首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
1. An account of the differences in coumarin metabolism between several mammalian species, including man, is reported. 2. The metabolism of coumarin via 7-hydroxylation in the human (CYP2A6) and mouse (CYP2A5) enzymes is explained in terms of molecular modelling of the active site interactions, whereas the rat orthologue (CYP2A1) exhibits 3,4-epoxidation of coumarin, which is also consistent with the modelled interaction between enzyme and substrate. 3. In addition, quantitative structure-activity relationships (QSARs) for coumarin 7-hydroxylation in wild-type and mutant CYP2A5 show the importance of amino acid residue properties for substrate binding, whereas QSARs for CYP2A6 substrates indicate the importance of hydrogen bonding and lipophilicity for favourable interactions with the enzyme.  相似文献   

2.
3.
1. We investigated the total metabolism of coumarin by baculovirus (BV)-expressed CYP2A13 and compared it with metabolism by BV-expressed CYP2A6. The major coumarin metabolite formed by CYP2A13 was 7-hydroxycoumarin, which accounted for 43% of the total metabolism. The product of 3,4-epoxidation, o-hydroxyphenylacetaldehyde (o-HPA), accounted for 30% of the total metabolites. 2. The K(m) and V(max) for CYP2A13-mediated coumarin 7-hydroxylation were 0.48+/-0.07 micro m and 0.15+/-0.006 nmol min(-1) nmol(-1) CYP, respectively. The V(max) of coumarin 7-hydroxylation by CYP2A13 was about 16-fold lower than that of CYP2A6, whereas the K(m) was 10-fold lower. 3. In the mouse, there were two orthologues for CYP2A6: CYP2A4 and CYP2A5, which differed by only 11 amino acids. However, CYP2A5 is an efficient coumarin 7-hydroxylase, where as CYP2A4 is not. We report here that BV-expressed CYP2A4 metabolizes coumarin by 3,4-epoxidation. Two products of the 3,4-epoxidation pathway, o-HPA and o-hydroxyphenylacetic acid (o-HPAA), were detected by radioflow HPLC. 4. The K(m) and V(max) for the coumarin 3,4-epoxidation by CYP2A4 were 8.7+/-3.6 micro m and 0.20+/-0.04 nmol min(-1) nmol(-1) CYP, respectively. Coumarin 7-hydroxylation by CYP2A5 was more than 200 times more efficient than 3,4 epoxidation by CYP2A4.  相似文献   

4.
The cynomolgus monkey is an animal species widely used to study drug metabolism because of its evolutionary closeness to humans. However, drug-metabolizing enzyme activities have not been compared in various parts of the liver and small intestine in cynomolgus monkeys. In this study, therefore, drug-metabolizing enzyme activities were analyzed in the liver (the five lobes) and small intestine (six sections from the duodenum to the distal ileum). 7-Ethoxyresorufin O-deethylation, coumarin 7-hydroxylation, paclitaxel 6α-hydroxylation, diclofenac 4'-hydroxylation, tolbutamide methylhydroxylation, S-mephenytoin 4'-hydroxylation, bufuralol 1'-hydroxylation, chlorzoxazone 6-hydroxylation, midazolam 1'-hydroxylation, and testosterone 6β-, 16α-, 16β-, and 2α-hydroxylation were used as the probe reactions for this investigation. In liver, all probe reactions were detected and enzyme activity levels were similar in all lobes, whereas, in the small intestine, all enzyme activities were detected (except for coumarin 7-hydroxylase and testosterone 16α-hydroxylase activity), but from jejunum to ileum there was a decrease in the level of enzyme activity. This includes midazolam 1'-hydroxylation and testosterone 6β-hydroxylation, which are catalyzed by cynomolgus monkey cytochrome P450 (CYP) 3A4/5, orthologs of human CYP3A4/5, which are important drug-metabolizing enzymes. The data presented in this study are expected to facilitate the use of cynomolgus monkeys in drug metabolism studies.  相似文献   

5.
Functional characterization of CYP2A13 polymorphisms   总被引:2,自引:0,他引:2  
CYP2A13 is an efficient catalyst of metabolic activation of the human carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN). This study investigated the functional consequences of CYP2A13 polymorphisms that result in single amino acid substitutions. Five CYP2A13 variants, namely CYP2A13*2 (R257C), CYP2A13*5 (F453Y), CYP2A13*6 (R494C), CYP2A13*8 (D158E), and CYP2A13*9 (V323L), were expressed and evaluated for coumarin binding affinity, coumarin 7-hydroxylation, and -hydroxylation of (S)-NNN and NNK. In addition, the 133_134 Thr deletion variant, coded for by CYP2A13*3, was expressed but was not stable to the protein purification procedure. A 30-42% decrease in coumarin 7-hydroxylation catalytic efficiency was determined for R257C and D158E. No effect on coumarin binding or (S)-NNN metabolism was observed. Three variants, R257C, D158E, and V323L, had two- to threefold decreased catalytic efficiency for NNK -hydroxylation. CYP2A13 polymorphisms resulted in modest changes in coumarin 7-hydroxylation and NNK -hydroxylation activities in vitro. Although these changes are not likely to impact in vivo metabolism, these data should aid in the interpretation and design of future epidemiology studies.  相似文献   

6.
Pharmaceutical industry investigators routinely evaluate the potential for a new drug to modify cytochrome p450 (p450) activities by determining the effect of the drug on in vitro probe reactions that represent activity of specific p450 enzymes. The in vitro findings obtained with one probe substrate are usually extrapolated to the compound's potential to affect all substrates of the same enzyme. Due to this practice, it is important to use the right probe substrate and to conduct the experiment under optimal conditions. Surveys conducted by reviewers in CDER indicated that the most common in vitro probe reactions used by industry investigators include the following: phenacetin O-deethylation for CYP1A2, coumarin 7-hydroxylation for CYP2A6, 7-ethoxy-4-trifluoromethyl coumarin O-dealkylation for CYP2B6, tolbutamide 4'-hydroxylation for CYP2C9, S-mephenytoin 4-hydroxylation for CYP2C19, bufuralol 1'-hydroxylation for CYP2D6, chlorzoxazone 6-hydroxylation for CYP2E1, and testosterone 6 beta-hydroxylation for CYP3A4. We reviewed the validation information in the literature on these reactions and other frequently used reactions, including caffeine N3-demethylation for CYP1A2, S-mephenytoin N-demethylation for CYP2B6, S-warfarin 7'-hydroxylation for CYP2C9, dextromethorphan O-demethylation for CYP2D6, and midazolam 1'-hydroxylation for CYP3A4. The available information indicates that we need to continue the search for better probe substrates for some enzymes. For CYP3A4-based drug interactions it may be necessary to evaluate two or more probe substrates. In many cases, the probe reaction represents a particular enzyme activity only under specific experimental conditions. Investigators must consider appropriateness of probe substrates and experimental conditions when conducting in vitro drug interaction studies and when extrapolating the results to in vivo situations.  相似文献   

7.
1. The structural requirements for a compound to be a potent inhibitor for mouse CYP2A5 and human CYP2A6 enzymes catalysing coumarin 7-hydroxylase activity have been studied. 2. The IC50 of 28 compounds for the pyrazole-treated male DBA/2 mouse and human liver microsomal coumarin 7-hydroxylation were determined at 10 microm coumarin concentration 15 times over Km of coumarin. 3. The three most potent inhibitors for CYP2A5 were gamma-nonanoic lactone, gamma-decanolactone and gamma-phenyl-gamma-butyrolactone with an IC50 = 1.9+/-0.4, 2.1+/-0.2 and 2.4+/-0.3 microM and for CYP2A67-methylcoumarin, butylcyclohexane and indan with an IC50. = 30+/-3.2, 43+/-9 and 50+/-11 microM. 4. Among the 28 compounds studied, only 2-benzoxazolinone, 2-indanone and gamma-valerolactone showed similar inhibitory activity in both species. Indan had a lower IC50 for human than for mouse coumarin 7-hydroxylation, whereas the IC50 of 24 other compounds was higher for human than for mouse coumarin 7-hydroxylation. 5. The largest difference in IC50 between mouse and human activity was observed with 5-substituted phenyl, pentyl, hexyl, heptyl or octyl gamma-lactones or 6-substituted delta-lactones. IC50 of gamma-undecanolactone and gamma-decanolactone was 500 times lower for mouse than human coumarin 7-hydroxylation. 6. The difference in the IC50 between human and mouse coumarin 7-hydroxylation decreased substantially with the corresponding compounds without the lactone ring. 7. It is concluded that certain 5- or 6-position substituted gamma- and delta-lactones are potent inhibitors for mouse CYP2A5 but not for the orthologous human CYP2A6 and that the active site of CYP2A6 could be smaller than the active site of CYP2A5.  相似文献   

8.
Silibinin, the main constituent of silymarin, a flavonoid drug from silybum marianum used in liver disease, was tested for inhibition of human cytochrome P-450 enzymes. Metabolic activities were determined in liver microsomes from two donors using selective substrates. With each substrate, incubations were carried out with and without silibinin (concentrations 3.7-300 microM) at 37 degrees in 0.1 M KH2PO4 buffer containing up to 3% DMSO. Metabolite concentrations were determined by HPLC or direct spectroscopy. First, silibinin IC50 values were determined for each substrate at respective K(M) concentrations. Silibinin had little effect (IC50>200 microM) on the metabolism of erythromycin (CYP3A4), chlorzoxazone (CYP2E1), S(+)-mephenytoin (CYP2C19), caffeine (CYP1A2) or coumarin (CYP2A6). A moderate effect was observed for high affinity dextromethorphan metabolism (CYP2D6) in one of the microsomes samples tested only (IC50=173 microM). Clear inhibition was found for denitronifedipine oxidation (CYP3A4; IC50=29 microM and 46 microM) and S(-)-warfarin 7-hydroxylation (CYP2C9; IC50=43 microM and 45 microM). When additional substrate concentrations were tested to assess enzyme kinetics, silibinin was a potent competitive inhibitor of dextromethorphan metabolism at the low affinity site, which is not CYP2D6 (Ki.c=2.3 microM and 2.4 microM). Inhibition was competitive for S(-)-warfarin 7-hydroxylation (Ki,c=18 microM and 19 microM) and mainly non-competitive for denitronifedipine oxidation (Ki,n=9 microM and 12 microM). With therapeutic silibinin peak plasma concentrations of 0.6 microM and biliary concentrations up to 200 microM, metabolic interactions with xenobiotics metabolised by CYP3A4 or CYP2C9 cannot be excluded.  相似文献   

9.
1. The structural requirements for a compound to be a potent inhibitor for mouse CYP2A5 and human CYP2A6 enzymes catalysing coumarin 7-hydroxylase activity have been studied. 2. The IC50 of 28 compounds for the pyrazole-treated male DBA/2 mouse and human liver microsomal coumarin 7-hydroxylation were determined at 10 muM coumarin concentration 15 times over Km of coumarin. 3. The three most potent inhibitors for CYP2A5 were gamma-nonanoic lactone, gamma-decanolactone and gamma-phenyl-gamma-butyrolactone with an IC50=1.9 +/- 0.4, 2.1 +/- 0.2 and 2.4 +/- 0.3 muM and for CYP2A6 7-methylcoumarin, butylcyclohexane and indan with an IC50=30 +/- 3.2, 43 +/- 9 and 50 +/- 11 muM. 4. Among the 28 compounds studied, only 2-benzoxazolinone, 2-indanone and gamma- valerolactone showed similar inhibitory activity in both species. Indan had a lower IC50 for human than for mouse coumarin 7-hydroxylation, whereas the IC50 of 24 other compounds was higher for human than for mouse coumarin 7-hydroxylation. 5. The largest difference in IC50 between mouse and human activity was observed with 5-substituted phenyl, pentyl, hexyl, heptyl or octyl gamma-lactones or 6-substituted delta-lactones. IC50 of gamma-undecanolactone and gamma-decanolactone was 500 times lower for mouse than human coumarin 7-hydroxylation. 6. The difference in the IC50 between human and mouse coumarin 7-hydroxylation decreased substantially with the corresponding compounds without the lactone ring. 7. It is concluded that certain 5- or 6-position substituted gamma- and delta -lactones are potent inhibitors for mouse CYP2A5 but not for the orthologous human CYP2A6 and that the active site of CYP2A6 could be smaller than the active site of CYP2A5.  相似文献   

10.
Cytochrome P450 2A6 (CYP2A6) catalyzes important metabolic reactions of many xenobiotic compounds, including coumarin, nicotine, cotinine, and clinical drugs. Genetic polymorphisms of CYP2A6 can influence its metabolic activities. This study analyzed the functional activities of six CYP2A6 allelic variants (CYP2A6*5, *7, *8, *18, *19, and *35) containing nonsynonymous single-nucleotide polymorphisms. Recombinant variant enzymes of CYP2A6*7, *8, *18, *19, and *35 were successfully expressed in Escherichia coli and purified. However, a P450 holoenzyme spectrum was not detected for the CYP2A6*5 allelic variant (G479V). Structural analysis shows that the G479V mutation may alter the interaction between the A helix and the F-G helices. Enzyme kinetic analyses indicated that the effects of mutations in CYP2A6 allelic variants on drug metabolism are dependent on the substrates. In the case of coumarin 7-hydroxylation, CYP2A6*8 and *35 displayed increased K(m) values whereas CYP2A6*18 and *19 showed decreased k(cat) values, which resulted in lower catalytic efficiencies (k(cat)/K(m)). In the case of nicotine 5-oxidation, the CYP2A6*19 variant exhibited an increased K(m) value, whereas CYP2A6*18 and *35 showed much greater decreases in k(cat) values. These results suggest that individuals carrying these allelic variants are likely to have different metabolisms for different CYP2A6 substrates. Functional characterization of these allelic variants of CYP2A6 can help determine the importance of CYP2A6 polymorphisms in the metabolism of many clinical drugs.  相似文献   

11.
12.
(-)-Verbenone, a monoterpene bicyclic ketone, is a component of the essential oil from rosemary species such as Rosmarinus officinalis L., Verbena triphylla, and Eucalyptus globulus and is used for an herb tea, a spice, and a perfume. In this study, (-)-verbenone was found to be converted to 10-hydroxyverbenone by rat and human liver microsomal cytochrome p450 (p450) enzymes. The product formation was determined by high-performance liquid chromatography with UV detection at 251 nm. There was a good correlation between activities of coumarin 7-hydroxylation and (-)-verbenone 10-hydroxylation catalyzed by liver microsomes of 16 human samples, indicating that CYP2A6 is a principal enzyme in (-)-verbenone 10-hydroxylation in humans. Human recombinant CYP2A6 and CYP2B6 catalyzed (-)verbenone 10-hydroxylation at Vmax values of 15 and 21 nmol/min/nmol p450 with apparent Km values of 16 and 91 microM, respectively. In contrast, rat CYP2A1 and 2A2 did not catalyze (-)-verbenone 10-hydroxylation at all, suggesting that there were species-related differences in the catalytic properties of human and rat CYP2A enzymes in the metabolism of (-)-verbenone. In the rat, recombinant CYP2C11, CYP2B1, and CYP3A2 catalyzed (-)-verbenone 10-hydroxylation with Vmax and Km ratios (ml/min/nmol p450) of 0.73, 0.20, and 0.03, respectively. Male-specific CYP2C11 was a major enzyme in (-)-verbenone 10-hydroxylation by untreated rat livers, and CYP2B1 catalyzed this reaction in liver microsomes of phenobarbital-treated rats. Rat CYP2C12, a female-specific enzyme, did not catalyze (-)verbenone 10-hydroxylation. These results suggest that human CYP2A6 and rat CYP2C11 are the major catalysts in the metabolism of (-)-verbenone by liver microsomes and that there are species-related differences in human and rat CYP2A enzymes and sex-related differences in male and female rats in the metabolism of (-)-verbenone.  相似文献   

13.
Determination of coumarin metabolism in Turkish population   总被引:2,自引:0,他引:2  
Cytochrome P450 2A6 is an important human hepatic P450 which activates precarcinogens and oxidizes some drug constituents such as coumarin, halothane, and the major nicotine C-oxidase. Genetic polymorphism exists in the CYP2A6 gene. CYP2A6*1 (wild type) is responsible for the 7-hydroxylation of coumarin. The point mutation (T to A) in codon 160 leads to a single amino acid substitution (Leu to His) and the resulting protein, CYP2A*2 is unable to 7-hydroxylate coumarin. Gene conversion in exons 3, 6, and 8 between the CYP2A6 and the CYP2A7 genes creates another variant, CYP2A6*3. In this study, healthy male and female Turkish volunteers (n = 50) were administered 2 mg coumarin, and urine samples were analyzed for their content of the coumarin metabolite, 7-hydroxycoumarin (7OHC), by high-performance liquid chromatography (HPLC). Genetic polymorphism for CYP2A6 was detected by using two-step polymerase chain reaction (PCR) to identify CYP2A6*1, CYP2A6*2, and CYP2A6*3 in 13 of these subjects. The percentage of the dose excreted of total 7OHC in relation to CYP2A6 genotype and excretion of nicotine/cotinine was also evaluated to demonstrate the role of CYP2A6 in nicotine metabolism. The majority of Turkish subjects (68%) excreted less than 60% of the 2-mg dose as coumarin metabolite. The allelic frequencies were detected as 0.88 for CYP2A6*1 allele; 0.12 for CYP2A6*3 allele in 13 individuals. No heterozygous and homozygous individuals were identified for the CYP2A6*2 allelic variant. Phenotyping and genotyping for drug metabolizing enzymes are of great importance in studies correlating precarcinogen activation or drug metabolism to the CYP2A6 genotype in smoking behavior when populations are investigated.  相似文献   

14.
1. We have shown earlier that pilocarpine strongly inhibits mouse and human liver coumarin 7-hydroxylase activity of CYP 2A and pentoxyresorufin O-deethylase activity of CYP 2B in vitro. Since pilocarpine, like coumarin, contains a lactone structure we have studied in more detail its inhibitory potency on mouse and human liver coumarin 7-hydroxylation. 2. Pilocarpine was a competitive inhibitor of coumarin 7-hydroxylase in vitro both in mouse and human liver microsomes although it was not a substrate for CYP 2A5. Ki values were similar, 0.52 +/- 0.22 microM in mice and 1.21 +/- 0.51 microM in human liver microsomes. 3. Pilocarpine induced a type II difference spectrum in mouse, human and recombinant CYP 2A5 yeast cell microsomes, with Ka values of 3.7 +/- 1.6, 1.6 +/- 1.1 and 1.5 +/- 0.1 microM, respectively. 4. Increase in pH of the incubation medium from pH 6 to 7.5 increased the potency of inhibition of coumarin 7-hydroxylation by pilocarpine. 5. Superimposition of pilocarpine and coumarin in such a way that their carbonyls, ring oxygens and the H-7' of coumarin and N-3 of pilocarpine overlap yielded a common molecular volume of 82%. 6. The results indicate that pilocarpine is a competitive inhibitor and has a high affinity for mouse CYP 2A5 and human CYP 2A6. In addition the immunotype nitrogen of pilocarpine is coordinated towards the haem iron in these P450s.  相似文献   

15.
The aim was to characterize mouse gender and strain differences in the metabolism of commonly used human cytochrome (CYP) P450 probe substrates. Thirteen human CYP probe substrates (phenacetin, coumarin, 7-ethoxy-4-trifluoromethyl coumarin, amiodarone, paclitaxel, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, chlorzoxazone, p-nitrophenol, testosterone and lauric acid) were used in activity measurements. The metabolism of the probe substrates was compared in liver microsomes from male and female NMRI, CBA, C57bl/6, 129/SvJ and CD1 strains. The expression of proteins identified on Western blots with commonly available antibodies selective for specific human and rat CYP enzymes were compared in the different mouse strains. Males had higher metabolism than corresponding females for phenacetin O-deethylation (human marker for CYP1A2 activity), and a high correlation was found between phenacetin activity and immunoreactivity in Western blots produced with rat CYP1A2 antibodies. Protein detected by antibodies cross-reacting with human CYP2B6 and rat CYP2B1/2 antibodies was female specific except for the 129/SvJ strain, where it was absent in both genders. Females generally had a higher metabolism of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation (human markers for CYP2D activity). Bufuralol 1'-hydroxylation correlated with a female-dominant mouse CYP, which was detected with antibodies against rat CYP2D4. p-Nitrophenol 2-hydroxylation correlated better than chlorzoxazone 6-hydroxylation with the protein detected with antibodies against rat CYP2E1, indicating that p-nitrophenol is a more specific substrate for mouse CYP2E1.  相似文献   

16.
The effects of two kinds of oral cephalosporins, cefixime and cefdinir, on cytochrome P450 (CYP) activities in human hepatic microsomes were investigated. Both cefixime and cefdinir at 2 mM concentration neither inhibited nor stimulated CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, CYP3A4-mediated nifedipine oxidation, or CYP3A4-mediated testosterone 6beta-hydroxylation. The free fractions of cefixime and cefdinir in the incubation mixture, which were measured by ultracentrifugation, were 86.1-93.8% and 94.1-97.8%, respectively. These results suggest that both cefixime and cefdinir would not cause clinically significant interactions with other drugs, which are metabolized by CYPs, via the inhibition of metabolism.  相似文献   

17.
1. Using the recently published crystal structure of a bacterial P450, namely 102 (also termed P450bm3), as a template molecular models of mammalian 2A1, 2A4, 2A5 and 2A6 were constructed.

2. Substrate interaction studies demonstrated that in keeping with known catalytic activities the putative binding sites of mouse hepatic P4502A4 and 2A5 oriented testosterone for 15α-hydroxylation and coumarin for 7-hydroxylation respectively.

3. Substrate interaction studies with the putative binding site of human liver P4502A6 demonstrated that coumarin was oriented for 7-hydroxylation. However, in keeping with previous site-directed mutagenesis studies with P4502A4 and 2A5, changing a single phenylalanine residue to leucine in 2A6 gave rise to a mutant enzyme, which could bind testosterone as a substrate for 15α-hydroxylation rather than coumarin.

4. Substrate interaction studies with the putative binding site of rat hepatic P4502A1 suggested that this isoenzyme would hydroxylate coumarin at the 3- rather than at the 7-position.

5. The results of these molecular modelling studies demonstrate that apparently minor modifications to P4502A subfamily amino acid sequences can result in major alterations in enzyme specificity.

6. Molecular modelling is thus a useful technique that can aid in elucidating substrate specificities of P450 isoenzymes and species differences in xenobiotic metabolism. The technique can also be utilized to complement site-directed mutagenesis studies in order to identify critical structural features of P450s and other enzymes.  相似文献   

18.
Lymphedema is a chronic progressive and significantly disabling disease that affects over 150 million people worldwide. Coumarin is an effective pharmacological treatment, but is banned in some countries due to incidences of hepatotoxicity in rats and mice, and the rare finding of similar hepatotoxicity in humans. Cytochrome P450 (CYP)2A6 is the major enzyme involved in metabolizing coumarin to 7-hydroxycoumarin. A reduction in CYP2A6 activity will lead to shunting of coumarin into other metabolic pathways. In particular, coumarin is metabolized by CYP3A4 to form 3-hydroxycoumarin, the major metabolite in mice and rats. It has been shown that an increase in the 3-hydroxycoumarin ratio is associated with an increased production of the significant cytotoxic product o-hydroxyphenylacetylacetaldehyde (o-HPA), suggesting that a shunting of coumarin metabolism away from 7-hydroxylation is the cause of the toxicity. Hence, poor CYP2A6 metabolizers are more likely to metabolize coumarin via the cytotoxic pathway. Identifying these patients, and not treating them with coumarin, may reduce the incidence of toxicity associated with this drug. The technology to do so exists, but more information is required regarding the mechanism of coumarin toxicity.  相似文献   

19.
The effects of gamma-oryzanol, a drug mainly used for the treatment of hyperlipidaemia, on several cytochrome P450 (CYP) specific reactions in human liver microsomes were investigated to predict drug interactions with gamma-oryzanol in vivo from in vitro data. The following eight CYP catalytic reactions were used in this study: CYP1A1/2-mediated 7-ethoxyresorufin O-deethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated 7-benzyloxyresorufin O-debenzylation, CYP2C8/9-mediated tolbutamide methylhydroxylation, CYP2C19-mediated S-mephenytoin 4'-hydroxylation, CYP2D6-mediated bufuralol 1'-hydroxylation, CYP2E1-mediated chlorzoxazone 6-hydroxylation, and CYP3A4-mediated testosterone 6beta-hydroxylation. gamma-Oryzanol had little inhibitory effects on CYP activities, indicating that this compound would not be expected to cause clinically significant interactions with other CYP-metabolized drugs at expected therapeutic concentrations.  相似文献   

20.
CYP2A6 is the principle enzyme metabolizing nicotine to its inactive metabolite cotinine. In this study, the selective probe reactions for each major cytochrome P450 (P450) were used to evaluate the specificity and selectivity of the CYP2A6 inhibitors methoxsalen, tranylcypromine, and tryptamine in cDNA-expressing and human liver microsomes. Phenacetin O-deethylation (CYP1A2), coumarin 7-hydroxylation (CYP2A6), diclofenac 4'-hydroxylation (CYP2C9), omeprazole 5-hydroxylation (CYP2C19), dextromethorphan O-demethylation (CYP2D6), 7-ethoxy-4-trifluoromethylcoumarin deethylation (CYP2B6), p-nitrophenol hydroxylation (CYP2E1), and omeprazole sulfonation (CYP3A4) were used as index reactions. Apparent K(i) values for inhibition of P450s' (1A2, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, and 3A4) activities showed that tranylcypromine, methoxsalen, and tryptamine have high specificity and relative selectivity for CYP2A6. In cDNA-expressing microsomes, tranylcypromine inhibited CYP2A6 (K(i) = 0.08 microM) with about 60- to 5000-fold greater potency relative to other P450s. Methoxsalen inhibited CYP2A6 (K(i) = 0.8 microM) with about 3.5- 94-fold greater potency than other P450s, except for CYP1A2 (K(i) = 0.2 microM). Tryptamine inhibited CYP2A6 (K(i) = 1.7 microM) with about 6.5- 213-fold greater potency relative to other P450s, except for CYP1A2 (K(i) = 1.7 microM). Similar results were also obtained with methoxsalen and tranylcypromine in human liver microsomes. R-(+)-Tranylcypromine, (+/-)-tranylcypromine, and S-(-)-tranylcypromine competitively inhibited CYP2A6-mediated metabolism of nicotine with apparent K(i) values of 0.05, 0.08, and 2.0 microM, respectively. Tranylcypromine [particularly R-(+) isomer], tryptamine, and methoxsalen are specific and relatively selective for CYP2A6 and may be useful in vivo to decrease smoking by inhibiting nicotine metabolism with a low risk of metabolic drug interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号