首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Endothelium-derived nitric oxide (NO) is a key signalling molecule in the maintenance of cardiovascular health. Endothelial NO synthase (NOS 3), which catalyses the formation of NO, is targeted to the plasma membrane by dual acylation. In vitro studies suggest that membrane localization of NOS 3 is an important regulatory element of NO production. Dysfunction of the vascular endothelium and a decrease in NO bioavailability is associated with the development and progression of a number of cardiovascular diseases, including hypertension. Our laboratory has previously published that in salt-dependent hypertension there is an altered localization of NOS 3, with an increase in cytosolic expression. These data have led us to question whether the increased cytosolic NOS 3 expression is a form of compensation for endothelial dysfunction in hypertension, or an indicator and contributing factor to endothelial dysfunction. This review will outline the importance of subcellular localization in the regulation of NOS 3 in vitro, the role of NOS 3 in endothelial dysfunction associated with salt-dependent hypertension, and the potential physiological consequences of altered NOS 3 localization in vivo.  相似文献   

2.
Endothelium-dependent relaxation in conduit vessels is mediated largely by nitric oxide (NO), produced by the enzyme endothelial nitric oxide synthase (eNOS) in the presence of the cofactor tetrahydrobiopterin (BH4) and mediated through a cGMP-dependent downstream signalling cascade. Endothelial NOS regulates blood pressure in vivo, and impaired endothelial NO bioactivity in vascular disease states may contribute to systemic hypertension. In the absence of sufficient levels of the cofactor BH4, NO becomes uncoupled from arginine oxidation and eNOS produces superoxide rather than NO. The enzymatic uncoupling of eNOS is an important feature of vascular disease states associated with increased oxidative stress. However, whether eNOS coupling, rather than overall eNOS activity, has specific effects on endothelium-dependent vasorelaxation in vitro, or on blood pressure regulation in vivo, remains unclear. In this study, we evaluate the relationships between blood pressure and endothelial function in models of eNOS uncoupling, using mice with endothelium-targeted transgenic eNOS overexpression (eNOS-Tg), in comparison with littermates in which eNOS coupling was rescued by additional endothelium-targeted overexpression of GTP cyclohydrolase 1 (eNOS/GCH-Tg) to increase endothelial BH4 levels. Despite the previously characterized differences in eNOS-dependent superoxide production between these animals, we find that blood pressure is equally reduced in both genotypes, compared with wild-type animals. Furthermore, both eNOS-Tg and eNOS/GCH-Tg mice exhibit similarly impaired endothelium-dependent vasorelaxation. We show that reduced vasorelaxation responses result from desensitization of cGMP-mediated signalling and are associated with increased NO production rather than changes in superoxide production.  相似文献   

3.
4.
Protein-protein interactions controlling nitric oxide synthases   总被引:3,自引:0,他引:3  
  相似文献   

5.
Early hypercholesterolaemia-induced vascular disease is characterized by an attenuated capacity for endothelial production of the antiatherogenic molecule nitric oxide (NO), which is generated by endothelial NO synthase (eNOS). In recent studies we have determined the impact of lipoproteins on eNOS subcellular localization and action, thereby providing a causal link between cholesterol status and initial abnormalities in endothelial function. We have demonstrated that eNOS is normally targeted to cholesterol-enriched caveolae where it resides in a signalling module. Oxidized low density lipoprotein (LDL; oxLDL) causes displacement of eNOS from caveolae by binding to endothelial cell CD36 receptors and by depleting caveolae cholesterol content, resulting in the disruption of eNOS activation. The adverse effects of oxLDL are fully prevented by high density lipoprotein (HDL) via binding to scavenger receptor BI (SR-BI), which is colocalized with eNOS in endothelial caveolae. This occurs through the maintenance of caveolae cholesterol content by cholesterol ester uptake from HDL. As importantly, HDL binding to SR-BI causes robust stimulation of eNOS activity in endothelial cells, and this process is further demonstrable in isolated endothelial cell caveolae. HDL also enhances endothelium- and NO-dependent relaxation in aortae from wild-type mice, but not in aortae from homozygous null SR-BI knockout mice. Thus, lipoproteins have potent effects on eNOS function in caveolae via actions on both membrane cholesterol homeostasis and the level of activation of the enzyme. These processes may be critically involved in the earliest phases of atherogenesis, which recent studies suggest may occur during fetal life.  相似文献   

6.
During gestation, placental blood flow, endothelial nitric oxide (NO) production, and endothelial cell nitric oxide synthase (eNOS) expression are elevated dramatically. Shear stress can induce flow-mediated vasodilation, endothelial NO production, and eNOS expression. Both the activity and expression of eNOS are closely regulated because it is the rate-limiting enzyme essential for NO synthesis. The authors adapted CELLMAX artificial capillary modules to study the effects of pulsatile flow/shear stress on ovine fetoplacental artery endothelial (OFPAE) cell NO production, eNOS expression, and eNOS phosphorylation. This model allows for the adaptation of endothelial cells to low physiological flow environments and thus prolonged shear stresses. The cells were grown to confluence at 3 dynes/cm2, then were exposed to 10, 15, or 25 dynes/cm2 for up to 24 h and NO production, eNOS mRNA, and eNOS protein expression were elevated by shear stress in a graded fashion (p < .05). Production of NO by OFPAE cells exposed to pulsatile shear stress was de novo; i.e., inhibited by L-NMMA (N(G)-monomethyl-L-arginine) and reversed by excess NOS substrate L-arginine. Rises in NO production at 25 dynes/cm2 (8-fold) exceeded (p < .05) that seen for eNOS protein (3.6-fold) or eNOS mRNA (1.5-fold). Acute rises in NO production with shear stress occurred by eNOS activation, whereas prolonged NO rises were via elevations in both eNOS expression and enzyme activation. The authors therefore used Western analysis to investigate the signaling mechanisms underlying pulsatile shear stress-induced increases in eNOS phosphorylation and protein expression by "flow-adapted" OFPAE cells. Increasing shear stress from 3 to 15 dynes/cm2 very rapidly increased eNOS Ser1177, ERK1/2 (extracellular signal-regulated kinase 1 and 2) and Akt, but not p38 MAPK (p38 mitogen-activated protein kinase) phosphorylation by Western analysis. Phosphorylation of eNOS Ser1177 under shear stress was elevated by 20 min, a response that was blocked by PI-3K (phosphatidylinositol 3-kinase) inhibitors wortmannin and LY294002, but not the MEK (MAPK kinase) inhibitor UO126. Basic fibroblast growth factor (bFGF) enhanced eNOS protein levels in static culture via a MEK-mediated mechanism, but it could not further augment the elevated eNOS protein levels induced by 15 dynes/cm2 shear stress. Blocking of either signaling pathways or p38 MAPK did not change the shear stress-induced increase in eNOS protein levels. Therefore, shear stress induced rapid eNOS phosphorylation on Ser1177 in OFPAE cells through a PI-3K-dependent pathway. The bFGF-induced rise in eNOS protein levels in static culture was much less than those observed under flow and was blocked by inhibiting MEK. Prolonged shear stress-stimulated increases in eNOS protein levels were not affected by inhibition of MEK- or PI-3K-mediated pathways. In conclusion, pulsatile shear stress greatly induces NO production by OFPAE cells through the mechanisms of both PI-3K-mediated eNOS activation and elevations in eNOS protein levels; bFGF does not further stimulate eNOS expression under flow condition.  相似文献   

7.
NO is known to suppress mast cell activation, but the role of NO in mast cell survival is unclear. Ligation of the high-affinity receptor for IgE (FcepsilonRI) resulted in NO production in mast cells within minutes. This NO production was largely dependent on NO synthase (NOS) activity and extracellular Ca(2+). The NO production required an aggregation of FcepsilonRI and was accompanied by increased phosphorylation of endothelial NOS (eNOS) at Ser1177 and Akt at Ser473. The phosphorylation of eNOS and Akt and the production of NO were abolished by the PI-3K inhibitor wortmannin. Although thapsigargin (TG) induced NO production as well, this response occurred with a considerable lag time (>10 min) and was independent of FcepsilonRI aggregation and PI-3K and NOS activity. Mast cells underwent apoptosis in response to TG but not upon FcepsilonRI ligation. However, when the NOS-dependent NO production was blocked, FcepsilonRI ligation caused sizable apoptosis, substantial mitochondrial cytochrome c release, caspase-3/7 activation, and collapse of the mitochondrial membrane potential, all of which were inhibited by the caspase-3 inhibitor z-Asp-Glu-Val-Asp-fluoromethylketone. The data suggest that the NO produced by the PI-3K-Akt-eNOS pathway is involved in protecting mast cells from cell death.  相似文献   

8.
Sciatic axotomy in 2-day-old rats (P2) causes lumbar motoneuron loss, which could be associated with nitric oxide (NO) production. NO may be produced by three isoforms of synthase (NOS): neuronal (nNOS), endothelial (eNOS) and inducible (iNOS). We investigated NOS expression and NO synthesis in the lumbar enlargement of rats after sciatic nerve transection at P2 and treatment with the antioxidant melatonin (sc; 1 mg/kg). At time points ranging from P2 to P7, expression of each isoform was assessed by RT-PCR and immunohistochemistry; catalytic rates of calcium-dependent (nNOS, eNOS) and independent (iNOS) NOS were measured by the conversion of [3H]L-arginine to [3H]L-citrulline. All NOS isoforms were expressed and active in unlesioned animals. nNOS and iNOS were detected in some small cells in the parenchyma. Only endothelial cells were positive for eNOS. No NOS isoform was detected in motoneurons. Axotomy did not change these immunohistochemical findings, nNOS and iNOS mRNA expression and calcium-independent activity at all survival times. However, sciatic nerve transection reduced eNOS mRNA levels at P7 and increased calcium-dependent activity at 1 and 6 h. Melatonin did not alter NOS expression. Despite having no action on NOS activity in unlesioned controls the neurohormone enhanced calcium-dependent activity at 1 and 72 h and reduced calcium-independent catalysis at 72 h in lesioned rats. These results suggest that NOS isoforms are constitutive in the neonatal lumbar enlargement and are not overexpressed after sciatic axotomy. Changes in NO synthesis induced by axotomy and melatonin administration in the current model are discussed considering some beneficial and deleterious effects that NO may have.  相似文献   

9.
Several studies suggest that nitric oxide (NO) production is reduced in diabetes and that the decrease of NO may be related to the pathogenesis of diabetic endothelial damage. NO synthase (NOS) catalyses the conversion of L-arginine to L-citrulline in the presence of oxygen and NADPH-diaphorase (NADPH-d). In this study, we evaluated the expression of endothelial NOS (eNOS) enzyme and its co-enzyme in diabetic rat hearts. Male Wistar rats (n = 20, 4 mo old) and 20 male Bio Breeding Wistar (BB/W) rats of the same age were used; the Wistar rats represent the control non-diabetic rats while the BB/W rats represent the diabetic group. After the hearts were excised, the NADPH-d co-enzyme was visualized by a histochemical method and the endothelial isoform of NOS was localized by immunohistochemistry. In addition, eNOS gene expression was estimated by rt-PCR, and eNOS protein level was detected by Western blot analysis. The eNOS visualization, which involved immunoprecipitation, and the NADPH-d visualization, which involved histochemical staining, were both diminished in endothelial cells of the vascular wall of diabetic hearts, compared to non-diabetic hearts. The eNOS protein level, evaluated by Western blotting, was evident as an intense band in cardiac homogenates of non-diabetic and diabetic rats. The expression of mRNA for eNOS did not differ significantly between the two groups. These findings indicate that, in this rat heart model, diabetes does not influence the overall eNOS protein level or its mRNA level. However, there a diminution in the deposition of eNOS in cardiac endothelial cells of diabetic rats, versus non-diabetic controls, suggesting a relation between eNOS and the loss of vasodilatory response that is observed in diabetes.  相似文献   

10.
Treatment with cold atmospheric plasma (CAP) has been reported to promote wound healing in animals. However, how this process is mediated remains unclear. In this study we examined the mechanisms which underlie the improved wound healing effects of CAP and the roles of associated reactive oxygen and nitrogen species (RONS), which are generated by plasma. By using in vitro models which mimicked various steps of angiogenesis, we demonstrated that CAP triggered the production of nitric oxide (NO), and enhanced cell migration and the assembly of endothelial cells into vessel-like structures. These are both hallmarks of the proliferative phase of wound healing. Using a mouse model of a third-degree burn wound, we went on to show that CAP treatment was associated with enhanced angiogenesis, characterised by accelerated in vivo wound healing and increased cellular proliferation. Here, CAP significantly increased the in vivo production of endothelial NO synthase (eNOS), an enzyme that catalyses NO synthesis in endothelial cells, and significantly increased the expression of pro-angiogenic PDGFRβ and CD31 markers in mouse wounds. Mechanistically, we showed that CAP induced eNOS phosphorylation and activation, thereby increasing the levels of endogenous NO in endothelial cells. Increased NO generation facilitated by CAP further stimulated important pro-angiogenic VEGFA/VEGFR2 signalling in vitro. This proof-of-concept study may guide future efforts aimed at addressing the use of physical plasma and its therapeutic applications in a variety of pathological scenarios. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

11.
Nitric oxide in health and disease of the respiratory system   总被引:30,自引:0,他引:30  
During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.  相似文献   

12.
13.
We have previously demonstrated that angiotensin II (Ang II) stimulates nitric oxide (NO) production in bovine pulmonary artery endothelial cells (BPAECs) by increasing NO synthase (NOS) expression via the type 2 receptor. The purpose of this study was to identify the Ang II-dependent signaling pathway that mediates this increase in endothelial NOS (eNOS). The Ang II-dependent increase in eNOS expression is prevented when BPAECs are pretreated with the tyrosine kinase inhibitors, herbimycin A and 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-D]pyrimidine, which also blocked Ang II-dependent mitogen-activated protein kinase (MAPK) kinase/extracellular-regulated protein kinase (MEK)-1 and MAPK phosphorylation, suggesting that Src is upstream of MAPK in this pathway. Transfection of BPAECs with an Src dominant negative mutant cDNA prevented the Ang II-dependent Src activation and increase in eNOS protein expression. PD98059, a MEK-1 inhibitor, prevented the Ang II-dependent phosphorylation of extracellular-regulated protein kinases 1 and 2 and increase in eNOS expression. Neither AG1478, an epidermal growth factor receptor kinase inhibitor, nor AG1295, a platelet derived growth factor receptor kinase inhibitor, had any effect on Ang II-stimulated Src activity, MAPK activation, or eNOS expression. Pertussis toxin prevented the Ang II-dependent increase in Src activity, MAPK activation, and eNOS expression. These data suggest that Ang II stimulates Src tyrosine kinase via a pertussis toxin-sensitive pathway, which in turn activates the MAPK pathway, resulting in increased eNOS protein expression in BPAECs.  相似文献   

14.
Nitric oxide (NO) produced by NO synthase (NOS) serves as a ubiquitous mediator molecule involved in many physiologic lung functions, including regulation of vascular and bronchial tone, immunocompetence, and neuronal signaling. On the other hand, excessive and inappropriate NO synthesis in inflammation and sepsis has been implicated in vascular abnormalities and cell injury. At least three different NOS isoforms (neuronal/brain [bNOS], inducible [iNOS], and endothelial [eNOS]) have been described, which are all expressed in normal lung tissue. We investigated the cell-specific expression of bNOS, iNOS, and eNOS in perfused control rat lungs and lungs undergoing stimulation with endotoxin in the presence and absence of plasma constituents. Lung immunohistochemistry and quantitative evaluation of staining intensity showed endotoxin-induced increase in iNOS expression in particular in bronchial epithelial cells, cells of the bronchus-associated lymphoid tissue (BALT), alveolar macrophages, and vascular smooth muscle cells in a time- and dose-dependent fashion. In endothelial cells, which did not express iNOS at baseline, newly induced iNOS was found in response to endotoxin. In contrast, expression of eNOS was markedly suppressed under endotoxin challenge, particularly in bronchial epithelium, BALT, and alveolar macrophages but also in vascular smooth muscle cells and endothelial cells. eNOS expression in bronchial smooth muscle cells was not altered. In contrast to iNOS and eNOS, cellular expression of bNOS in epithelial cells, nerve fibers, BALT, and endothelial cells did not change in response to endotoxin. All changes in NOS regulation were found to be independent of plasma constituents. We conclude that endotoxin exerts a profound impact on the cell-specific NOS regulation in a large number of lung cell types. Prominent features include de novo synthesis or up-regulation of iNOS, in contrast to down-regulation of eNOS, which may well contribute to vascular abnormalities, inflammatory sequelae, and loss of physiologic functions in septic lung failure.  相似文献   

15.
16.
Indoleamine 2,3-dioxygenase (IDO) is an enzyme that depletes l-tryptophan, which provokes a decreased T cell response. This enzyme is expressed in human placenta, and can be also induced in many cell types such as monocytes, where endothelial (eNOS) and inducible (iNOS) nitric oxide synthases are also expressed. Previous studies have shown that nitric oxide (NO) inhibits IDO activity, which could cause a suppression of the biological function of IDO when both enzymes are coexpressed. As NO can exert different effects depending on several factors such as its concentration, we studied the effect of low concentrations of NO in the IDO activity in the U-937 and THP-1 monocytic cell lines. Results demonstrated that NO caused a bimodal effect in IDO function in IFN-gamma-stimulated monocytic cells: while high micromolar concentrations of the NO donors SIN-1 and DETA-NO decreased IDO activity, low micromolar concentrations of these NO donors increased IDO activity. Related to this, the NOS inhibitors L-NMMA and aminoguanidine, and the calmodulin antagonist W7 also decreased IDO activity. The effect of NO in IDO activity was not through cGMP production. Immunoprecipitation analysis showed a nitration of the IDO protein in unstimulated and stimulated U-937 and THP-1 cells. However, in monocyte-derived macrophages, with a higher NO production, aminoguanidine increased IDO activity, but the NOS substrate arginine decreased IDO activity. Considering the role of IDO in suppression, these results suggest a function in tolerance of the NOS enzymes depending on the NO production.  相似文献   

17.
This study was to investigate factors underlying the age-related decrease in NO production in vascular endothelial cells. The age-related changes in NO production, the activity and expression level of eNOS, and eNOS binding proteins, were studied in HUVECs.NO production in HUVECs significantly decreased in an age-dependent manner. The potentiation of NO production by l-Arg was significantly suppressed by L-NIO (eNOS-specific inhibitor) in young HUVECs and was suppressed by 1400W (iNOS-specific inhibitor) in aged HUVECs. The aged HUVECs had lower eNOS protein levels than young cells. eNOS phosphorylation at Ser-1177 (active) decreased gradually from PDL 23 through 40, and eNOS phosphorylation at Thr-495 (inactive) increased in aged cells. Changes of intracellular eNOS binding proteins, such as caveolin-1, pAkt, and Hsp90, as well as interaction between eNOS and eNOS binding proteins, indicated decreasing enzyme activity in aged HUVECs.Aging might decrease the activity as well as expression level of eNOS in HUVECs. And the decrease in eNOS activity probably implicated to the alterations in the regulatory binding proteins. For further study, it needs to be confirmed that the age-related change in the intracellular distribution of eNOS and the relative contribution of eNOS and iNOS on vascular dysfunction in aged endothelial cells.  相似文献   

18.
Caveolin-1 is an essential structural protein of caveolae, specialized plasma membrane organelles highly abundant in endothelial cells, where they regulate multiple functions including angiogenesis. Caveolin-1 exerts a tonic inhibition of endothelial nitric oxide synthase (eNOS) activity. Accordingly, caveolin-1 gene-disrupted mice have enhanced eNOS activity as well as increased systemic nitric oxide (NO) levels. We hypothesized that excess eNOS activity, secondary to caveolin deficiency, would mediate the decreased angiogenesis observed in caveolin-1 gene-disrupted mice. We tested tumor angiogenesis in mice lacking either one or both proteins, using in vitro, ex vivo, and in vivo assays. We show that endothelial cell migration, tube formation, cell sprouting from aortic rings, tumor growth, and angiogenesis are all significantly impaired in both caveolin-1-null and eNOS-null mice. We further show that these parameters were either partially or fully restored in double knockout mice that lack both caveolin-1 and eNOS. Furthermore, the effects of genetic ablation of eNOS are mimicked by the administration of the NOS inhibitor N-nitro-L-arginine methyl ester hydrochloride (L-NAME), including the reversal of the caveolin-1-null mouse angiogenic phenotype. This study is the first to demonstrate the detrimental effects of unregulated eNOS activity on angiogenesis, and shows that impaired tumor angiogenesis in caveolin-1-null mice is, at least in part, the result of enhanced eNOS activity.  相似文献   

19.
目的探讨罗格列酮对糖尿病大鼠心肌微血管内皮细胞功能的影响。方法腹腔注射小剂量链脲佐菌素结合高能量饲料制备2型糖尿病大鼠模型,随机分为未治疗组与治疗组:罗格列酮4mg/(kg·d)。16周后定量测定血管内皮损伤标志物:可溶性血管内皮细胞蛋白C受体(sEPCR)、可溶性血栓调节蛋白(sTM)、血管性血友病因子(VWF)和一氧化氮(NO)的血浆浓度。分光光度法及免疫组化法分别测定心肌组织内NO浓度、NO合酶(NOS)的活性及内皮型NO合酶(cNOS)在微血管内皮细胞的表达。结果罗格列酮治疗组血糖及血浆中sEPCR、sTM、vWF显著低于未治疗组,但高于非糖尿病对照组。与未治疗组比较,罗格列酮治疗组心肌组织中NO、结构型NOS(cNOS)含量增高,eNOS阳性反应产物量增多,而诱导型NOS(iNOS)含量降低。结论罗格列酮可以降低糖尿病大鼠血糖,减轻内皮细胞损伤与改善心肌微血管内皮细胞功能,有助于减少糖尿病时心肌微血管病的发生与发展。  相似文献   

20.

Background

Nitric oxide synthase (NOS) is negatively regulated by protein-protein interactions with caveolin-1 before extracellular activating signals release it for nitric oxide (NO) production. Smooth muscle protein kinase G (PKG) is a down-stream effector of NO signaling for relaxation of vascular smooth muscle cells (SMC). The PKG is also found in endothelial cells and it inhibits activated NOS within endothelial cells.

Methods

We used confocal fluorescence microscopy to colocalize the inhibitors caveolin-1 and PKG with NOS in freshly isolated neonatal lamb endothelial cells in order to corroborate the speculation of their differential effects on NOS. The roles of caveolin-1 and PKG as regulators of NOS were investigated by examining their respective subcellular sites of colocalization with NOS using qualitative fluorescence immunohistochemistry and confocal microscopy.

Results

Caveolin-1 was colocalized with NOS in the plasma membrane and Golgi. The PKG1-beta isoform was colocalized with serine116 phosphorylated NOS in the cytosol and in vesicular structures seen in the endoplasmic reticulum and in the nuclear region.

Conclusion

We conclude that unlike caveolin-1, a known pre-activation inhibitor of nascent NOS, PKG may be a post-activation inhibitor of NOS, possibly important for the recycling of the spent enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号