首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of mitogen-activated protein kinase family in rat renal development   总被引:11,自引:0,他引:11  
BACKGROUND: Among mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinase (ERK) promotes proliferation or differentiation, whereas c-Jun N-terminal kinase (JNK) and p38 MAPK (p38) are thought to inhibit cell growth and induce apoptosis. MAPK phosphatase-1 (MKP-1) inactivates and modulates MAPKs. During renal development, large scale proliferation and apoptosis occur. We investigated the temporal and spatial expression patterns of MAPKs and MKP-1 in rat kidney during development. METHODS: Western blot analysis and immunohistochemistry were performed in the developing and mature kidney of the rat. RESULTS: The expression of ERK, p38, and MKP-1 were high in developing kidney. On the other hand, JNK was abundantly expressed in adult kidney. Active forms of ERK, p38, and JNK correlated with the protein expression levels. Immunohistochemical studies revealed that ERK was strongly expressed by blastema cells, mesenchymal cells, and ureteric bud tips in nephrogenic zone of embryonic kidney. In neonatal kidney, ERK was more abundant in the deep cortex and the medulla corresponding to tubule maturation. p38 and MKP-1 were detected uniformly in mesenchymal cells, mesangial cells, and ureteric bud epithelia of fetal kidney without an obvious correlation with the occurrence of apoptosis. JNK was expressed by tubular cells and podocytes of adult kidney. CONCLUSIONS: ERK, p38, and MKP-1 are strongly expressed in developing kidney, and JNK is detected predominantly in adult kidney. Both the temporal and spatial expression of ERK coincides with the maturation of the kidney.  相似文献   

2.
B Nolan  A Duffy  L Paquin  M De  H Collette  C M Graziano  P Bankey 《Surgery》1999,126(2):406-412
BACKGROUND: Neutrophil (PMN) apoptosis is critical to the resolution of infection and the limitation of inflammation. Bacterial endotoxin (lipopolysaccharide [LPS]) inhibits PMN apoptosis and activates the p38 mitogen-activated protein kinase (MAPK) signal cascade. The role of p38 and other MAPKs (ERK and SAPK/JNK) in regulating PMN apoptosis after LPS stimulation is unknown. We hypothesize that MAPK activation by LPS signals inhibition of PMN apoptosis. METHODS: PMNs were isolated from the blood of healthy human volunteers and incubated with PD98059 (ERK inhibitor), SB203580 (p38 inhibitor), or 0.1% dimethyl sulfoxide (vehicle) for 1 hour before treatment with LPS (0, 10, or 1000 ng/mL). Neutrophil MAPK activation was determined by Western blot analysis for phosphorylated p38, ERK, and SAPK/JNK. Apoptosis was quantified by flow cytometry with use of propidium iodide and annexin V. RESULTS: LPS inhibited PMN apoptosis and activated p38 and ERK in a dose- and time-dependent fashion. SAPK/JNK was not activated by LPS. Treatment of cells with ERK inhibitor before LPS stimulation abrogated LPS signaled inhibition of PMN apoptosis. Conversely, p38 inhibition with SB203580 augmented inhibition of apoptosis by LPS. CONCLUSIONS: These data demonstrate opposing roles of MAPKs in mediating PMN apoptosis after LPS stimulation. We conclude that LPS signal transduction by ERK inhibits PMN apoptosis while activation of p38 promotes apoptosis.  相似文献   

3.
4.
PURPOSE: The aim of this study was to investigate the molecular targets of reactive oxygen species (ROS) and to determine whether cyclic strain induces smooth muscle cell (SMC) alignment via the ROS system. We assessed stretch-induced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activation and the redox sensitivity of cyclic strain-stimulated activation of the mitogen-activated protein kinase (MAPK) family. METHODS: SMCs were seeded on flexible collagen I-coated plates and exposed to cyclic strain. NAD(P)H oxidase activation was measured with lucigenin-enhanced chemiluminescent detection of superoxide. Activation of MAPK was detected by determining phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), c-jun N-terminal kinase (JNK1/2), and p38 MAPK with immunoblotting. In other experiments, SMCs were exposed to diphenylene iodonium (DPI), an NAD(P)H inhibitor, 30 minutes before stretch. MAPK activation and cell orientation were then assessed. RESULTS: Cyclic strain elicits a rapid increase in intracellular NADH/NADPH oxidase in SMCs. There was also a rapid and robust phosphorylation of ERK1/2, JNK1/2, and p38 MAPK. Cyclic strain-induced intracellular NAD(P)H generation was almost completely blocked with DPI. DPI also inhibited the strain-induced phosphorylation of ERK1/2, JNK1/2, and p38 MAPK. Both the p38 MAPK specific inhibitor, SB 202190, and DPI blocked cyclic strain-induced cell alignment, but PD98059, an ERK1/2-specific inhibitor, and SP600125, an anthrazolone inhibitor of JNK, did not. CONCLUSION: Our results provide evidence that p38 MAPK is a critical component of the oxidant stress ROS-sensitive signaling pathway and plays a crucial role in vascular alignment induced by cyclic stain.  相似文献   

5.
Leng Y  Steiler TL  Zierath JR 《Diabetes》2004,53(6):1436-1444
Effects of diverse stimuli, including insulin, muscle contraction, and phorbol 12-myristate-13-acetate (PMA), were determined on phosphorylation of mitogen-activated protein kinase (MAPK) signaling modules (c-Jun NH(2)-terminal kinase [JNK], p38 MAPK, and extracellular signal-related kinase [ERK1/2]) in skeletal muscle from lean and ob/ob mice. Insulin increased phosphorylation of JNK, p38 MAPK, and ERK1/2 in isolated extensor digitorum longus (EDL) and soleus muscle from lean mice in a time- and dose-dependent manner. Muscle contraction and PMA also elicited robust effects on these parallel MAPK modules. Insulin action on JNK, p38 MAPK, and ERK1/2 phosphorylation was significantly impaired in EDL and soleus muscle from ob/ob mice. In contrast, muscle contraction-mediated JNK, p38 MAPK, and ERK1/2 phosphorylation was preserved. PMA effects on phosphorylation of JNK and ERK1/2 were normal in ob/ob mice, whereas effects on p38 MAPK were abolished. In conclusion, insulin, contraction, and PMA activate MAPK signaling in skeletal muscle. Insulin-mediated responses on MAPK signaling are impaired in skeletal muscle from ob/ob mice, whereas the effect of contraction is generally well preserved. In addition, PMA-induced phosphorylation of JNK and ERK1/2 are preserved, whereas p38 MAPK pathways are impaired in skeletal muscle from ob/ob mice. Thus, appropriate MAPK responses can be elicited in insulin-resistant skeletal muscle via an insulin-independent mechanism.  相似文献   

6.
Mycophenolic acid (MPA), an inosine monophosphate dehydrogenase inhibitor, is widely used as an immunosuppressive drug after transplantations including those of pancreas islet cells. However, recent reports have indicated that MPA has apoptotic effects on islet cells in vitro. To study the effect of MPA on islet cells and determine its mechanism, we used an insulin secreting cell-line, HIT-T15. We examined mitogen-activated protein kinase (MAPK) activation after MPA treatment, and determining cell death levels using methylthiazdetetrazolium assays. The activations of extracellular signal-regulated protein kinase (ERK), c-jun N-terminal kinase (JNK), and p38 MAPK and caspase-3 cleavage were measured by Western blotting. MPA (1, 10, 30 micromol/L) increased cell death and caspase-3 cleavage within 24 hours. Exogenous 500 micromol/L guanosine reversed the MPA-induced islet cell death, but exogenous adenosine did not. MPA 10 micromol/L induced cell apoptosis and increased the activations of JNK, ERK, and p38 MAPK. Furthermore, exogenous guanosine, but not exogenous adenosine, reversed these effects induced by MPA. This study demonstrated that MPA may induce islet apoptosis in HIT-T15 cells by increasing activations of JNK, ERK, and p38 MAPK in a guanosine-dependent manner.  相似文献   

7.
BACKGROUND: Although reduced expression levels of annexin I (ANX I) protein is a common finding in all stages of prostate cancer a causative relationship between ANX I dysregulation and prostate cancer development has yet to be established. METHODS: Annexin I expression was restored in LNCaP and MDA PCa 2b that normally express low or undetectable levels of ANX I protein. The impact of restoring ANX I expression on cell viability, colony formation in soft agar, apoptosis, and extracellular signal-regulated kinases (ERK), p38, c-Jun N-terminal kinases (JNK) activation was examined. RESULTS: Restoring ANX I expression reduced cell viability, colony formation, in addition to inducing apoptosis. The proliferative response of epidermal growth factor was blocked by restoring ANX I expression. Furthermore, increasing basal and induced levels of phosphorylated p38 and JNK were observed in prostate cancer cells following restoration of ANX I expression. CONCLUSIONS: Annexin I may have tumor suppressor functions in prostate cancer. The pro-apoptotic effect of ANX I involves the activation of p38 and JNK, which appears to shift the balance of signal transduction away from proliferation and toward apoptosis.  相似文献   

8.
BACKGROUND: Members of the mitogen-activated protein kinase (MAPK) family are capable of transducing signals from a wide variety of stimuli, including growth factors, G-protein coupled receptors, and cytokines that are likely to play a role in the initiation and/or progression of prostate cancer. METHODS: The expression and activation of three members of the MAPK family, namely, erk, jnk, and p38MAPK was examined using Western blotting and immunohistochemistry during tumor progression in a transgenic mouse model for prostate cancer. RESULTS: Activation of p38MAPK was significantly elevated (2.3-fold) in well-differentiated prostatic tumors compared to normal controls. Furthermore, prostatic intraepithelial neoplastic (PIN) lesions expressing activated p38MAPK were observed to be proliferative rather than apoptotic. Expression of activated erk1/2 also preferentially co-located to a sub-population of epithelial cells within PIN lesions that correlated with Ki67 expression. In dramatic contrast, activated forms of erk1/2, jnk, and p38MAPK were reduced or absent in late stage adenocarcinomas and metastatic deposits. CONCLUSIONS: Erk1/2, jnk, and p38MAPKs are differentially expressed and/or activated during prostate cancer progression. Activation of both erk1/2 and p38MAPK occurs concomitant with prostatic epithelial cell proliferation and the initiation of prostate cancer while inactivation is contemporaneous with the emergence of the poorly differentiated metastatic and androgen-independent phenotype.  相似文献   

9.
BACKGROUND: Peritoneal matrix accumulation is a major characteristic of encapsulating peritoneal sclerosis (EPS), which is a serious complication in long-term peritoneal dialysis (PD) patients. We reported previously that TGF-beta stimulates collagen gene expression in cultured HPMC, and is attenuated by pentoxifylline (PTX). The SMAD family and the mitogen-activated protein kinase (MAPK) (ERK1/2, JNK and p38(HOG)) pathways have been shown to participate in TGF-beta signalling. However, how PTX modulates the intracellular signalling downstream to TGF-beta remains undetermined in HPMC. In this study, we explored these signalling pathways in HPMC, and investigated the molecular mechanisms involved in the inhibitory effects of PTX on TGF-beta-induced collagen gene expression in HPMC. METHODS: HPMC was cultured from human omentum by an enzyme digestion method. The expression of collagen alpha1(I) mRNA was determined by northern blotting, while the SMAD proteins and the MAPK kinase activity were determined by western blotting. RESULTS: TGF-beta-stimulated collagen alpha1(I) mRNA expression of HPMC was inhibited by PTX. The Smad2, ERK1/2 and p38(HOG) pathways were activated in response to TGF-beta. However, TGF-beta displayed no activation of the JNK pathway in HPMC. The addition of PD98059 and SB203580, which blocked the activation of ERK1/2 and p38(HOG), respectively, suppressed the TGF-beta-induced collagen alpha1(I) mRNA expression. At a concentration (300 micro g/ml) that inhibited the collagen gene expression, PTX suppressed the ERK1/2 and p38(HOG) activation by TGF-beta. In contrast, PTX had no effect on the TGF-beta-induced activation of Smad2, under the same concentration. CONCLUSION: PTX inhibits the TGF-beta-induced collagen gene expression in HPMC through modulating the ERK1/2 and p38(HOG) pathways. Our study of PTX may provide the therapeutic basis for clinical applications in the prevention of EPS.  相似文献   

10.
BACKGROUND: To explore the roles of eicosanoids in arachidonic acid-induced mitogen-activated protein kinase (MAPK) signal transduction, we have shown that exposure of proximal tubular cells to arachidonic acid induces phosphorylation of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK), two members of the MAPK superfamily. We observed that ketoconazole, an inhibitor of the cytochrome P450 pathway, blocked ERK but not JNK activation. METHODS: Direct regulation of arachidonic acid on mitogen-activated protein kinase (MAPK) signaling pathways was evaluated more directly by utilizing specific enzyme inhibitors of the cytochrome P450 metabolic pathway and by comparing the relative efficacy of arachidonic acid versus its cytochrome P450 metabolites (exogenous and endogenous), eicosatetraynoic acid (ETYA), and other fatty acids on the phosphorylation of members of the MAPK superfamily (ERKs, JNK, and p38(MAPK)), by utilizing early passage rabbit proximal tubular epithelial cells. RESULTS: Arachidonic acid activated p38(MAPK), a third member of the MAPK superfamily, in a time- and concentration-dependent manner. Studies designed to evaluate the ability of arachidonic acid and its cytochrome P450 metabolites (endogenously and exogenously) to stimulate ERKs, JNK, and p38(MAPK) found four conclusions. First, the metabolites of arachidonic acid generated endogenously by cytochrome P450 2C1 significantly augmented basal ERK activity, whereas the metabolites generated by the 2C2 isozyme significantly augmented basal p38(MAPK) activity. However, their effects were less profound than arachidonic acid itself. In contrast, there were no significant effects with transfection of either isozyme on basal JNK activity. Second, a variety of exogenous cytochrome P450 products were less potent than arachidonic acid on a molar basis in stimulating the activity of all three MAPKs. Third, ketoconazole and 17-octadecynoic acid, inhibitors of the cytochrome P450 pathway, as well as PPOH and DDMS, inhibitors of the epoxygenase and omega-hydroxylase pathways, respectively, failed to significantly reduce the effects of arachidonic acid to activate ERK and p38(MAPK) (JNK was not evaluated). Finally, arachidonic acid, its inactive analog ETYA, and other fatty acids with differing chain lengths and degrees of saturation stimulated the activity of all three MAPKs. CONCLUSIONS: These observations substantiate a role for arachidonic acid and other fatty acids in signaling linked to the MAPK superfamily in rabbit proximal tubular epithelium without the necessity of conversion to cytochrome P450 metabolites.  相似文献   

11.
目的 探讨戊乙奎醚(PHC)预处理对脓毒症小鼠肺损伤时丝裂原活化蛋白激酶(MAPK)信号转导通路的影响.方法 健康雌性昆明小鼠105只,体重20~25 g,随机分为3组(n=35):假手术组(S组)、脓毒症(CLP)组和戊乙奎醚(PHC)组.采用盲肠结扎并穿孔法制备脓毒症模型.PHC组于造模前1 h腹腔注射戊乙奎醚0.45 mg/kg,s组和CLP组于造模前1 h注射等容量生理盐水.于造模后即刻测定肺微血管通透性;造模后12 h时进行动脉血气分析,观察肺组织病理结果,测定肺组织丙二醛(MDA)含量、超氧化物歧化酶(SOD)活性和磷酸化的p38丝裂原活化蛋白激酶(p38MAPK)、细胞外信号调节激酶(ERK1/ERK2)和c-jun氨基末端蛋白激酶(JNK)表达.结果 与S组比较,CLP组PaO2、PaO2/FiO2和pH值降低,肺微血管通透性和肺组织MDA含量升高,SOD活性降低,磷酸化的p38MAPK、ERK1/ERK2和JNK表达上调(P<0.05或0.01);与CLP组比较,PHC组PaO2、PaO2/FiO2和pH值升高,肺微血管通透性和肺组织MDA含量降低,SOD活性升高,磷酸化的p38MAPK和ERK1/ERK2表达下调(P<0.05或0.01).结论 戊乙奎醚预处理可通过抑制MAPK信号转导通路(p38MAPK和ERK1/ERK2)的激活,从而减轻脓毒症小鼠肺损伤.  相似文献   

12.
This study examined the role of mitogen-activated protein (MAP) kinase in PDGF-BB-induced proliferation and gene expression of human mesangial cells (MC). PDGF-BB stimulation of MC increased mRNA for transforming growth factor-beta1 (TGF-beta1), monocyte chemoattractant protein-1 (MCP-1), and plasminogen activator inhibitor-1 (PAI-1) and increased the cell numbers. To inhibit activation of extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, MC were infected with recombinant adenovirus containing dominant-negative mutants of ERK, JNK, and p38 (Ad-DN-ERK, Ad-DN-JNK, Ad-DN-p38, respectively), respectively. Infection of MC with Ad-DN-ERK or Ad-DN-JNK inhibited PDGF-BB-induced increase in [(3)H]thymidine incorporation and cell numbers, whereas Ad-DN-p38 did not. Ad-DN-ERK inhibited MCP-1 and PAI-1 mRNA expression in MC, but not TGF-beta1. Ad-DN-JNK and Ad-DN-p38 inhibited TGF-beta1 and MCP-1 mRNA expression, but not PAI-1. The inhibition of activator protein-1 (AP-1) in MC, by adenovirus containing dominant-negative mutant of c-Jun (Ad-DN-c-Jun), inhibited PDGF-BB-induced cell proliferation and TGF-beta1, MCP-1, and PAI-1 expressions. Furthermore, Ad-DN-JNK or Ad-DN-p38, but not Ad-DN-ERK, attenuated PDGF-BB-induced AP-1 activation in MC, indicating the involvement of JNK and p38 in AP-1 activation. Our results indicated that ERK and JNK, but not p38, participated in PDGF-BB-induced MC proliferation. PDGF-BB-induced expression of TGF-beta1 was mediated by JNK and p38, MCP-1 expression was through ERK, JNK, and p38, whereas PAI-1 expression was due to only ERK. AP-1 activation, which was partially due to JNK and p38 activations, was involved in MC proliferation and these three gene expressions. Thus, three MAP kinases seem to contribute to progression of glomerular disease via different molecular mechanisms.  相似文献   

13.
Tan Z  Dohi S  Chen J  Banno Y  Nozawa Y 《Anesthesiology》2002,96(5):1191-1201
BACKGROUND: To explore whether cytotoxicity of local anesthetics is related to apoptosis, the authors examined how local anesthetics affect mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinases (ERKs), c-Jun N-terminal kinases (JNKs)-stress-activated protein kinases, and p38 kinase, which are known to play important roles in apoptosis. METHODS: Cell death was evaluated using PC12 cells. Morphologic changes of cells, cellular membrane, and nuclei were observed. DNA fragmentation was electrophoretically assayed. Western blot analysis was performed to analyze phosphorylation of the MAPK family, cleavage of caspase-3 and poly(adenosine diphosphate-ribose) polymerase. Intracellular Ca2+ concentration was measured using a calcium indicator dye. RESULTS: Tetracaine-induced cell death was shown in a time- and concentration-dependent manner and characterized by nuclear condensation or fragmentation, membrane blebbing, and internucleosomal DNA fragmentation. Caspase-3 activation and phosphorylation of ERK, JNK, and p38 occurred in the cell death. PD98059, an inhibitor of ERK, enhanced tetracaine-induced cell death and JNK phosphorylation, whereas ERK phosphorylation was inhibited. Curcumin, an inhibitor of JNK pathway, attenuated the cell death. Increase of intracellular Ca2+ concentration was detected. In addition to the increase of ERK phosphorylation and the decrease of JNK phosphorylation, two Ca2+ chelators protected cells from death. Neither cell death nor phosphorylation of the MAPK family was caused by tetrodotoxin. Nifedipine did not affect tetracaine-induced apoptosis. CONCLUSIONS: Tetracaine induces apoptosis of PC12 cells via the MAPK family. ERK activation protects cells from death, but JNK plays the opposite role. Toxic Ca2+ influx caused by tetracaine seems to be responsible for the cell death, but blocking of Na+ channels or L-type Ca2+ channels is unlikely involved in the tetracaine's action for apoptosis.  相似文献   

14.
BACKGROUND: Cyclosporine A (CsA) has been shown to increase transepithelial resistance in Madin-Darby canine kidney (MDCK) cells, and the mechanism may involve altered phosphorylation of junctional proteins. In this study, we examine the effect of the extracellular signal-regulated protein kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) pathways on the basal transepithelial resistance (TER) and on the CsA-induced increase in TER across MDCK monolayers. Here we present evidence that CsA may be mediating some of its effects through activation of the ERK 1/2 MAPK pathway. METHODS: MDCK cells were treated with CsA (4.2 micromol/L) and paracellular permeability was assessed by measuring TER. The role of the ERK 1/2 and the p38 MAPK pathways in modulating TER was investigated using the inhibitors PD98059 and U0126 for ERK 1/2 and SB203580 for p38. ERK 1/2 and p38 phosphorylation/activation was also examined by Western blot analysis. RESULTS: CsA (4.2 micromol/L) increased the TER of MDCK monolayers. The ERK 1/2 inhibitor PD98059 decreased basal TER and also ameliorated the CsA-induced increase in TER. Similar results were found with the U0126 inhibitor of ERK 1/2. The p38 inhibitor SB203580 had no effect on the basal TER of the monolayers, however, SB203580 significantly augmented the CsA-induced increase in TER. CsA was shown to significantly activate ERK 1/2 and this activation by CsA was prevented by PD98059. Inhibition of the p38 pathway by SB203580 also resulted in activation of ERK 1/2 and this activation of ERK 1/2 was further enhanced by CsA. No effect of CsA or the inhibitors PD98059 or SB203580 on p38 phosphorylation was detected. CONCLUSION: The results presented here suggest that activation of the ERK 1/2 MAPK cascade is important in the regulation of the paracellular permeability in MDCK cells. Activation of this pathway appears to be pivotal to the CsA-induced increase in TER.  相似文献   

15.
Kayali AG  Austin DA  Webster NJ 《Diabetes》2000,49(11):1783-1793
Osmotic shock and insulin stimulate GLUT4 translocation and glucose transport via mechanisms that are for the most part distinct yet convergent. In this article, we investigated the effect of osmotic shock and insulin on the activation of the mitogen-activated protein kinase (MAPK) cascades in differentiated 3T3-L1 adipocytes. The MAPKs are activated by phosphorylation on conserved tyrosine and threonine residues. Both sorbitol and insulin strongly stimulated extracellular regulated kinase (ERK) 1 and 2 phosphorylation (8- and 18-fold, respectively). In contrast, c-jun-NH2-terminal kinase (JNK)/stress-activated protein kinase (SAPK) phosphorylation was stimulated only by sorbitol (sevenfold) and not by insulin. Phosphorylation of p38 MAPK was stimulated strongly by sorbitol (22-fold) but weakly by insulin (2.7-fold). Measurement of intrinsic JNK and p38 MAPK activity confirmed the phosphorylation studies. JNK and p38 MAPK were activated only significantly by sorbitol. The MAPKs are phosphorylated by dual-specificity kinases (mitogen-activated ERK-activating kinase [MEK] or MAPK kinase [MKK]). As expected, sorbitol and insulin both stimulated MEK phosphorylation. MKK4 was phosphorylated only in response to sorbitol, and neither of the stimuli caused phosphorylation of MKK3 or 6. To determine the functional significance of the observed activation of p38 MAPK in response to insulin and osmotic shock, we used three pyridinyl imidazole p38 MAPK inhibitors, SB203580, SB202190, and PD169316. Insulin and osmotic shock-stimulated glucose transport was not inhibited by any inhibitor at concentrations that were shown to block p38 MAPK activity. Furthermore, activation of the p38 MAPK pathway by treatment of cells with anisomycin did not stimulate glucose transport. These results suggest that activation of the p38 MAPK pathway is not involved in the stimulation of glucose transport.  相似文献   

16.
BACKGROUND: Transforming growth factor-beta (TGFbeta)-induced epithelial-myofibroblast transdifferentiation is a central mechanism contributing to the pathogenesis of progressive tubulo-interstitial fibrosis. We wanted to dissect the role of extracellular signal-regulated protein kinase (ERK1,2), p38 mitogen-activated protein kinase (p38 MAPK) and the receptor-regulated Smad proteins in the regulation of alpha-smooth muscle cell actin (alphaSMA) expression, a hallmark of myofibroblast formation, induced by TGFbeta in renal proximal tubular cells. METHODS: Activation of signalling molecules was assessed by western blotting using phospho-specific antibodies. To specifically interfere with signalling cascades, porcine proximal tubular cells (LLC-PK/AT1) were infected with recombinant replication-deficient adenoviruses. In other experiments, specific kinase inhibitors were used. The alphaSMA synthesis was assessed by western blotting or immunofluorescent staining of cellular alphaSMA. To assess the regulation of the alphaSMA promoter, tubular cells were transiently transfected with a 785 bp alphaSMA promoter-luciferase reporter construct and vectors interfering with the Smad pathway. RESULTS: Blocking ERK1,2 activation with PD98059 or p38 MAPK with SB 203580 potently inhibited the TGFbeta-induced alphaSMA synthesis in renal tubular cells. Adenoviral expression of dominant negative (DN) p38beta but not of p38alpha potently inhibited alphaSMA expression. Furthermore, adenoviral expression of DN MKK6b but not of DN MKK3b caused a substantial inhibition of the TGFbeta effect, confirming the role of p38beta in the regulation of TGFbeta-induced alphaSMA expression. Finally, inhibiting the Smad pathway with adenovirally delivered Smad7 and DN Smad3 also blocked TGFbeta-induced alphaSMA synthesis. CONCLUSION: TGFbeta-induced alphaSMA expression is regulated by the coordinated activation of a complex system of parallel MAPK and Smad signalling pathways in renal proximal tubular cells during epithelial-mesenchymal transdifferentiation.  相似文献   

17.
目的 探讨丝裂原激活蛋白激酶类(MAPKs)对缺氧条件下人近端肾小管上皮细胞(HKC)中富含半胱氨酸蛋白61(Cyr61)基因转录活性的调控机制。方法 缺氧培养HKC,Northern印迹检测Cyr61mRNA表达;Western印迹检测Cyr61、p38、细胞外信号调节激酶(ERK1/2)、c—Jun—N末端蛋白激酶(JNK)以及缺氧诱导因子1c(HIF-1α)的表达。构建含有人Cyr61基因启动子的报告基因Cyr61-luc质粒,将其单独或者分别与表达活性MAPKs的质粒Ca—MEK1和Ca—MKK6共同瞬时转染HKC。通过荧光素酶活性检测观察缺氧、MAPKs抑制剂和MAPKs活性酶对Cyr61基因转录活性的调控。结果 缺氧时HKC表达cyr61、HIF-1α增高,ERK1/2、JNK、p38总量不变,而其各自的磷酸化形式均明显增加。HKC转染Cyr—luc后,p38通路抑制剂SB203580和ERK通路抑制剂PD98059显著抑制缺氧时Cyr61的转录活性,两者协同作用时抑制作用显著增强。Ca—MEK1与Cyr—luc共转染HKC后,Cyr61转录活性无改变;而Ca—MKK6与Cyr—luc共转染后,Cyr61转录活性显著增高。对缺氧培养的HKC,PD98059处理使HIF-1α和Cyr61蛋白表达显著降低;SB203580处理可显著降低Cyr61蛋白表达,但对HIF-1α无影响。结论 在HKC中,缺氧可通过p38通路直接上调Cyr61基因启动子活性,也可通过ERK1/2途径促进HIF-1α表达,间接调节Cyr61基因启动子活性。  相似文献   

18.
Expression of mitogen-activated protein kinases in human renal dysplasia   总被引:13,自引:0,他引:13  
BACKGROUND: We previously reported that the expression of mitogen-activated protein kinases (MAPKs) is developmentally regulated. Dysregulation of MAPKs may lead to kidney malformation. Thus, we investigated the expression of MAPKs in human renal dysplasia, one of the most common kidney malformations. METHODS: Prenatal (gestational ages 20 to 36 weeks, N = 6) and postnatal (2 years old, N = 1) dysplastic kidneys, and normal kidneys (gestational ages 19 to 34 weeks, N = 4) were examined. Immunohistochemical studies were performed using antibodies against extracellular signal-regulated kinase (ERK), p38 MAPK (p38), c-Jun N-terminal kinase (JNK), phospho-MAPKs (P-MAPKs), and proliferating cell nuclear antigen (PCNA). Apoptosis was detected by the TUNEL method. RESULTS: In dysplastic kidneys, proliferation was prominent in dysplastic tubules and also found in cyst epithelia. TUNEL staining was detected in dysplastic tubules and cysts, and occasionally in undifferentiated cells. p38 and anti-phospho-p38 (P-p38) were strongly expressed in dysplastic epithelia, but not detected in normal kidneys at any stage examined. On the other hand, JNK and P-JNK were positive in tubular epithelia of normal kidneys, whereas their expression was barely detectable in dysplastic tubules and cysts. ERK was expressed in all tubular segments, and P-ERK was detected in distal tubules and collecting ducts of normal kidneys. Dysplastic kidney epithelia stained exclusively positive for ERK and P-ERK. CONCLUSIONS: p38 is ectopically expressed, and JNK is down-regulated in dysplastic kidney epithelia. Furthermore, dysplastic epithelia are exclusively positive for ERK and P-ERK. Activated p38 and ERK may mediate hyperproliferation of dysplastic tubules resulting in cyst formation, whereas down-regulated JNK expression may be the cause or the result of an undifferentiated state of dysplastic epithelia.  相似文献   

19.
PURPOSE: Mitogen-activated protein kinases (MAPKs) comprise 3 subgroups, that is extracellular signal-regulated protein kinase, c-Jun N-terminal kinase (JNK) and p38 MAPK (p38). In this study we analyzed the role of JNK as well as the expression of MAPK phosphatase-1 (MKP-1) in renal cancers. MATERIALS AND METHODS: Four renal cell carcinoma (RCC) cell lines were used. The effects of anisomycin (JNK activator) and Ro-318220 (MKP-1 expression inhibitor) were analyzed by alamar blue assay. Apoptosis was determined by flow cytometric TUNEL analysis, nuclear morphological alternations and the detection of DNA fragmentation. Changes in MKP-1 expression as well as the activation of extracellular signal-regulated protein kinases and JNK were analyzed by Western blotting. RESULTS: All cell lines treated with anisomycin resulted in a transient activation of JNK without inducing apoptosis. Since we hypothesized that elevated MKP-1 expression could possibly prevent persistent JNK activation, Ro-318220 was used. When cells were treated with Ro-318220, MKP-1 expression decreased in Caki-1 and KU 20-01 cells but not in ACHN or 769P cells. Combined treatment of Caki-1 and KU 20-01 cells with anisomycin and Ro-318220 resulted in a decrease in MKP-1 expression concomitant with persistent JNK activation. Apoptosis was induced in each cell line. CONCLUSIONS: These results suggest that prevalent MKP-1 expression in RCC contributes to cancer cell survival by attenuating an apoptosis inducing signal cascade via JNK. Since Ro-318220 potentiated JNK related apoptosis, JNK activation by blocking MKP-1 expression may be an effective therapeutic approach to RCC.  相似文献   

20.
目的:观察恒河猴隐睾(热刺激)模型中睾丸细胞外信号调节激酶1和2(ERK1/2),c-Jun N 末端激酶(JNKs)和 p38有丝分裂原激活蛋白激酶(MAPK)的时空表达变化并探讨其参与支持细胞去分化的可能调节作用。方法:通过免疫组化和 Western blot 方法观察 ERK1/2、p38以及 JNK 在处于隐睾不同时期的睾丸中的表达变化。结果:腹部温度没有明显改变隐睾的睾丸细胞中的 ERK1/2表达量,但明显活化了磷酸化 ERK1/2在支持细胞中的表达。腹腔内的热压明显增加睾丸细胞中 JNK 总体水平的表达,但没有活化磷酸化 JNK 的表达。睾丸细胞内磷酸化 p38以及非磷酸化的 p38的表达不受热刺激的影响。不成熟或未分化的支持细胞的标志分子(CK-18)的时空表达变化与 ERK1/2在隐睾睾丸内的活化存在一致性。结论:隐睾睾丸内 ERK1/2的活化可能参与支持细胞受热刺激后发生去分化的调节过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号