首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
BACKGROUND & AIMS: The molecular mechanisms by which hepatitis C virus (HCV) antagonizes the antiviral actions of interferon (IFN) have not been fully characterized. Specifically, how HCV proteins impact on IFN signaling components has yet to be elucidated. We used an HCV cell-based expression model to examine the interaction between HCV protein expression and host type I IFN signaling components in the Jak-STAT kinase pathway. METHODS: Full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into Huh-T7 cells. HCV expression was monitored by an HCV core antigen enzyme-linked immunosorbent assay. STAT1, P-STAT1, and HCV protein expression was investigated with immunoprecipitation and Western blots. RESULTS: Overexpression and small interfering RNA studies showed that STAT1 was indispensable for control of HCV expression. STAT1 and P-STAT1 expression were markedly reduced in HCV-transfected cells. Full-length HCV, HCV core/E1/E2, and NS3-4A were each associated with decreased STAT1 expression, which was attributable to proteasome-dependent degradation of STAT1. HCV core, but not HCV E1, E2, NS3, NS4, or NS5, bound to STAT1. STAT2 expression was not affected by HCV. CONCLUSIONS: HCV expression selectively degrades STAT1 and reduces P-STAT1 accumulation in the nucleus in a proteasome-dependent manner. HCV core protein binds STAT1, suggesting that this viral protein is associated with STAT1 degradation. STAT1 plays an indispensable role in innate antiviral immunity against HCV expression. In turn, HCV subverts the Jak-STAT kinase by selectively inducing STAT1 degradation.  相似文献   

4.
5.
6.
Enzymes 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 and -4 (PFKFB-3 and PFKFB-4) play a significant role in the regulation of glycolysis in cancer cells as well as its proliferation and survival. The expression of these mRNAs is increased in malignant tumors and strongly induced in different cancer cell lines by hypoxia inducible factor (HIF) through active HIF binding sites in promoter region of PFKFB-4 and PFKFB-3 genes. Moreover, the expression and hypoxia responsibility of PFKFB-4 and PFKFB-3 was also shown for pancreatic (Panc1, PSN-1, and MIA PaCa-2) as well as gastric (MKN45 and NUGC3) cancer cells. At the same time, their basal expression level and hypoxia responsiveness vary in the different cells studied: the highest level of PFKFB-4 protein expression was found in NUGC3 gastric cancer cell line and lowest in Panc1 cells, with a stronger response to hypoxia in the pancreatic cancer cell line. Overexpression of different PFKFB in pancreatic and gastric cancer cells under hypoxic condition is correlated with enhanced expression of vascular endothelial growth factor (VEGF) and Glut1 mRNA as well as with increased level of HIF-1α protein. Increased expression of different PFKFB genes was also demonstrated in gastric, lung, breast, and colon cancers as compared to corresponding non-malignant tissue counterparts from the same patients, being more robust in the breast and lung tumors. Moreover, induction of PFKFB-4 mRNA expression in the breast and lung cancers is stronger than PFKFB-3 mRNA. The levels of both PFKFB-4 and PFKFB-3 proteins in non-malignant gastric and colon tissues were more pronounced than in the non-malignant breast and lung tissues. It is interesting to note that Panc1 and PSN-1 cells transfected with dominant/negative PFKFB-3 (dnPFKFB-3) showed a lower level of endogenous PFKFB-3, PFKFB-4, and VEGF mRNA expressions as well as a decreased proliferation rate of these cells. Moreover, a similar effect had dnPFKFB-4. In conclusion, there is strong evidence that PFKFB-4 and PFKFB-3 isoenzymes are induced under hypoxia in pancreatic and other cancer cell lines, are overexpressed in gastric, colon, lung, and breast malignant tumors and undergo changes in their metabolism that contribute to the proliferation and survival of cancer cells. Thus, targeting these PFKFB may therefore present new therapeutic opportunities.  相似文献   

7.
Nasal natural killer (NK)-cell lymphoma was resistant to various antitumor agents. Although high expression of p-glycoprotein has been reported, other molecular mechanism of the chemo-resistance is largely unknown. Activation of STAT3 and expression of major apoptosis-related proteins Bcl-2, Bcl-x, and Mcl-1 were analyzed by immunohistochemistry. Effects of STAT3 inhibitor AG490 on NK-YS cell line were analyzed by Western blotting and flow cytometric apoptosis assay. STAT3 was activated in six of the nine nasal NK-cell lymphomas (67%). In contrast, STAT3 activation was detected in 35% of diffuse large B-cell lymphoma (DLBCL) and in 10% of follicular lymphoma (FL). Frequent activation of STAT3 was significantly correlated with Mcl-1 expression in nasal NK-cell lymphoma, i.e., Mcl-1 was positive in five of six STAT3-active cases and negative in all three STAT3-inactive ones. In DLBCL, not only six out of seven STAT3-active cases (86%) but also eight out of thirteen STAT3-inactive cases (62%) were positive for Mcl-1 expression. Latent membrane protein-1 was positive in four nasal NK-cell lymphomas, among which three cases showed intermediate STAT3 activation. Inhibition of STAT3 activation by JAK inhibitor AG490 decreased Mcl-1 expression and induced apoptosis in STAT3-active NK-YS cells. Serum starvation rather increased the Mcl-1 level in NK-YS cells, and this effect was also canceled by AG490. These results suggest that activation of STAT3-Mcl-1 axis may play a role in the chemotherapy resistance of nasal NK-cell lymphoma. The pathway may be one of the future therapeutic targets of this intractable disease.  相似文献   

8.
胡艇  赵树鹏 《山东医药》2010,50(48):34-35
目的应用RNA干扰技术沉默信号转导子与转录活化子3(STAT3)基因,探讨其siRNA通过瘤内注射和腹腔注射两种转染途径对裸鼠乳腺癌移植瘤的影响。方法制作乳腺癌裸鼠移植瘤模型,随机分为空白对照组、瘤内注射组和腹腔注射组。取肿瘤行HE及免疫组化染色,采用W estern B lot法检测STAT3表达情况。结果瘤内注射组和腹腔注射组出现大面积细胞坏死及细胞凋亡现象,STAT3为阴性,且STAT3表达明显低于空白对照组(P〈0.05),但前两组间比较无统计学差异(P〉0.05)。结论两种转染途径均可沉默STAT3基因,抑制其表达和肿瘤生长,但两种途径之间无显著性差异。  相似文献   

9.
10.
Epstein–Barr virus (EBV) is associated with a variety of human tumors. Although the EBV-infected normal B cells in vitro and the EBV-carrying B cell lymphomas in immunodeficient patients express the full set of latent proteins (type III latency), the majority of EBV-associated malignancies express the restricted type I (EBNA-1 only) or type II (EBNA-1 and LMPs) viral program. The mechanisms responsible for these different latent viral gene expression patterns are only partially known. IL-21 is a potent B cell activator and plasma cell differentiation-inducer cytokine produced by CD4+ T cells. We studied its effect on EBV-carrying B cells. In type I Burkitt lymphoma (BL) cell lines and in the conditional lymphoblastoid cell line (LCL) ER/EB2-5, IL-21 potently activated STAT3 and induced the expression of LMP-1, but not EBNA-2. The IL-21-treated type I Jijoye M13 BL line ceased to proliferate, and this was paralleled by the induction of IRF4 and the down-regulation of BCL6 expression. In the type III LCLs and BL lines, IL-21 repressed the C-promoter-derived and LMP-2A mRNAs, whereas it up-regulated the expression of LMP-1 mRNAs. The IL-21-treated type III cells underwent plasma cell differentiation with the induction of Blimp-1, and high levels of Ig and Oct-2. IL-21 might be involved in the EBNA-2-independent expression of LMP-1 in EBV-carrying type II cells. In light of the fact that IL-21 is already in clinical trials for the treatment of multiple malignancies, the in vivo modulation of EBV gene expression by IL-21 might have therapeutic benefits for the EBV-carrying malignancies.  相似文献   

11.
12.
Histone deacetylase inhibitors (HDACi) developed as anti-cancer agents have a high degree of selectivity for killing cancer cells. HDACi induce acetylation of histones and nonhistone proteins, which affect gene expression, cell cycle progression, cell migration, and cell death. The mechanism of the tumor selective action of HDACi is unclear. Here, we show that the HDACi, vorinostat (Suberoylanilide hydroxamic acid, SAHA), induces DNA double-strand breaks (DSBs) in normal (HFS) and cancer (LNCaP, A549) cells. Normal cells in contrast to cancer cells repair the DSBs despite continued culture with vorinostat. In transformed cells, phosphorylated H2AX (γH2AX), a marker of DNA DSBs, levels increased with continued culture with vorinostat, whereas in normal cells, this marker decreased with time. Vorinostat induced the accumulation of acetylated histones within 30 min, which could alter chromatin structure-exposing DNA to damage. After a 24-h culture of cells with vorinostat, and reculture without the HDACi, γH2AX was undetectable by 2 h in normal cells, while persisting in transformed cells for the duration of culture. Further, we found that vorinostat suppressed DNA DSB repair proteins, e.g., RAD50, MRE11, in cancer but not normal cells. Thus, the HDACi, vorinostat, induces DNA damage which normal but not cancer cells can repair. This DNA damage is associated with cancer cell death. These findings can explain, in part, the selectivity of vorinostat in causing cancer cell death at concentrations that cause little or no normal cell death.  相似文献   

13.
14.
The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.  相似文献   

15.
目的 探讨微小膜壳绦虫感染ICR小鼠小肠组织中LY6A及IFN-γ、STAT1的表达情况。方法 采集微小膜壳绦虫成虫标本并收集虫卵制作悬液。将ICR小鼠随机分为对照组和实验组,实验组以定量1 000个/只虫卵灌胃感染,于感染后第2 d和第8 d按照编号处死小鼠获取小肠组织。采用HE染色进行小肠组织病理学观察,RT-PCR技术检测LY6A、IFN-γ和STAT1的mRNA相对表达量,免疫组织化学技术检测小肠中LY6A蛋白阳性细胞的表达,并用PRM技术对LY6A蛋白和STAT1蛋白进行相对丰度定量。结果 HE染色结果显示感染后第8 d在肠腔内发现成虫节片,并且虫体寄生处出现急性炎症反应。RT-PCR检测显示感染第2 d实验组LY6A(t=12.57,P<0.001)和STAT1(t=12.13,P<0.001)的mRNA相对表达量低于对照组,而IFN-γ的mRNA相对表达量高于对照组(t=7.78,P<0.01);感染后第8 d实验组LY6A(t=10.01,P<0.001)和STAT1(t=11.19,P<0.001)的mRNA相对表达量高于对照组;而IFN-γ的mRNA相对表达量低于对照组(t=26.47,P<0.001)。免疫组化结果显示感染后第2 d实验组LY6A阳性细胞百分比高于对照组(t=4.26,P<0.01),感染后第8 d实验组LY6A蛋白阳性细胞百分比高于对照组(t=8.18,P<0.001)。PRM检测结果显示感染后第2 d实验组LY6A蛋白相对表达量低于对照组(t=6.55,P<0.05),实验组STAT1蛋白与对照组相比无统计学差异,感染后第8 d实验组LY6A蛋白(t=4.95,P<0.05)和STAT1(t=2.91,P<0.05)蛋白的相对表达量均高于对照组。结论 微小膜壳绦虫感染ICR小鼠小肠后LY6A(Sca-1)的mRNA水平和蛋白水平在幼虫侵入早期呈低表达,成虫期呈高表达;IFN-γ对LY6A的表达不起主导作用,而STAT1可能对LY6A(Sca-1)的表达起诱导作用。  相似文献   

16.
The phosphatidylinositol 3-kinase subunit PIK3CA is frequently mutated in human cancers. Here we used gene targeting to “knock in” PIK3CA mutations into human breast epithelial cells to identify new therapeutic targets associated with oncogenic PIK3CA. Mutant PIK3CA knockin cells were capable of epidermal growth factor and mTOR-independent cell proliferation that was associated with AKT, ERK, and GSK3β phosphorylation. Paradoxically, the GSK3β inhibitors lithium chloride and SB216763 selectively decreased the proliferation of human breast and colorectal cancer cell lines with oncogenic PIK3CA mutations and led to a decrease in the GSK3β target gene CYCLIN D1. Oral treatment with lithium preferentially inhibited the growth of nude mouse xenografts of HCT-116 colon cancer cells with mutant PIK3CA compared with isogenic HCT-116 knockout cells containing only wild-type PIK3CA. Our findings suggest GSK3β is an important effector of mutant PIK3CA, and that lithium, an FDA-approved therapy for bipolar disorders, has selective antineoplastic properties against cancers that harbor these mutations.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号