首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 67 毫秒
1.
Role of human GABA(A) receptor beta3 subunit in insecticide toxicity   总被引:2,自引:0,他引:2  
The gamma-aminobutyric acid type A (GABA(A)) receptor is the target for the major insecticides alpha-endosulfan, lindane, and fipronil and for many analogs. Their action as chloride channel blockers is directly measured by binding studies with [(3)H]ethynylbicycloorthobenzoate ([(3)H]EBOB). This study tests the hypothesis that GABA(A) receptor subunit composition determines the sensitivity and selectivity of insecticide toxicity. Human receptor subtypes were expressed individually (alpha1, alpha6, beta1, beta3, and gamma2) and in combination in insect Sf9 cells. Binding parameters were similar for [(3)H]EBOB in the beta3 homooligomer, alpha1beta3gamma2 heterooligomer, and native brain membranes, but toxicological profiles were very different. Surprisingly, alpha-endosulfan, lindane, and fipronil were all remarkably potent on the recombinant beta3 homooligomeric receptor (IC50 values of 0.5-2.4 nM), whereas they were similar in potency on the alpha1beta3gamma2 subtype (IC50 values of 16-33 nM) and highly selective on the native receptor (IC50 values of 7.3, 306, and 2470 nM, respectively). The selectivity order for 29 insecticides and convulsants as IC50 ratios for native/beta3 or alpha1beta3gamma2/beta3 was as follows: fipronil > lindane > 19 other insecticides including alpha-endosulfan and picrotoxinin > 4 trioxabicyclooctanes and dithianes (almost nonselective) > tetramethylenedisulfotetramine, 4-chlorophenylsilatrane, or alpha-thujone. Specificity between mammals and insects at the target site (fipronil > lindane > alpha-endosulfan) paralleled that for toxicity. Potency at the native receptor is more predictive for inhibition of GABA-stimulated chloride uptake than that at the beta3 or alpha1beta3gamma2 receptors. Therefore, the beta3 subunit contains the insecticide target and other subunits differentially modulate the binding to confer compound-dependent specificity and selective toxicity.  相似文献   

2.
[(3)H]Ethynylbicycloorthobenzoate ([(3)H]EBOB), a high affinity radioligand for the noncompetitive blocker site of the GABA(A) receptor, is used here for quantitative autoradiography to determine regional binding in mouse brain and the effects on this binding of administering toxic doses of endosulfan, fipronil, and avermectin B(1a) (AVM). Animals were euthanized 4-8 min after 1 LD50 or 2 LD50 doses of the two channel blockers and 32 min after 1 LD50 or 4 LD50 doses of the channel activator AVM. Specific binding of [(3)H]EBOB was determined for 20-microm brain sections as the difference in labeling on incubation with 2 nM [(3)H]EBOB either alone (total binding) or with 5 microM alpha-endosulfan (nonspecific binding). The highest specific labeling was observed for layers I and IV of the cerebral cortex, the globus pallidus, and the medial septal nucleus/nucleus of the vertical limb of the diagonal band. Dose-dependent inhibition by endosulfan was highest in the nucleus accumbens and least in the cerebellum and periaqueductal gray matter. Fipronil had much less effect on binding even at severely toxic doses. AVM increased [(3)H]EBOB binding in most regions and was the only one of the three agents inhibiting in vitro [(3)H]strychnine binding to the glycine receptor. In summary, the noncompetitive blocker site was strongly inhibited with dose dependence and regional selectively by alpha-endosulfan but was generally poorly inhibited or activated by fipronil and was activated by avermectin.  相似文献   

3.
Heterogeneous binding interactions of cerebellar GABA(A) receptors were investigated with GABA agonists and neurosteroids. GABA(A) receptors of rat cerebellum were labelled with [(3)H]ethynylbicycloorthobenzoate (EBOB), a convulsant radioligand. Saturation analysis revealed a homogenous, nanomolar population of [(3)H]EBOB binding. Both GABA and 5alpha-tetrahydrodeoxycorticosterone (5alpha-THDOC) displaced [(3)H]EBOB binding heterogeneously, with nanomolar and micromolar potencies. The nanomolar phase of displacement by GABA was selectively abolished by 100 microM furosemide. Physiological concentrations of allopregnanolone (8 nM) and 5alpha-THDOC (20 nM) increased the displacing effects of nanomolar GABA. GABA (0.3 microM ) and 5alpha-THDOC (0.3 microM ) potentiated the micromolar population of displacement by the other. Taurine inhibited [(3)H]EBOB binding also heterogeneously, with micromolar and millimolar potencies, and 0.3 microM 5alpha-THDOC potentiated this inhibition. 5beta-THDOC did not affect [(3)H]EBOB binding significantly but in 1 microM it antagonised selectively the nanomolar displacement by 5alpha-THDOC. [(3)H]EBOB binding to hippocampal GABA(A) receptors was inhibited by GABA and allopregnanolone with low (micromolar) potencies and with slope values higher than unity referring to allosteric interaction. High affinity displacement of cerebellar [(3)H]EBOB binding by GABA agonists and neurosteroids can be associated with constitutively open alpha(6)betadelta GABA(A) receptors, tonic GABAergic inhibitory neurotransmission and its modulation by physiological concentrations of neurosteroids.  相似文献   

4.
Unique insecticide specificity of human homomeric rho 1 GABA(C) receptor   总被引:2,自引:0,他引:2  
Several convulsants and major insecticides block the gamma-aminobutyric acid (GABA)-gated chloride channel in brain on binding to the GABA(A) receptor. The GABA(C) receptor, important in retina and present in brain, is also coupled to a chloride channel and is therefore a potential target for toxicant action examined here in radioligand binding and electrophysiological experiments. Human homomeric rho 1 GABA(C) receptor expressed in human embryonic kidney cells (HEK293) undergoes specific and saturable high-affinity binding of 4-n-[3H]propyl-4' -ethynylbicycloorthobenzoate ([3H]EBOB) using a cyano analog (CNBOB) to determine non-specific binding. This GABA(C) rho 1 receptor is very sensitive to CNBOB and lindane relative to alpha-endosulfan, tert-butylbicyclophosphorothionate, picrotoxinin and fipronil (IC(50) values of 23, 91, 800, 1080, 4000 and >10000 nM, respectively, in displacing [3H]EBOB). A similar potency sequence (except for picrotoxinin) is observed for inhibition of GABA-induced currents of rho 1 receptor expressed in Xenopus oocytes. The present study does not consider rho 2 homomeric and rho 1 rho 2 heteromeric GABA(C) receptors which are known to be more sensitive than rho 1 to picrotoxinin. The inhibitor sensitivity and specificity of this rho 1 GABA(C) receptor differ greatly from those of human homomeric beta 3 and native GABA(A) receptors.  相似文献   

5.
BACKGROUND AND PURPOSE: High-affinity, subtype-selective antagonists of the neurosteroid binding sites of GABA(A) receptors are not available. We have characterized an allopregnanolone derivative as an antagonist of cerebellar GABA(A) receptors with nanomolar affinity. EXPERIMENTAL APPROACH: Receptor binding and electrophysiological methods were used for the allosteric modulation of cerebellar GABA(A) receptors by an allopregnanolone derivative, (20R)-17beta-(1-hydroxy-2,3-butadienyl)-5alpha-androstane-3alpha-ol (HBAO). GABA(A) receptors of rat cerebellar membranes were labelled with the chloride channel blocker [(3)H]ethynylbicycloorthobenzoate (EBOB). The ionophore function of GABA(A) receptors was studied by whole-cell patch clamp electrophysiology in cultured rat cerebellar granule and cortical cells. KEY RESULTS: Partial displacement of cerebellar [(3)H]EBOB binding by nanomolar HBAO was attenuated by 0.1 mM furosemide, an antagonist of alpha(6) and beta(2-3) subunit-containing GABA(A) receptors. Displacement curves of HBAO were reshaped by 30 nM GABA and shifted to the right. However, the micromolar potency of full displacement by allopregnanolone was not affected by 0.1 mM furosemide or 30 nM GABA. The nanomolar, but not the micromolar phase of displacement of [(3)H]EBOB binding by GABA was attenuated by 100 nM HBAO. Submicromolar HBAO did not affect [(3)H]EBOB binding to cortical and hippocampal GABA(A) receptors. HBAO up to 1 microM did not affect chloride currents elicited by 0.3-10 microM GABA, while it abolished potentiation by 1 microM allopregnanolone with nanomolar potency in cerebellar but not in cortical cells. Furosemide attenuated cerebellar inhibition by 100 nM HBAO. CONCLUSIONS AND IMPLICATIONS: HBAO is a selective antagonist of allopregnanolone, a major endogenous positive modulator via neurosteroid sites of cerebellar (probably alpha(6)beta(2-3)delta) GABA(A) receptors.  相似文献   

6.
The γ-aminobutyric acid (GABA) type A receptor (GABAAR) is one of the most important targets for insecticide action. The human recombinant β3 homomer is the best available model for this binding site and 4-n-[3H]propyl-4′-ethynylbicycloorthobenzoate ([3H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the β3 homomer relative to the much-less-active but structurally very-similar β1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The β1 and β3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the α1 subunit and modulators. Chimera β3/β1 with the β3 subunit extracellular domain and the β1 subunit transmembrane helices retained the high [3H]EBOB binding level of the β3 homomer while chimera β1/β3 with the β1 subunit extracellular domain and the β3 subunit transmembrane helices had low binding activity similar to the β1 homomer. GABA at 3 μM stimulated heteromers α1β1 and α1β3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the α1 subunit rescued the inactive β1/β3 chimera close to wildtype α1β1 activity. EBOB binding was significantly altered by mutations β1S15′N and β3N15′S compared with wildtype β1 and β3, respectively. However, the binding activity of α1β1S15′N was insensitive to GABA and α1β3N15′S was stimulated much less than wildtype α1β3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation β3N15′S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABAA receptor sensitivity.  相似文献   

7.
All GABA(A) receptor (GABAR) subunits include an invariant proline in a consensus motif in the first transmembrane segment (M1). In receptors containing bovine alpha1, beta1 and gamma2 subunits, we analyzed the effect of mutating this M1 proline to alanine in the alpha1 or beta1 subunit using 3 different expression systems. The beta1 subunit mutant, beta1(P228A), reduced the EC(50) for GABA about 10-fold in whole cell recordings in HEK293 cells and L929 fibroblasts. The corresponding alpha1 subunit mutant (alpha1(P233A)) also reduced the GABA EC(50) when expressed in Xenopus oocytes; alpha1(P233A)beta1gamma2S receptors failed to assemble in HEK293 cells. Binding of [(3)H]flumazenil and [(3)H]muscimol to transfected HEK293 cell membranes showed similar levels of receptor expression with GABARs containing beta1 or beta1(P228A) subunits and no change in the affinity for [(3)H]flumazenil; however, the affinity for [(3)H]muscimol was increased 6-fold in GABARs containing beta1(P228A) subunits. In L929 cells, presence of the beta1(P228A) subunit reduced enhancement by barbiturates without affecting enhancement by diazepam or alfaxalone. Single channel recordings from alpha1beta1gamma2S and alpha1beta1(P228A)gamma2L GABARs showed similar channel kinetics, but beta-mutant containing receptors opened at lower GABA concentrations. We conclude that the beta1 subunit M1 segment proline affects the linkage between GABA binding and channel gating and is critical for barbiturate enhancement. Mutation of the M1 proline in the alpha1 subunit also inhibited receptor assembly.  相似文献   

8.
The pyrazolopyrimidine zaleplon is a hypnotic agent that acts at the benzodiazepine recognition site of GABA(A) receptors. Zaleplon, like the hypnotic agent zolpidem but unlike classical benzodiazepines, exhibits preferential affinity for type I benzodiazepine (BZ(1)/omega(1)) receptors in binding assays. The modulatory action of zaleplon at GABA(A) receptors has now been compared with those of zolpidem and the triazolobenzodiazepine triazolam. Zaleplon potentiated GABA-evoked Cl(-) currents in Xenopus oocytes expressing human GABA(A) receptor subunits with a potency that was higher at alpha1beta2gamma2 receptors than at alpha2- or alpha3-containing receptors. Zolpidem, but not triazolam, also exhibited selectivity for alpha1-containing receptors. However, the potency of zaleplon at these various receptors was one-third to one-half that of zolpidem. Zaleplon and zolpidem also differed in their actions at receptors containing the alpha5 or gamma3 subunit. Zaleplon, zolpidem, and triazolam exhibited similar patterns of efficacy among the different receptor subtypes. The affinities of zaleplon for [(3)H]flunitrazepam or t-[(35)S]butylbicyclophosphorothionate ([(35)S]TBPS) binding sites in rat brain membranes were lower than those of zolpidem or triazolam. Furthermore, zaleplon, unlike zolpidem, exhibited virtually no affinity for the peripheral type of benzodiazepine receptor.  相似文献   

9.
In electrophysiological measurements the beta-carboline ethyl 6-benzyloxy-beta-carboline-3-carboxylate (ZK 91085) acts as a positive allosteric modulator on rat recombinant alpha1beta2gamma2 GABA(A) receptors and binds with high affinity (IC50-1.5 nM) to the [3H]-flunitrazepam site. Flumazenil was able to partially counteract the current modulation. These observations indicate an action of ZK 91085 at the benzodiazepine binding site. At the dual subunit combination alpha1beta2, which lacks the gamma subunit required for benzodiazepine modulation, we still observed a potentiation of GABA currents. Thus ZK 91085 acts via an additional site on the channel. At the subunit combination alpha1beta1, ZK 91085 potentiation is strongly reduced as compared to alpha1beta2. In binding studies, ZK 91085 was able to decrease [35S]-TBPS binding in alpha1beta2gamma2 and alpha1beta2 but not in alpha1beta1. This selectivity of ZK 91085 for receptors containing the beta2 isoform over those containing the beta1 isoform is reminiscent of the action of loreclezole. To identify amino acid residues important for the second type of modulation, we functionally compared wild type alpha1beta2 and mutant receptors for stimulation by ZK 91085. The mutation beta2N265S, that abolishes loreclezole effects, also abolishes ZK 91085 stimulation. The mutation beta2Y62L increased stimulation by ZK 91085 3-4 fold, locating an influencing entity of the second type of action of ZK 91085 at an alpha/beta subunit interface. Structural intermediates of ZK 91085 and the beta-carboline abecarnil, the latter of which only slightly potentiated GABA currents in alpha1/beta2, were analysed to determine structural requirements for modulation. ZK 91085 thus allosterically stimulates the GABA(A) receptor through two sites of action: the benzodiazepine site and the loreclezole site in contrast to classical beta-carbolines, that confer negative allosteric modulation through the benzodiazepine site.  相似文献   

10.
Site-directed mutagenesis of the gamma-aminobutyric acid type A (GABA(A)) receptor beta(2) subunit has demonstrated that conversion of a conserved glycine residue located at the entrance to the first transmembrane domain into the homologous rho(1) residue phenylalanine alters the modulating effects of four different i.v. anesthetics: pentobarbital, alphaxalone, etomidate, and propofol. Using the baculovirus expression system in Spodoptera frugiperda 9 cells, anesthetic-induced enhancement of [(3)H]muscimol and [(3)H]flunitrazepam binding in receptors containing the beta(2)(G219F) point mutation displayed a significantly reduced efficacy in modulation by all four i.v. anesthetics tested. Furthermore, GABA(A) receptors containing the alpha(1)(G223F) point mutation also significantly decreased the maximal effect of etomidate- and propofol-induced enhancement of ligand binding. Conversely, the homologous point mutation in rho(1) receptors (F261G) changed the i.v. anesthetic-insensitive receptor to confer anesthetic modulation of [(3)H]muscimol binding. Consistent with the binding, functional analysis of pentobarbital-enhanced GABA currents recorded with whole-cell patch clamp demonstrated the beta(2)(G219F) subunit mutation eliminated the potentiating effect of the anesthetic. Similarly, propofol-enhanced GABA currents were potentiated less in alpha(1)beta(2)(G219F)gamma(2) receptors than in alpha(1)beta(2)gamma(2) receptors. Although ligand binding displayed comparable K(D) values for muscimol among wild-type, alpha(1)beta(2)gamma(2), and mutant receptors, patch-clamp recordings showed that alpha(1)beta(2)(G219F)gamma(2) receptors had a significantly more potent response to GABA than did alpha(1)beta(2)gamma(2) or alpha(1)(G223F)beta(2)gamma(2). The alpha(1)beta(2)(G219F)gamma(2) receptors also were more sensitive to direct channel activation by pentobarbital and propofol in the absence of GABA. These results suggest that the first transmembrane glycine residue on the beta(2) subunit may be important for conformational or allosteric interactions of channel gating by both GABA and anesthetics.  相似文献   

11.
The preservation of the neuronal circuitry in rat cerebellar slice cultures provides an advantage in monitoring the development and characterizing the pharmacology of GABA(A) receptor subtypes. Sprague-Dawley rats, 8-11 days of age, were decapitated, their cerebella were cut into 400-microm slices and transferred into culture dishes. Cell viability and organotypic cerebellar organization of the culture remained well preserved up to 3 weeks. Autoradiographic procedures were introduced in these advanced culture technique and employed [(3)H]Ro 15-4513 in the absence and presence of 10 microM diazepam to visualize all benzodiazepine (BZD) and diazepam-insensitive (DIS) binding sites, respectively. Since expression of the alpha6 subunit variant of the GABA(A)/BZD receptor is restricted to the cerebellar granule cells and the BZD receptor agonist diazepam has very low affinity for this subunit, changes in DIS [(3)H]Ro 15-4513 binding sites during cultivation time can be attributed to changes in alpha6 subunit expression. A time-dependent development of total and DIS [(3)H]Ro 15-4513 binding sites were observed in the culture with a trend towards an increase in GABA(A) receptor alpha6 subunit levels during the first week. These findings suggest that explant preparations can be used to examine morphological changes in rat cerebellar slices. In addition, these preparations can be utilized to study the pharmacological effects of GABA(A)/BZD selective drugs on postnatal development of GABA(A) receptors in rat cerebellum.  相似文献   

12.
Drugs used to treat various disorders target GABA A receptors. To develop alpha subunit selective compounds, we synthesized 5-(4-piperidyl)-3-isoxazolol (4-PIOL) derivatives. The 3-isoxazolol moiety was substituted by 1,3,5-oxadiazol-2-one, 1,3,5-oxadiazol-2-thione, and substituted 1,2,4-triazol-3-ol heterocycles with modifications to the basic piperidine substituent as well as substituents without basic nitrogen. Compounds were screened by [(3)H]muscimol binding and in patch-clamp experiments with heterologously expressed GABA A alpha ibeta 3gamma 2 receptors (i = 1-6). The effects of 5-aminomethyl-3 H-[1,3,4]oxadiazol-2-one 5d were comparable to GABA for all alpha subunit isoforms. 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-one 5a and 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-thione 6a were weak agonists at alpha 2-, alpha 3-, and alpha 5-containing receptors. When coapplied with GABA, they were antagonistic in alpha 2-, alpha 4-, and alpha 6-containing receptors and potentiated alpha 3-containing receptors. 6a protected GABA binding site cysteine-substitution mutants alpha 1F64C and alpha 1S68C from reacting with methanethiosulfonate-ethylsulfonate. 6a specifically covalently modified the alpha 1R66C thiol, in the GABA binding site, through its oxadiazolethione sulfur. These results demonstrate the feasibility of synthesizing alpha subtype selective GABA mimetic drugs.  相似文献   

13.
We have developed an array of assays for nicotinic acetylcholine receptor binding and function. [125I]alpha-Bungarotoxin-, (-)-[3H]nicotine-, and [3H]epibatidine-binding nicotinic acetylcholine receptors were assayed in mouse brain membranes and sections. Nicotinic acetylcholine receptor function was quantified using synaptosomal [3H]dopamine, [3H]gamma-aminobutyric acid ([3H]GABA), and 86Rb(+) efflux techniques. Additionally, the effects of beta2 subunit deletion on each of the measures were assessed. Detailed pharmacological comparison revealed minimally six nicotinic binding subtypes: [125I]alpha-bungarotoxin-binding nicotinic acetylcholine receptors; beta2-subunit-dependent and -independent high-affinity (-)-[3H]nicotine-binding sites; beta2-dependent and -independent cytisine-resistant [3H]epibatidine-binding sites; and a beta2-dependent low-affinity [3H]epibatidine binding site. Comparative pharmacology suggested that [3H]GABA and dihydro-beta-erythroidine (DHbetaE)-sensitive 86Rb(+) efflux are mediated by the same (probably alpha4beta2) nicotinic acetylcholine receptor subtype, while other nicotinic acetylcholine receptor subtypes evoke [3H]dopamine and DHbetaE-resistant 86Rb(+) efflux. In whole-brain preparations, each measure of nicotinic acetylcholine receptor function was beta2 dependent. The majority of beta2-independent [3H]epibatidine binding was located in small, scattered brain nuclei, suggesting that individual nuclei may prove suitable for identification of novel, native nicotinic acetylcholine receptors.  相似文献   

14.
The type A receptor for gamma-aminobutyric acid (GABA), or GABA(A) receptor, is a pentamer of highly variable quaternary structure. It includes two alpha subunits, drawn from a pool of six genes, which largely determine benzodiazepine pharmacology of the receptor. In brain sections, both [(3)H]RY-80 (ethyl-8-acetylene-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a][1,4]benzodiazepine-3-carboxylate) and [(3)H]L-655,708 (ethyl (S)-11,12,13,13a-tetrahydro-7-methoxy-9-oxo-9H-imidazo[1,5-a]pyrrolo[2,1-c][1,4]benzodiazepine-1-carboxylate), which are selective for the benzodiazepine site of alpha 5 subunit-containing receptors, showed high-affinity, specific binding, but to fewer regions than did the nonselective benzodiazepine, [(3)H]flunitrazepam. The pattern mirrored alpha 5 mRNA distribution, and was similar to that previously reported for [(3)H]L-655,708 binding. Displacement of [(3)H]RY-80 bound to hippocampal homogenates, and of [(3)H]flunitrazepam bound to cerebellar and hippocampal homogenates showed comparable displacement by flumazenil (K(i)'s 5--7 nM). However, the K(i)'s for diazepam and for clobazam to displace [(3)H]RY-80 binding in hippocampus were about fourfold higher than for [(3)H]flunitrazepam, and the K(i) for clonazepam was sixfold larger, suggesting that these benzodiazepine receptor agonists bind with relatively lower affinity at hippocampal alpha 5-containing receptors.  相似文献   

15.
1. We examine the sensitivity of GABA(A) and glycine receptors (same ionotropic superfamily) to oleamide. We address subunit-dependence/modulatory mechanisms and analogies with depressant drugs. 2. Oleamide modulated human GABA(A) currents (alpha(1)beta(2)gamma(2L)) in oocytes (EC(50), 28.94+/-s.e.mean of 1.4 microM; Maximum 216%+/-35 of control, n=4). Modulation of human alpha1 glycine homo-oligomers (significant), was less marked, with a lower EC(50) (P<0.05) than GABA receptors (EC(50), 22.12+/-1.4 microM; Maximum 171%+/-30, n=11). 3. Only the hypnogenic cis geometric isomer enhanced glycine currents (without altering slope or maximal current, it reduced the glycine EC(50) from 322 to 239 microM: P<0.001). Modulation was not voltage-dependent or associated with a shift in E(r). 4. beta 1 containing GABA(A) receptors (insensitive to many depressant drugs) were positively modulated by oleamide. Oleamide efficacy was circa 2x greater at alpha(1)beta(1)gamma(2L) than alpha(1)beta(2)gamma(2L) (P=0.007). Splice variation in gamma subunits did not alter oleamide sensitivity. 5. cis-9,10-Octadecenoamide had no effect on the equilibrium binding of [(3)H]-muscimol or [(3)H]-EBOB to mouse brain membranes. It does not directly mimic GABA, or operate as a neurosteroid-, benzodiazepine- or barbiturate-like modulator of GABA(A)-receptors. 6. The transport of [(3)H]-GABA into mouse brain synaptoneurosomes was unaffected by high micromolar concentrations of cis-9,10-octadecenoamide. Oleamide does not enhance GABA-ergic currents or prolong IPSCs by inhibiting GABA transport. 7. Oleamide is a non-selective modulator of inhibitory ionotropic receptors. The sleep lipid exerts its effects indirectly, or at a novel recognition site on the GABA(A) complex.  相似文献   

16.
J Ai  X Wang  M Nielsen 《Pharmacology》2001,63(1):34-41
Honokiol and magnolol have been identified as modulators of the GABAA receptors in vitro. Our previous study suggested a possible selectivity of honokiol and magnolol on GABAA receptor subtypes. This possibility was examined in the current study by 3H-muscimol and 3H-flunitrazepam binding assays on various rat brain membrane preparations and human recombinant GABA(A) receptor subunit combinations expressed by the Sf-9/baculovirus system. Generally, honokiol and magnolol have a similar enhancing effect on (3)H-muscimol binding to various membrane preparations in nonsaturation binding assays. Honokiol and magnolol preferentially increased (3)H-muscimol binding to hippocampus compared to cortex and cerebellum (with a maximum enhancement of 400% of control). As for subunit combinations, honokiol and magnolol have a more potent enhancing effect on alpha2 subunit containing combinations (with a maximum enhancement of 400-450% of control). This action was independent of the gamma subunit. In saturation binding assays, magnolol affected either the number of binding sites (ca. 4-fold on alpha2 containing combinations) or the binding affinity (on alpha1 containing combinations) of (3)H-muscimol binding to various GABAA receptor subunit combinations. In contrast, honokiol increased only binding sites on alpha2beta3gamma2s and alpha2beta3 combinations, but both the number of binding sites and the binding affinity on alpha1beta2gamma2S and alpha(1)beta2 combinations. These results indicate that honokiol and magnolol have some selectivity on different GABAA receptor subtypes. The property of interacting with GABAA receptors and their selectivity could be responsible for the reported in vivo effects of these two compounds.  相似文献   

17.
Nicotinic acetylcholine receptors (nAChRs) can modulate transmitter release. Striatal [(3)H]dopamine ([(3)H]DA) release is regulated by presynaptic nAChR on dopaminergic terminals and alpha7 nAChR on neighboring glutamatergic afferents. Here, we explored the role of alpha7 nAChR in the modulation of [(3)H]noradrenaline ([(3)H]NA) release from rat hippocampal slices. The nicotinic agonist anatoxin-a (AnTx) evoked monophasic [(3)H]NA release (EC(50) = 1.2 microM) that was unaffected by alpha-conotoxin-MII or dihydro-beta-erythroidine, antagonists of alpha3/alpha6beta2* and beta2* nAChR, respectively. In contrast AnTx-evoked striatal [(3)H]DA release was biphasic (EC(50) = 138.9 nM; 7.1 microM) and blocked by these antagonists. At a high AnTx concentration (25 microM), alpha7 nAChR antagonists (methyllycaconitine, alpha-conotoxin-ImI) and glutamate receptor (GluR) antagonists [kynurenic acid, 6,7-dinitroquinoxaline-2,3-dione (DNQX)] partially inhibited [(3)H]NA release. The alpha7 nAChR-selective agonist choline evoked [(3)H]NA release (E(max) = 33% of that of AnTx) that was blocked by GluR antagonists, supporting a model in which alpha7 nAChRs trigger glutamate release that subsequently stimulates [(3)H]NA release. A GABAergic component was also revealed: choline-evoked [(3)H]NA release was partially blocked by the GABA(A) receptor antagonist bicuculline, and coapplication of bicuculline and DNQX fully abolished this response. These findings support alpha7 nAChR on GABAergic neurons that can promote GABA release which, in turn, leads to [(3)H]NA release, probably by disinhibition. To investigate the impact of long-term nicotine exposure on this model, rats were exposed for 14 days to nicotine (4 mg/kg/day) with or without 3 or 7 days of withdrawal. alpha7 nAChR responses were selectively and transiently up-regulated after 3 days of withdrawal. This functional up-regulation could contribute to the withdrawal effects of nicotine.  相似文献   

18.
Expression plasmids were constructed with cDNAs encoding the rat gamma-aminobutyric acid-A (GABAA) receptor alpha 1, beta 2, and gamma 2 subunits and were cotransfected into cultured human embryonic kidney 293 cells. A single cell line (WS-1) was established after G-418 treatment and clonal selection. This cell line contained saturable, high affinity binding sites for the benzodiazepines [3H] Ro 15-4513 and [3H]flunitrazepam that were modulated by GABA. Competition experiments with benzodiazepine receptor ligands suggest a profile characteristic of native "type I" benzodiazepine receptors, because strong correlations were observed between the Ki values of these ligands in WS-1 cells and in both cerebellar homogenates (r = 0.97, p < 0.0001) and 293 cells transiently transfected with the corresponding cDNAs (r = 0.96, p < 0.001). Fluorescence intensity in WS-1 cells loaded with the Cl(-)-specific probe 6-methoxy-N-(3-sulfopropyl)-quinolinium was reliably increased by GABA. This effect was blocked by bicuculline and augmented by midazolam, consistent with the presence of GABA-gated, benzodiazepine receptor-modulated, Cl- channels. Northern blot analysis revealed the presence of mRNAs encoding alpha 1 and gamma 2 receptor subunits. Southern blot analysis confirmed genomic integration of transfected alpha 1 and gamma 2 cDNAs. The beta 2 subunit was not detected in either Northern or Southern blot analysis, indicating that a functional type I GABAA/benzodiazepine receptor complex can be constituted without a beta subunit.  相似文献   

19.
6,3'-Dinitroflavone (6,3'-DNF) is a synthetic flavone derivative that exerts anxiolytic effects in the elevated plus maze. Based on the finding that this effect is blocked by Ro15-1788 (ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylate) which is a specific antagonist at the benzodiazepine binding site of GABA(A) receptors we investigated the interaction of 6,3'-DNF with several recombinant GABA(A) receptor subtypes. Inhibition of [(3)H]flunitrazepam binding to recombinant GABA(A) receptors in transiently transfected HEK293 cells indicated that 6,3'-DNF exhibited the highest affinity for GABA(A) receptors composed of alpha1beta2gamma2 subunits and a 2-20 fold lower affinity for homologous receptors containing alpha2, alpha3, or alpha5 subunits. Two-electrode voltage-clamp experiments in Xenopus oocytes indicated that 6,3'-DNF does not induce chloride flux in the absence of GABA, but exerts low efficacy inverse agonistic modulatory effects on GABA-elicited currents in the GABA(A) receptor subtypes alpha1beta2gamma2 and alpha5beta2gamma2. In the subtypes alpha2beta2gamma2, alpha3beta2gamma2, alpha4beta2gamma2, alpha6beta2gamma2 or alpha4beta2delta and alpha4beta3delta, 6,3'-DNF exerts either none or very low efficacy positive modulatory effects. In contrast, 100 nM Ro15-1788 exhibited weak to moderate partial agonistic effects on each receptor investigated. These data indicate that Ro15-1788 only can antagonize the weak inverse agonist effects of 6,3'-DNF on alpha1beta2gamma2 and alpha5beta2gamma2 receptors, but will enhance the weak agonistic effects on the other receptor subtypes investigated. The possible mechanism of the Ro15-1788 sensitive anxiolytic effect of 6,3'-DNF is discussed.  相似文献   

20.
Neonicotinoids are the most important new class of insecticides of the last decade. They act as nicotinic acetylcholine receptor (AChR) agonists. This investigation tests the hypothesis for the first time that neonicotinoid insecticides and their imine derivatives up-regulate the alpha 4 beta 2 nicotinic AChR subtype, which represents >90% of the high-affinity [(3)H]nicotine binding sites in mammalian brain. The alpha 4 beta 2 receptor stably expressed in mouse fibroblast M10 cells was assayed after 3 days' exposure to the test compound, as [(3)H]nicotine binding following immunoisolation by monoclonal antibody (mAb 299) or as [(125)I]mAb 299 labeling for cell surface receptors. We found that imidacloprid (IMI) (one of the most important insecticides) and thiacloprid (THIA) increased [(3)H]nicotine binding levels (up-regulation of the alpha 4 beta 2 AChRs) by five- to eightfold with EC50s of approximately 70,000 and 19,000 nM, respectively, compared with 760 nM for (-)-nicotine. In contrast, two imine analogs [the desnitro metabolite of IMI (DNIMI) and the descyano derivative of THIA] gave up-regulation by eightfold and EC50s of 870 and 500 nM, respectively. The potency order for up-regulation by the five aforementioned compounds was correlated with their in vitro IC50s for inhibiting [(3)H]nicotine binding (r(2) = 0.99, n = 5), indicating that binding to the alpha 4 beta 2 receptor initiates the up-regulation. A potent olefin derivative of the THIA imine up-regulated with an EC50 of 22 nM. DNIMI-induced up-regulation mainly occurred intracellularly rather than at the cell surface. These findings in alpha 4 beta 2-expressing M10 cells indicate the possibility that some neonicotinoid insecticides or their metabolites, on accidental human exposure or when used for flea control on dogs, may also up-regulate the receptor in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号