首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous immunological studies indicated that the Lyme disease spirochete, Borrelia burgdorferi, expresses Erp outer surface proteins during mammalian infection. We conducted analyses of Erp expression throughout the entire tick-mammal infectious cycle, which revealed that the bacteria regulate Erp production in vivo. Bacteria within unfed nymphal ticks expressed little to no Erp proteins. However, as infected ticks fed on mice, B. burgdorferi increased production of Erp proteins, with essentially all transmitted bacteria expressing these proteins. Mice infected with B. burgdorferi mounted rapid IgM responses to all tested Erp proteins, followed by strong immunoglobulin G responses that generally increased in intensity throughout 11 months of infection, suggesting continued exposure of Erp proteins to the host immune system throughout chronic infection. As naive tick larvae acquired B. burgdorferi by feeding on infected mice, essentially all transmitted bacteria produced Erp proteins, also suggestive of continual Erp expression during mammalian infection. Shortly after the larvae acquired bacteria, Erp production was drastically downregulated. The expression of Erp proteins on B. burgdorferi throughout mammalian infection is consistent with their hypothesized function as factor H-binding proteins that protect the bacteria from host innate immune responses.  相似文献   

3.
Linear plasmid lp54 is one of the most highly conserved and differentially expressed elements of the segmented genome of the Lyme disease spirochete Borrelia burgdorferi. We previously reported that deletion of a 4.1-kb region of lp54 (bba01 to bba07 [bba01-bba07]) led to a slight attenuation of tick-transmitted infection in mice following challenge with a large number of infected ticks. In the current study, we reduced the number of ticks in the challenge to more closely mimic the natural dose and found a profound defect in tick-transmitted infection of the bba01-bba07 mutant relative to wild-type B. burgdorferi. We next focused on deletion of bba03 as the most likely cause of this mutant phenotype, as previous studies have shown that expression of bba03 is increased by culture conditions that simulate tick feeding. Consistent with this hypothesis, we demonstrated increased expression of bba03 by spirochetes in fed relative to unfed ticks. We also observed that a bba03 deletion mutant, although fully competent by itself, did not efficiently infect mice when transmitted by ticks that were simultaneously coinfected with wild-type B. burgdorferi. These results suggest that BBA03 provides a competitive advantage to spirochetes carrying this protein during tick transmission to a mammalian host in the natural infectious cycle.  相似文献   

4.
5.
Previously, we had demonstrated the upregulation in the expression of several proteins, including the lipoproteins OspC and P35, of Borrelia burgdorferi in the stationary growth phase. Since the expression of OspC is also known to be affected by culture temperature and pH, we examined the effects of both variables on the expression of the remaining stationary-phase-upregulated proteins. Our study revealed that the expression of each of the remaining stationary-phase-upregulated proteins, P35 included, was also influenced by culture temperature; these proteins were selectively expressed at 34 degrees C but not at 24 degrees C. Significantly, the expression of a majority of these proteins was also affected by culture pH, since they were abundantly expressed at pH 7.0 (resembling the tick midgut pH of 6.8 during feeding) but only sparsely at pH 8.0 (a condition closer to that of the unfed tick midgut pH of 7.4). We propose that this group of B. burgdorferi proteins, which in culture is selectively expressed under conditions of 34 degrees C and pH 7.0, may be induced in the tick midgut during the feeding event. Furthermore, the differential and coordinate expression of these proteins under different environmental conditions suggests that the encoding genes may be coregulated.  相似文献   

6.
7.
BBK32, a fibronectin-binding protein of Borrelia burgdorferi, is one of many surface lipoproteins that are differentially expressed by the Lyme disease spirochete at various stages of its life cycle. The level of BBK32 expression in B. burgdorferi is highest during infection of the mammalian host and lowest in flat ticks. This temporal expression profile, along with its fibronectin-binding activity, strongly suggests that BBK32 may play an important role in Lyme pathogenesis in the host. To test this hypothesis, we constructed an isogenic BBK32 deletion mutant from wild-type B. burgdorferi B31 by replacing the BBK32 gene with a kanamycin resistance cassette through homologous recombination. We examined both the wild-type strain and the BBK32 deletion mutant extensively in the experimental mouse-tick model of the Borrelia life cycle. Our data indicated that B. burgdorferi lacking BBK32 retained full pathogenicity in mice, regardless of whether mice were infected artificially by syringe inoculation or naturally by tick bite. The loss of BBK32 expression in the mutant had no adverse effect on spirochete acquisition (mouse-to-tick) and transmission (tick-to-mouse) processes. These results suggest that additional B. burgdorferi proteins can complement the function of BBK32, fibronectin binding or otherwise, during the natural spirochete life cycle.  相似文献   

8.
Borrelia burgdorferi, the causative agent of Lyme disease, produces RevA protein during the early stages of mammalian infection. B. burgdorferi apparently uses temperature as a cue to its location, producing proteins required for infection of warm-blooded animals at temperatures corresponding to host body temperature, but does not produce such virulence factors at cooler, ambient temperatures. We have observed that B. burgdorferi regulates expression of RevA in response to temperature, with the protein being synthesized by bacteria cultivated at 34 degrees C but not by those grown at 23 degrees C. Tissues encountered by B. burgdorferi during its infectious cycle vary in their pH values, and the level of RevA expression was also found to be dependent upon pH of the culture medium. The cellular localization of RevA was also analyzed. Borrelial inner and outer membranes were purified by isopycnic centrifugation, and membrane fractions were conclusively identified by immunoblot analysis using antibodies raised against the integral inner membrane protein MotB and outer membrane-associated Erp lipoproteins. Immunoblot analyses indicated that RevA is located in the B. burgdorferi outer membrane. These analyses also demonstrated that an earlier report (H. A. Bledsoe et al., Infect. Immun. 176:7447-7455, 1994) had misidentified such B. burgdorferi membrane fractions. RevA was further demonstrated to be exposed to the external environment, where it could facilitate interactions with host tissues.  相似文献   

9.
The vector competence of Ixodes muris (Bishopp & Smith) was determined for Borrelia burgdorferi, the etiologic agent of Lyme disease. Larval I. muris were fed on ICR outbred mice infected with the B-31 laboratory strain of B. burgdorferi. Replete larvae, at 5 d after feeding, were assayed for infection by culture in Barbour-Stoner-Kelly (BSK-H) media. Infection frequency in I. muris replete larvae was 66%. Resultant nymphs were fed on naive ICR outbred mice to determine the ability of I. muris to transmit infection. Infection frequency in fed nymphs declined to 38% and only 1/5 mice was positive for B. burgdorferi on ear biopsy culture. We demonstrated that I. muris is capable of acquiring and transmitting B. burgdorferi but is a relatively poor vector compared with I. scapularis (Say).  相似文献   

10.
11.
Outbred mice were immunized with the soluble fraction of a crude Escherichia coli lysate containing either recombinant outer surface protein C (OspC or P39 of Borrelia burgdorferi B31 (low passage). Following seroconversion, the mice were challenged with an infectious dose of B. burgdorferi B31 via the natural transmission mode of tick bite. Three mice immunized with P39 were not protected; however, all 12 of the recombinant OspC-immunized mice were protected from infection as assayed by culture and serology. Although OspC has been shown to be a protective immunogen against challenge with in vitro-cultured borrelia administered by needle, this study is the first to demonstrate OspC effectiveness against tick-borne spirochetes. Following feeding, all ticks still harbored B. burgdorferi, suggesting that the mechanism of protection is not linked to destruction of the infectious spirochete within the tick. In a separate experiment, groups of four mice were immunized with protein fractions from B. burgdorferi B31 purified by preparative gel electrophoresis in an attempt to identify potential protective antigens. Many of these mice developed high-titer-antibody responses against OspC, but curiously the mice were susceptible to B. burgdorferi infection via tick bite. These results suggest that the protective epitope(s) on OspC is heat sensitive/conformational, a finding which has implications in vaccine development.  相似文献   

12.
This study examined the prevalence of Borrelia burgdorferi Johnson, Schmid, Hyde, Steigerwalt & Brenner in host-seeking adult and nymphal Ixodes pacificus Cooley & Kohls and estimated the I. pacificus infestation and B. burgdorferi infection of rodent and avian hosts in the western Sierra Nevada foothills of northern California. Additionally, we identified species likely to participate in an enzootic cycle for B. burgdorferi in this yellow pine transition habitat. Evidence of infection with B. burgdorferi was identified in 7.3 and 5.4% of host-seeking I. pacificus adults and nymphs, respectively. Mean numbers of I. pacificus observed on rodents were 1.15 for Neotoma fuscipes Baird and 0.18 for Peromyscus spp. One of 104 ear punch tissues obtained from woodrats and none from 49 Peromyscus spp. yielded B. burgdorferi. A total of 291 collected birds representing 34 species had a mean of 0.27 I. pacificus per bird. The mean I. pacificus infestation of ground-dwelling birds was 2.5 ticks per bird. Forty-nine of 92 (53%) blood smears collected from birds were reactive to a B. burgdorferi specific antibody. This study presents the identification of a B. burgdorferi-like spirochete in birds in western North America. The tick burden and spirochete infection of birds suggests that birds may be involved in a local B. burgdorferi enzootic cycle and likely participate in the transport of ticks and spirochetes to other locations while rodents from this site do not appear to be major contributors.  相似文献   

13.
Immunization of C3H mice with P55 (previously called S1), a 55-kDa Borrelia burgdorferi antigen that is immunogenic after infection, elicited a strong antibody response but did not protect mice against B. burgdorferi challenge. Mice immunized with a P55 fusion protein in complete Freund's adjuvant developed anti-P55 antibodies, detectable at a titer of 1:10,000 by immunoblotting. To determine, if a protective response had been elicited, P55-vaccinated mice were fed upon by ticks infected with B. burgdorferi. The frequency of B. burgdorferi infection was similar in P55-immunized and control mice, and spirochetes were not destroyed within ticks that fed on P55-vaccinated mice. P55 is an immunogenic antigen that does not induce a protective response in the vertebrate or invertebrate host.  相似文献   

14.
Culture and the polymerase chain reaction (PCR) were compared for detection of Borrelia burgdorferi infection in wild-caught Peromyscus leucopus and experimentally inoculated C.B-17 scid/scid (severe combined immunodeficient) mice. PCR targeted highly conserved regions of the ospA gene and could detect one to five cultured organisms and 10 to 50 copies of molecularly cloned ospA DNA. Organs (kidney, spleen, and urinary bladder) and/or ear biopsy samples were obtained from 108 captured P. leucopus mice, and tissues were obtained from 7 experimentally inoculated mice. A simple sample-processing procedure with proteinase K and detergent treatment was used in the PCR analysis. Overall, B. burgdorferi was detected in 29 of 108 (27%) P. leucopus mice by culture and in 31 of 108 (29%) mice by PCR. As assessed by the kappa statistic, agreement between PCR and culture was high for ear and bladder (kappa = 0.80 and 0.65, respectively) and low for kidney and spleen (kappa = 0.37 and 0.03, respectively). While concordant results were obtained from 98 animals, PCR detected B. burgdorferi from 6 additional mice for which cultures were negative and culture detected B. burgdorferi from 4 animals which were PCR negative. Further phenol-chloroform extraction of DNA in a limited number of samples improved the sensitivity of PCR compared with that of culture. These results indicate that PCR may be as sensitive as culture for detecting B. burgdorferi in ear samples and that PCR analysis is suitable for establishing the infection status of animals in mark-release-recapture studies.  相似文献   

15.
Borrelia burgdorferi, a tick-borne bacterial pathogen, causes a disseminated infection involving multiple organs known as Lyme disease. Surface proteins can directly participate in microbial virulence by facilitating pathogen dissemination via interaction with host factors. We show here that a fraction of the B. burgdorferi chromosomal gene product BB0337, annotated as enolase or phosphopyruvate dehydratase, is associated with spirochete outer membrane and is surface exposed. B. burgdorferi enolase, either in a recombinant form or as a membrane-bound native antigen, displays enzymatic activities intrinsic to the glycolytic pathway. However, the protein also interacts with host plasminogen, potentially leading to its activation and resulting in B. burgdorferi-induced fibrinolysis. As expected, enolase displayed consistent expression in vivo, however, with a variable temporal and spatial expression during spirochete infection in mice and ticks. Despite an extracellular exposure of the antigen and a potential role in host-pathogen interaction, active immunization of mice with recombinant enolase failed to evoke protective immunity against subsequent B. burgdorferi infection. In contrast, enolase immunization of murine hosts significantly reduced the acquisition of spirochetes by feeding ticks, suggesting that the protein could have a stage-specific role in B. burgdorferi survival in the feeding vector. Strategies to interfere with the function of surface enolase could contribute to the development of novel preventive measures to interrupt the spirochete infection cycle and reduce the incidences of Lyme disease.  相似文献   

16.
The original isolate of Borrelia burgdorferi, strain B31, can be maintained in vitro indefinitely. A number of studies have demonstrated that there are recognizable changes in the genetic composition of the spirochete after more than 60 passages. We have maintained B31 in the natural zoonotic cycle of transmission of infection between laboratory mice and laboratory-reared Ixodes ticks. To determine whether similar changes occur in the natural transmission cycle, we reisolated strain B31 from mouse skin at the fifth zoonotic cycle. This reisolated derivative had the same infectivity as the parent B31 strain, had lost the 8-kb supercoiled plasmid present in B31, and induced a gross serum antibody response indistinguishable from the B31 immune response. Analysis of antigen expression with monoclonal antibodies generated against B31, however, showed differential expression of a subset of antigens between B31 and the isolated derivative.  相似文献   

17.
Lyme disease is caused by the spirochete Borrelia burgdorferi. The enzootic cycle of this pathogen requires that Ixodes spp. acquire B. burgdorferi from infected wildlife reservoirs and transmit it to other uninfected wildlife. At present, there are no effective measures to control B. burgdorferi; there is no human vaccine available, and existing vector control measures are generally not acceptable to the public. However, if B. burgdorferi could be eliminated from its reservoir hosts or from the ticks that feed on them, the enzootic cycle would be broken, and the incidence of Lyme disease would decrease. We developed OspA-RTV, a reservoir targeted bait vaccine (RTV) based on the immunogenic outer surface protein A (OspA) of B. burgdorferi aimed at breaking the natural cycle of this spirochete. White-footed mice, the major reservoir species for this spirochete in nature developed a systemic OspA-specific IgG response as a result of ingestion of the bait formulation. This immune response protected white-footed mice against B. burgdorferi infection upon tick challenge and cleared B. burgdorferi from the tick vector. In performing extensive studies to optimize the OspA-RTV for field deployment, we determined that mice that consumed the vaccine over periods of 1 or 4 months developed a yearlong, neutralizing anti-OspA systemic IgG response. Furthermore, we defined the minimum number of OspA-RTV units needed to induce a protective immune response.  相似文献   

18.
During the natural mammal-tick infection cycle, the Lyme disease spirochete Borrelia burgdorferi comes into contact with components of the alternative complement pathway. B. burgdorferi, like many other human pathogens, has evolved the immune evasion strategy of binding two host-derived fluid-phase regulators of complement, factor H and factor H-like protein 1 (FHL-1). The borrelial complement regulator-acquiring surface protein 1 (CRASP-1) is a surface-exposed lipoprotein that binds both factor H and FHL-1. Analysis of CRASP-1 expression during the mammal-tick infectious cycle indicated that B. burgdorferi expresses this protein during mammalian infection, supporting the hypothesized role for CRASP-1 in immune evasion. However, CRASP-1 synthesis was repressed in bacteria during colonization of vector ticks. Analysis of cultured bacteria indicated that CRASP-1 is differentially expressed in response to changes in pH. Comparisons of CRASP-1 expression patterns with those of other infection-associated B. burgdorferi proteins, including the OspC, OspA, and Erp proteins, indicated that each protein is regulated through a unique mechanism.  相似文献   

19.
A chromosomally encoded 66-kDa protein (P66) of Borrelia spp. that cause Lyme disease has previously been shown to be associated with the spirochetal outer membrane. A topological model of P66 predicts a surface-exposed fragment which links the N- and C-terminal intramembranous domains of the protein (J. Bunikis, L. Noppa, and S. Bergström, FEMS Microbiol. Lett. 131:139-145, 1995). In the present study, an immunogenic determinant of P66 was identified by a comparison of the immunoreactivities of different fragments of P66 generated either by proteolytic treatment of intact spirochetes or as recombinant proteins expressed in Escherichia coli. The immune response to P66 during natural infection was found to be directed against the predicted surface domain which comprises amino acids at positions 454 through 491. A sequence comparison revealed considerable polymorphism of the surface domains of P66 proteins of different Lyme disease-causing Borrelia species. Five sequence patterns of this domain were observed in the B. garinii strains studied. In contrast, sequences of the relevant part of P66 of the B. afzelii and B. burgdorferi sensu stricto isolates studied were identical within the respective species. In immunoblotting, 5 of 17 (29.4%) sera from North American patients with early disseminated or persistent Lyme disease reacted against P66 of B. burgdorferi sensu stricto B31. These sera, however, failed to recognize P66 of B. afzelii and B. garinii, as well as an analog of P66 in the relapsing fever agent, B. hermsii. In conclusion, the topological model of P66 is supported by the demonstration of an apparent surface localization of an immunoreactive domain of this protein. Furthermore, analogous to the plasmid-encoded borrelial outer surface proteins, the predicted surface-exposed portion of chromosomally encoded P66 appears to be antigenically heterogenous.  相似文献   

20.
We have studied the immune response to a variable surface-exposed loop region of the P66 outer membrane protein from Borrelia burgdorferi sensu lato by using an enzyme immunoassay. Lyme borreliosis populations found in North America and Sweden were preferentially more seroreactive to P66 from their respective regional species, namely, B. burgdorferi sensu stricto and B. garinii and B. afzelii, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号