNA expression and immunohistochemical localization of Cl? channels, transmembrane member 16A (TMEM16A or anoctamin 1), and cystic fibrosis transmembrane conductance regulator (CFTR) in rat major salivary glands and exocrine pancreas. RT-PCR detected mRNA expression of TMEM16A and CFTR in the extracts of the parotid gland (PG), submandibular gland (SMG), sublingual gland (SLG), and pancreas. Immunoreactivity for TMEM16A was localized in the apical membrane of serous acinar and intercalated ductal cells in the PG and SMG as well as mucous acinar cells in the SLG; however, it was not detected in striated ductal cells of these tissues. Although striated ductal cells in the PG, SMG and SLG, and granular ductal cells in the SMG, were immunoreactive for CFTR in the luminal side, serous, mucous acinar, and intercalated ductal cells were not immunoreactive for CFTR in any of the major salivary glands. In the exocrine pancreas, immunoreactivity for TMEM16A was localized in the apical membrane of acinar cells, while immunoreactivity for CFTR was localized in the luminal side of intercalated ductal cells. These results suggest that different localization of TMEM16A and CFTR immunoreactivities reflects the respective functions of acinar and ductal cells in major salivary glands and exocrine pancreas.  相似文献   

6.
Aquaporin-5 (AQP5), an isoform of membrane water channel aquaporins, is expressed in the salivary and lacrimal glands. We surveyed the expression and immunohistochemical localization of AQP5 in the rat digestive system. RT-PCR analysis revealed that AQP5 is expressed in the submandibular gland, tongue, gastric corpus, pyloric region, duodenum, and liver. Immunofluorescence microscopy using AQP5-specific antibodies showed that AQP5 protein is present in the minor salivary glands of the tongue, the pyloric glands, and duodenal glands. To distinguish apical and basolateral domains of the plasma membrane of epithelial cells, double-immunofluorescence staining for AQP5 and tight junction protein occludin was performed. In the minor salivary gland, AQP5 was present in both the serous and mixed secretory end portions. AQP5 was found in the apical membrane of the secretory cells including intercellular secretory canaliculi demarcated with occludin. At higher magnifications, omega-shaped indentations of AQP5 labeling were seen along the apical membrane, suggesting a dynamic process for the apical membrane in exocytosis. Only weak labeling for AQP5 was detected in the basolateral domain. In the stomach, AQP5 was detected in the apical membrane of the pyloric gland secretory cells. In the duodenum, AQP5 was restricted to duodenal glands, where it was localized to the apical membrane. AQP5 was not detected in the intestinal glands or cells in the villi. These observations show that AQP5 is localized mainly in the apical membrane, including intercellular secretory canaliculi of secretory cells in the minor salivary glands, pyloric glands, and duodenal glands. AQP5 appears to play an important role in water transfer in these glands.  相似文献   

7.
Mammalian submandibular gland (SMG) development leads to the establishment of highly organized secretory acinar and nonsecretory ductal epithelial cells. The ability of maturing salivary epithelial cells to attain their differentiated state has been shown to depend, in part, on interactions between extracellular matrix (ECM) proteins and their integrin receptors. In a search for key regulators of salivary cell lineage, we have studied alpha3beta1 integrin, a receptor for the basement membrane protein laminin, by characterizing embryonic day 18 (E18) SMGs isolated from mice carrying a targeted mutation in the alpha3 integrin gene. Transmission electron microscopy studies showed that the mutant SMGs exhibited an aberrant differentiation phenotype with defects in the apical-basal polarity axis and in the basement membrane. Based on immunohistochemistry and Western blot analyses, the alpha3beta1-deficient SMGs had altered expression and/or localization of several ECM and adhesive molecules, including laminin beta1, fibronectin, alpha5 integrin, and E-cadherin. These changes correlated with alterations in the activation state of Ras-extracellular signal-regulated kinase (ERK), as well as the expression and/or localization of Cdc42 and RhoA, two Rho GTPases that regulate the organization of the actin cytoskeleton. We conclude that alpha3beta1 is required for normal salivary cell differentiation and that its absence affects multiple components of adhesive complexes and their associated signalling pathways.  相似文献   

8.
Organic/inorganic hybrid nanofiber systems have generated great interest in the area of tissue engineering and drug delivery. In this study, halloysite nanotube (HNT)-doped poly(lactic-co-glycolic acid) (PLGA) composite nanofibers were fabricated via electrospinning and the influence of the incorporation of HNTs within PLGA nanofibers on their in vitro biocompatibility was investigated. The morphology, mechanical and thermal properties of the composite nanofibers were characterized by scanning electron microscopy (SEM), tensile test, differential scanning calorimetry and thermogravimetric analysis. The adhesion and proliferation of mouse fibroblast cells cultured on both PLGA and HNT-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay of cell viability and SEM observation of cell morphology. We show that the morphology of the PLGA nanofibers does not appreciably change with the incorporation of HNTs, except that the mean diameter of the fibers increased with the increase of HNT incorporation in the composite. More importantly, the mechanical properties of the nanofibers were greatly improved. Similar to electrospun PLGA nanofibers, HNT-doped PLGA nanofibers were able to promote cell attachment and proliferation, suggesting that the incorporation of HNTs within PLGA nanofibers does not compromise the biocompatibility of the PLGA nanofibers. In addition, we show that HNT-doped PLGA scaffolds allow more protein adsorption than those without HNTs, which may provide sufficient nutrition for cell growth and proliferation. The developed electrospun HNT-doped composite fibrous scaffold may find applications in tissue engineering and pharmaceutical sciences.  相似文献   

9.
Tight junctions (TJs) are essential features of endothelial barrier membranes and of fluid-secreting epithelial cells, such as in the salivary glands. Novel integral membrane proteins have been identified as components of TJs, namely claudins and occludin. The aim of the present study was to determine the distribution of occludin and claudins in the large salivary glands of the rat. The parotid, submandibular and sublingual salivary glands were harvested from adult Sprague-Dawley rats and cryostat sections were stained using immunoperoxidase and immunofluorescence methods. Claudin-1 was expressed in endothelial cells of microvessels and in short selected segments of the duct system. Claudin-3 was expressed principally in the acinar cells and intercalated ducts, while claudin-4 was principally expressed by the striated and interlobular ducts. Claudin-5 was specific to endothelial cells of microvessels. Occludin was ubiquitously detected in the duct system. Double labelling and confocal microscopy showed some co-localization of claudin-3 with claudin-4, and minimal co-localization of occludin with claudin-4, in the striated ducts. Claudin 2 was not detected in any of the salivary glands. The results indicate specificity of the chemical composition of tight junctions in the rat salivary glands, and may reflect different physiological roles for TJs in the glandular and duct epithelial cells, and in endothelial cells of salivary gland microvessels.  相似文献   

10.
Organic/inorganic hybrid nanofiber systems have generated great interest in the area of tissue engineering and drug delivery. In this study, halloysite nanotube (HNT)-doped poly(lactic-co-glycolic acid) (PLGA) composite nanofibers were fabricated via electrospinning and the influence of the incorporation of HNTs within PLGA nanofibers on their in vitro biocompatibility was investigated. The morphology, mechanical and thermal properties of the composite nanofibers were characterized by scanning electron microscopy (SEM), tensile test, differential scanning calorimetry and thermogravimetric analysis. The adhesion and proliferation of mouse fibroblast cells cultured on both PLGA and HNT-doped PLGA fibrous scaffolds were compared through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay of cell viability and SEM observation of cell morphology. We show that the morphology of the PLGA nanofibers does not appreciably change with the incorporation of HNTs, except that the mean diameter of the fibers increased with the increase of HNT incorporation in the composite. More importantly, the mechanical properties of the nanofibers were greatly improved. Similar to electrospun PLGA nanofibers, HNT-doped PLGA nanofibers were able to promote cell attachment and proliferation, suggesting that the incorporation of HNTs within PLGA nanofibers does not compromise the biocompatibility of the PLGA nanofibers. In addition, we show that HNT-doped PLGA scaffolds allow more protein adsorption than those without HNTs, which may provide sufficient nutrition for cell growth and proliferation. The developed electrospun HNT-doped composite fibrous scaffold may find applications in tissue engineering and pharmaceutical sciences.  相似文献   

11.
Sj?gren's syndrome (SS), an idiopathic, autoimmune exocrinopathy, is partly characterized by diminished salivary flow, acinar cell atrophy, and increased expression of several cytokines. Several in vivo characteristics of the sialoadenitis are also evident in a human salivary gland ductal epithelial cell line (HSG) treated with cytokines. HSG cells differentiate to the acinar phenotype when cultured on Matrigel (Becton Dickinson, Bedford, MA), a basement membrane extract. To elucidate mechanisms of salivary gland pathology, the effects of interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) on cell cycle progression and integrin expression were evaluated in HSG acinarlike cells. Flow cytometry experiments showed that cytokine treatment for 2 days arrested cells in G(1) phase of the cell cycle, and this preceded significant morphologic changes and decreased viability. Whereas only modest cytokine-mediated increases in protein expression for the alpha 3 and beta 1 integrin subunits were seen by immunoprecipitation, a form of alpha 3 integrin displaying enhanced electrophoretic mobility was evident after 6 days of cytokine treatment. To our knowledge, this is the first report demonstrating an IFN-mediated alteration in the electrophoretic mobility of integrin subunits. From this study, it was evident that the combination of IFN-gamma and TNF-alpha resulted in a block in G(1) phase for acinar cells before accumulation of the alpha 3 integrin variant or significant degenerative cellular changes. Information from the present and previous studies suggests that cytokines may alter the pattern of integrin expression and block cell cycle progression in salivary gland cells grown in three-dimensional acinarlike clusters. These experiments may provide a new cell culture model to study the effects of cytokines in normal and diseased salivary glands, including SS.  相似文献   

12.
Apoptotic cell death in acinar and ductal epithelial cells is thought to play an important role in the development of salivary gland dysfunction in patients with Sjogren's syndrome (SS). We examined the expression of anti-apoptotic molecules in salivary glands from patients with SS. The labial salivary glands from six human T-cell leukemia virus (HTLV)-I-seronegative and eleven HTLV-I-seropositive SS patients were analyzed by immunohistochemistry. In vitro experiments were performed with a human salivary gland cell line (HSG cells). Immunohistologic analyses revealed that Bcl-2 and Bcl-x were preferentially expressed in salivary infiltrating mononuclear cells more than acinar and ductal epithelial cells. In contrast, strong X chromosome-linked inhibitor of apoptosis protein (XIAP) expression was evident in both acinar and ductal epithelial cells. The pattern of expression of these anti-apoptotic molecules was similar in both HTLV-I-seropositive and HTLV-I -seronegative SS patients. Western blot analysis confirmed expression of XIAP in cultured HSG cells. The expression of XIAP in HSG cells was increased by IL-1beta, TGF-beta1, or IL-10. However, XIAP expression was down-regulated by TNF-alpha, which induced apoptotic cell death of HSG cells with an increase in caspase-3 activity. These effects of TNF-alpha in HSG cells were antagonized by IL-1beta, TGF-beta1, or IL-10. Our results suggest that XIAP is important in regulating apoptotic cell death of acinar and ductal epithelial cells in patients with SS.  相似文献   

13.
We evaluated possible modes of epithelial cell destruction and restoration in minor salivary gland biopsies from patients with SS. Minor salivary gland biopsies from 10 primary Sjögren's syndrome (pSS) patients and eight control individuals were evaluated by immunohistochemical staining for the expression of apoptosis-related molecules, substances released by activated cytotoxic T cells, as well as proteins involved in epithelial cell repair. The results were analysed by computer screen analysis and they were expressed as average percentages. Apoptosis-promoting molecules, Fas antigen and Fas ligand were observed in ductal and acinar epithelial cells as well as in infiltrating mononuclear cells of minor salivary glands from SS patients in comparison with control biopsies. Bax protein, which acts as a death-promoter message, was expressed in the ductal and acinar epithelial cells and in mononuclear infiltrating cells of SS patients compared with control individuals, while Bcl-2, an inhibitor of apoptosis, was primarily found in the lymphocytic infiltrates. In situ DNA fragmentation assay (TUNEL) revealed that epithelial cells were apoptotic in patients with SS compared with control subjects. Immunohistochemical staining for perforin and granzyme B, released from granules of activated cytotoxic lymphocytes, revealed their presence in lymphocytic infiltrates of patients with SS compared with control biopsies. pS2, a member of the trefoil protein family which functions as promoter of epithelial cell repair and cell proliferation, was expressed in epithelial cells in biopsies from SS patients. These studies suggest that the functional epithelium of minor salivary glands in patients with SS appears to be influenced by both intrinsic and extrinsic mechanisms of destruction, while a defensive mechanism of epithelial restoration seems to be active.  相似文献   

14.
Currently, there is no effective treatment available to patients with irreversible loss of functional salivary acini caused by Sjogren's syndrome or after radiotherapy for head and neck cancer. A tissue-engineered artificial salivary gland would help these patients. The graft cells for this device must establish tight junctions in addition to being of fluid-secretory nature. This study analyzed a graft source from human salivary glands (huSG) cultured on Matrigel. Cells were obtained from parotid and submandibular glands, expanded in vitro, and then plated on either Matrigel-coated (2 mg/mL) or uncoated culture dish. Immunohistochemistry, transmission electron microscopy, quantitative real-time-polymerase chain reaction, Western blot, and transepithelial electrical resistance were employed. On Matrigel, huSG cells adopted an acinar phenotype by forming three-dimensional acinar-like units (within 24 h of plating) as well as a monolayer of cells. On uncoated surfaces (plastic), huSG cells only formed monolayers of ductal cells. Both types of culture conditions allowed huSG cells to express tight junction proteins (claudin-1, -2, -3, -4; occludin; JAM-A; and ZO-1) and adequate transepithelial electrical resistance. Importantly, 99% of huSG cells on Matrigel expressed α-amylase and the water channel protein Aquaporin-5, as compared to <5% of huSG cells on plastic. Transmission electron microscopy confirmed an acinar phenotype with many secretory granules. Matrigel increased the secretion of α-amylase two to five folds into the media, downregulated certain salivary genes, and regulated the translation of acinar proteins. This three-dimensional in vitro serum-free cell culture method allows the organization and differentiation of huSG cells into salivary cells with an acinar phenotype.  相似文献   

15.
Monoclonal antibody to epithelial membrane antigen (EMA) from human milk fat globule membrane was used with the immunoperoxidase method to examine the distribution of EMA in normal human salivary glands and in their obstructive lesions. EMA staining in the normal salivary gland was limited to luminal and lateral borders of acinar cells. The antigen was also present in high concentration on the luminal side of ductal cells. In obstructive lesions or sialoadenitis, lateral border and luminal positive staining in atrophic acinar cells was reduced or absent, and the EMA staining in duct-like structures was also markedly decreased on even absent in chronic stage. The degree of reduction in EMA staining was dependent on the extent of degeneration. Expression of immunohistochemically detectable EMA in paraffin sections suggests the antigen to be useful as a new marker of salivary gland function, of either acinar compartments or ductal segments.  相似文献   

16.
Tight junction (TJ) proteins play a dynamic role in paracellular fluid transport in salivary gland epithelia. Most TJ studies are carried out in mice and rats. However, the morphology of rodent salivary glands differs from that of human glands. This study aimed to compare the histological features and the expression pattern of TJ proteins in porcine salivary glands with those of human and mouse. The results showed that porcine parotid glands were pure serous glands. Submandibular glands (SMGs) were serous acinar cell‐predominated mixed glands, whereas sublingual glands were mucous acinar cell‐predominated. Human SMGs were mixed glands containing fewer mucous cells than porcine SMGs, whereas the acinar cells of murine SMGs are seromucous. The histological features of the duct system in the porcine and human SMGs were similar and included intercalated, striated and excretory ducts, but the murine SMG contained a specific structure, the granular convoluted tubule. TJ proteins, including claudin‐1 to claudin‐12, occludin and zonula occludin‐1 (ZO‐1), were detected in the porcine major salivary glands and human SMGs by RT‐PCR; however, claudin‐6, claudin‐9 and claudin‐11 were not detected in the murine SMG. As shown by immunofluorescence, claudin‐1, claudin‐3, claudin‐4, occludin and ZO‐1 were distributed in both acinar and ductal cells in the porcine and human SMGs, whereas claudin‐1 and claudin‐3 were mainly present in acinar cells, and claudin‐4 was mainly distributed in ductal cells in the murine SMG. In addition, 3D images showed that the TJ proteins arranged in a honeycomb‐like structure on the luminal surface of the ducts, whereas their arrangements in acini were irregular in porcine SMGs. In summary, the expression pattern of TJ proteins in salivary glands is similar between human and miniature pig, which may be a candidate animal for studies on salivary gland TJ function.  相似文献   

17.
The tight junctions of the glandular epithelium are crucial for the maintenance of cell polarity, separating the plasma membrane into apical and basolateral domains. Thus abnormalities of the tight junctions may result in the structural disturbances of glandular epithelial neoplasia. In this study we introduced an anti-occludin monoclonal antibody for semiquantitative assay of the occludin expression in tissue sections of human normal and neoplastic endometrial epithelia using the Adobe Photoshop and NIH Image programs. Normal endometrial glands and samples of endometrial hyperplasia and endometrioid carcinoma grade 1 fully expressed occludin at the apical cell border. In endometrioid carcinomas grades 2 and 3, however, occludin disappeared in solid areas of the carcinomatous tissues. Occludin was also found at the apical borders of the cancer cells that formed glandular structures. Occludin expression decreased progressively in parallel with the increase in carcinoma grade, and the decreased occludin expression correlated with myometrial invasion and lymph node metastasis. These results suggest that the loss of tight junctions has a close relationship with structural atypia in the progression of human endometrial carcinomas and their malignant potential.  相似文献   

18.
Immunoreactivity of prostate-specific antigen (PSA), a kallikrein-like enzyme present in the seminal plasma, was demonstrated by indirect immunoperoxidase staining using a PSA antiserum in the apical cytoplasm along the luminal border of small-sized duct epithelial cells of the major salivary (parotid and submandibular) gland of both sexes (56/56, 100%). No PSA-like immunoreactivity was seen in large-sized duct epithelial cells and acinar cells. Minor salivary gland ducts were negative. When inflammatory and atrophic changes were observed, ductal expression of PSA-like immunoreactivity was decreased (12/37, 32%) and the site of intracellular localization often became diffusely cytoplasmic. The immunoreactivity was absorbed by human seminal plasma. Immunoreactivities of prostatic acid phosphatase and sex hormone receptors were undetectable in the salivary gland. Twenty-nine (34%) of 86 salivary gland tumors with ductal differentiation were immunoreactive for PSA mainly in the cytoplasm. A PSA monoclonal antibody ER-PR8 detected immunoreactivity in the prostate but not in the salivary glands or their tumors. Prostate-specific antigen-like immunoreactivity in small-sized (intercalated) duct epithelial cells of the major salivary gland and their tumors may be due to cross-reactivity of the antiserum with kallikrein-like substances.  相似文献   

19.
There are currently no treatments for salivary gland diseases, making it vital to understand signaling mechanisms operating in acinar and ductal cells so as to develop regenerative therapies. To date, little work has focused on elucidating the signaling cascades controlling the differentiation of these cell types in adult mammals. To analyze the function of the Hippo-TAZ/YAP1 pathway in adult mouse salivary glands, we generated adMOB1DKO mice in which both MOB1A and MOB1B were TAM-inducibly deleted when the animals were adults. Three weeks after TAM treatment, adMOB1DKO mice exhibited smaller submandibular glands (SMGs) than controls with a decreased number of acinar cells and an increased number of immature dysplastic ductal cells. The mutants suffered from reduced saliva production accompanied by mild inflammatory cell infiltration and fibrosis in SMGs, similar to the Sjogren's syndrome. MOB1-deficient acinar cells showed normal proliferation and apoptosis but decreased differentiation, leading to an increase in acinar/ductal bilineage progenitor cells. These changes were TAZ-dependent but YAP1-independent. Biochemically, MOB1-deficient salivary epithelial cells showed activation of the TAZ/YAP1 and β-catenin in ductal cells, but reduced SOX2 and SOX10 expression in acinar cells. Thus, Hippo-TAZ signaling is critical for proper ductal and acinar cell differentiation and function i n adult mice.  相似文献   

20.
Hedgehog (Hh) signaling is a regulator of salivary gland morphogenesis, but its role in postnatal glands has only recently begun to be addressed. To examine the effects of deregulated Hh signaling in the salivary gland, we expressed the Hh effector protein GLI1, in salivary epithelial cells using both cytokeratin 5 and mouse mammary tumor virus (MMTV) transgenic systems. Ectopic pathway activation resulted in restrained acinar differentiation, formation of cystic lesions, and prominent appearance of ductal structures. Moreover, induced expression of GLI1 aids the formation of hyperplastic lesions, which closely resemble GLI1-induced changes in murine skin and mammary glands, suggesting that GLI1 targets cells with similar characteristics in different tissues. Furthermore, GLI1-expressing salivary epithelial cells are actively dividing, and GLI1-induced lesions are proliferative, an incident accompanied by enhanced expression of the Hh target genes, cyclin D1, and Snail. GLI1-induced salivary lesions regress after transgene withdrawal and become histologically normalized. Taken together, our data reveal the ability of GLI1 to modulate salivary acinar differentiation and to promote proliferation of ductal epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号