首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the proposed mechanisms for multidrug resistance relies on the ability of resistant tumor cells to efficiently promote glutathione S-transferase (GST)-catalyzed GSH conjugation of the antitumor drug. This type of conjugation, observed in several families of drugs, has never been documented satisfactorily for anthracyclines. Adriamycin-resistant human breast cancer MCF-7/DOX cells, presenting a comparable GSH concentration, but a 14-fold increase of the GST P1–1 activity relative to the sensitive MCF-7 cells, have been treated with adriamycin in the presence of verapamil, an inhibitor of the 170 P-glycoprotein (P-gp) drug transport protein, and scrutinized for any production of GSH–adriamycin conjugates. HPLC analysis of cell content and culture broths have shown unequivocally that no GSH conjugates are present either inside the cell or in the culture broth. The only anthracycline present inside the cells after 24 hr of incubation was > 98% pure adriamycin. Confocal laser scanning microscopic observation showed that in MCF-7/DOX cells adriamycin was localized mostly in the Golgi apparatus rather than in the nucleus, the preferred site of accumulation for sensitive MCF-7 cells. These findings rule out GSH conjugation or any other significant biochemical transformation as the basis for resistance to adriamycin and as a ground for the anomalous localization of the drug in the cell. Adriamycin, daunomycin, and menogaril did not undergo meaningful conjugation to GSH in the presence of GST P1–1 at pH 7.2. Indeed, their synthetic C(7)-aglycon–GSH conjugates exerted a strong inhibitory effect on GST P1–1, with Ki at 25° in the 1–2 μM range, scarcely dependent on their stereochemistry at C(7).  相似文献   

2.
Energy-dependent rapid drug efflux is believed to be a major factor in cellular resistance to doxorubicin (DOX). However, several recent studies have demonstrated that cellular DOX retention alone does not always correlate with its cytotoxicity and suggest that mechanisms other than rapid drug efflux may also be important. In the present study, we have compared glutathione (GSH) S-transferase (GST), selenium-dependent GSH peroxidase and selenium-independent GSH peroxidase II activities in DOX-sensitive (P388/S) and resistant (P388/R) mouse leukemic cells. The GST activity towards 1-chloro-2,4-dinitrobenzene (CDNB) and ethacrynic acid (EA) was markedly higher in P388/R cells compared to P388/S cells. Purification of GST by GSH-affinity chromatography from an equal number of P388/S and P388/R cells revealed an increased amount of GST protein in P388/R cells. Immunological studies indicated that alpha and pi type GST isoenzymes were 1.27- and 2.2-fold higher, respectively, in P388/R cells compared to P388/S cells. Selenium-dependent GSH peroxidase activity was similar in both the cell lines, whereas selenium-independent GSH peroxidase II activity was approximately 1.36-fold higher in P388/R cells compared to P388/S cells. These results suggest that increased GSH peroxidase II activity in P388/R cells may contribute to cellular DOX resistance by enhancing free radical detoxification in this cell line.  相似文献   

3.
The anthracycline, antitumor drugs doxorubicin (DOX), daunorubicin (DAU), and epidoxorubicin (EPI) catalyze production of formaldehyde through induction of oxidative stress. The formaldehyde then mediates covalent bonding of the drugs to DNA. Synthetic formaldehyde conjugates of DOX, DAU, and EPI, denoted Doxoform (DOXF), Daunoform (DAUF), and Epidoxoform (EPIF), exhibit enhanced toxicity to anthracycline-sensitive and -resistant tumor cells. Uptake and retention of parent anthracycline antitumor drugs (DOX, DAU, and EPI) relative to those of their formaldehyde conjugates (DOXF, DAUF, and EPIF) were assessed by flow cytometry in both drug-sensitive MCF-7 cells and drug-resistant MCF-7/ADR cells. The MCF-7 cells took up more than twice as much drug as the MCF-7/ADR cells, and both cell lines took up substantially more of the formaldehyde conjugates than the parent drugs. Both MCF-7 and MCF-7/ADR cells retained fluorophore from DOXF, DAUF, and EPIF hours after drug removal, while both cell lines almost completely expelled DOX, DAU, and EPI within 1 h. Longer treatment with DOX, DAU, and EPI resulted in modest drug retention in MCF-7 cells following drug removal but poor retention of DOX, DAU, and EPI in MCF-7/ADR cells. Fluorescence microscopy showed that the formaldehyde conjugates targeted the nuclei of both sensitive and resistant cells, and remained in the nucleus hours after drug removal. Experiments in which [(3)H]Doxoform was used, synthesized from doxorubicin and [(3)H]formaldehyde, also indicated that Doxoform targeted the nucleus. Elevated levels of (3)H were observed in DNA isolated from [(3)H]Doxoform-treated MCF-7 and MCF-7/ADR cells relative to controls. The results implicate drug-DNA covalent bonding in the tumor cell toxicity mechanism of these anthracyclines.  相似文献   

4.
The epidermal growth factor (EGF) receptor is expressed at high levels on many types of tumor cells, such as squamous carcinoma, breast cancer and endothelial cells. We studied targeted delivery of the anticancer drug doxorubicin (DOX) using EGF and its receptor-binding fragment (EGFfr) to cells able to overexpress EGF receptors. EGF-DOX and EGFfr-DOX conjugates were synthesized via a glutaraldehyde bridge. The cytotoxic activities (CTA) of the conjugates were studied in vitro in different tumor cell lines (MCF-7 Wt, MCF-7 AdrR, B16) and endothelial cells using MTT-test. The antitumor effects of the conjugates were examined in vivo in mice with a subcutaneous B16 model. In the case of MCF-7 Wt cells, CTA of EGF-DOX and EGFfr-DOX conjugates exceeded 7.7- and 68-fold that of free DOX. Besides, the conjugates effectively decreased the drug resistance of MCF-7 AdrR cells. CTA of the conjugates against endothelial cell cultures markedly exceeded that of free DOX. It is of note that proliferating endothelial cells were much more sensitive to the effects of the conjugates than confluent endothelial cells. Administration of EGF-DOX and EGFfr-DOX conjugates significantly inhibited tumor growth and increased the mean life span of experimental animals by 46 and 48.5%, respectively.  相似文献   

5.
The epidermal growth factor (EGF) receptor is expressed at high levels on many types of tumor cells, such as squamous carcinoma, breast cancer and endothelial cells. We studied targeted delivery of the anticancer drug doxorubicin (DOX) using EGF and its receptor-binding fragment (EGFfr) to cells able to overexpress EGF receptors. EGF-DOX and EGFfr-DOX conjugates were synthesized via a glutaraldehyde bridge. The cytotoxic activities (CTA) of the conjugates were studied in vitro in different tumor cell lines (MCF-7Wt, MCF-7AdrR, B16) and endothelial cells using MTT-test. The antitumor effects of the conjugates were examined in vivo in mice with a subcutaneous B16 model. In the case of MCF-7Wt cells, CTA of EGF-DOX and EGFfr-DOX conjugates exceeded 7.7- and 68-fold that of free DOX. Besides, the conjugates effectively decreased the drug resistance of MCF-7AdrR cells. CTA of the conjugates against endothelial cell cultures markedly exceeded that of free DOX. It is of note that proliferating endothelial cells were much more sensitive to the effects of the conjugates than confluent endothelial cells. Administration of EGF-DOX and EGFfr-DOX conjugates significantly inhibited tumor growth and increased the mean life span of experimental animals by 46 and 48.5%, respectively.  相似文献   

6.
The paper is dealing with the synthesis and properties of new non-targeted or antibody-targeted polymer drug conjugates, bearing doxorubicin (DOX) attached via a spacer susceptible to pH-controlled hydrolysis (hydrazone conjugates), designed as anticancer drugs facilitating site-specific therapy. These conjugates are stable in a pH 7.4 buffer, modeling conditions during transport in the body, but release DOX and activate it inside target cells as a result of pH changes when going from outside to inside the cells. Conjugates containing an antibody directed against T lymphocytes bind effectively and specifically T cell lymphoma EL 4 cells. Cytotoxicity of the hydrazone conjugates is higher than that of classic conjugates, depending on the detailed structure of the polymer, the spacer between the drug and polymer carrier and method of antibody conjugation. Cytotoxicity of some of the conjugates is comparable even with that of the free drug. In both protective and therapeutic regimes of drug administration, the in vivo anti-tumor activity of the conjugates containing DOX was enhanced with long-term survivors (T-cell lymphoma EL 4, C57BL/6 mice) in comparison with much less effective free DOX or a classic P(N-(2-hydroxypropyl)methacrylamide)HPMA–DOX conjugate (already clinically tested).  相似文献   

7.
Null mutation of glutathione transferase (GST) M1 and GSTT1 was reported to correlate statistically with an abnormal increase in the plasma levels of alanine aminotransferase or aspartate aminotransferase caused by troglitazone in diabetic patients (Clin Pharmacol Ther, 73:435-455, 2003). This clinical evidence leads to the hypothesis that GSH conjugation catalyzed by GSTT1 and GSTM1 has a role in the elimination of reactive metabolites of troglitazone. However, the contribution of GST isoforms expressed in human liver to the detoxification of reactive metabolites of troglitazone has not yet been clarified. We investigated the involvement of human GST isoforms in the GSH conjugation of reactive metabolites of troglitazone using recombinant GST enzymes. Five reported GSH conjugates of reactive metabolites were produced from troglitazone after incubation with liver microsomes, NADPH, and GSH in a GSH concentration-dependent manner. Addition of human recombinant GSTA1, GSTA2, GSTM1, or GSTP1 protein to the incubation mixture further increased the GSH conjugates. However, the addition of GSTT1 did not show any catalytic effect. It is of interest that one of the reactive metabolites with a quinone structure was predominantly conjugated with GSH by GSTM1. Thus, we demonstrated that the GST isoforms contributed differently to the GSH conjugation of individual reactive metabolites of troglitazone, and GSTM1 is the most important GST isoform in the GSH conjugation of a specific reactive metabolite produced from the cytotoxic, quinone-form metabolite of troglitazone.  相似文献   

8.
The paper is dealing with the synthesis and properties of new non-targeted or antibody-targeted polymer drug conjugates, bearing doxorubicin (DOX) attached via a spacer susceptible to pH-controlled hydrolysis (hydrazone conjugates), designed as anticancer drugs facilitating site-specific therapy. These conjugates are stable in a pH 7.4 buffer, modeling conditions during transport in the body, but release DOX and activate it inside target cells as a result of pH changes when going from outside to inside the cells. Conjugates containing an antibody directed against T lymphocytes bind effectively and specifically T cell lymphoma EL 4 cells. Cytotoxicity of the hydrazone conjugates is higher than that of classic conjugates, depending on the detailed structure of the polymer, the spacer between the drug and polymer carrier and method of antibody conjugation. Cytotoxicity of some of the conjugates is comparable even with that of the free drug. In both protective and therapeutic regimes of drug administration, the in vivo anti-tumor activity of the conjugates containing DOX was enhanced with long-term survivors (T-cell lymphoma EL 4, C57BL/6 mice) in comparison with much less effective free DOX or a classic P(N-(2-hydroxypropyl)methacrylamide)HPMA-DOX conjugate (already clinically tested).  相似文献   

9.
Drug resistance, one of the major obstacle in the successful anticancer therapy, can be observed at the outset of therapy (intrinsic resistance) or after exposure to the antitumor agent (acquired resistance). To gain a better insight into the mechanisms of intrinsic resistance we have analyzed two human cell types derived from untreated tumors: MCF-7 breast cancer and A549 non small cell lung cancer (NSCLC). We have examined: the cytotoxic effect induced by doxorubicin (DOX); the time course of drug accumulation by flow cytometry and intracellular drug distribution by confocal microscopy; the expression and distribution of proteins related to anthracycline resistance, such as P-gp (P-glycoprotein), MRP1 (multidrug resistance-associated protein) and LRP (lung resistance-related protein). The cytotoxicity assays showed that A549 cells were less sensitive than MCF-7 cells to the DOX treatment in agreement with the different DOX uptake. Moreover, while in A549 cells DOX was mostly located in well defined intracytoplasmic vesicles, in MCF-7 cells it was mainly revealed inside the nuclei. The analysis of P-gp and MRP expression did not show significant differences between the two cell lines while a high expression of LRP was detected at the nuclear envelope and cytoplasmic levels in A549 cells. These findings suggest that the lower sensitivity to DOX treatment showed by lung carcinoma cells could be ascribed to drug sequestration by LRP inside the cytoplasmic compartments.  相似文献   

10.
Glutathione S-transferases (GSTs) are a family of detoxification isozymes that protect cells by conjugating GSH to a variety of toxic compounds, and they may also play a role in the regulation of both cellular proliferation and apoptosis. We have previously shown that human GST P1-1, which is the most widely distributed extrahepatic isozyme, could be inactivated by the catechol estrogen metabolite 4-hydroxyequilenin (4-OHEN) in vitro [Chang, M., Shin, Y. G., van Breemen, R. B., Blond, S. Y., and Bolton, J. L. (2001) Biochemistry 40, 4811-4820]. In the present study, we found that 4-OHEN and another catechol estrogen, 4,17beta-hydroxyequilenin (4,17beta-OHEN), significantly decreased GSH levels and the activity of GST within minutes in both estrogen receptor (ER) negative (MDA-MB-231) and ER positive (S30) human breast cancer cells. In addition, 4-OHEN caused significant decreases in GST activity in nontransformed human breast epithelial cells (MCF-10A) but not in the human hepatoma HepG2 cells, which lack GST P1-1. We also showed that GSH partially protected the inactivation of GST P1-1 by 4-OHEN in vitro, and depletion of cellular GSH enhanced the 4-OHEN-induced inhibition of GST activity. In addition, 4-OHEN GSH conjugates contributed about 27% of the inactivation of GST P1-1 by 4-OEHN in vitro. Our in vitro kinetic inhibition experiments with 4-OHEN showed that GST P1-1 had a lower K(i) value (20.8 microM) compared to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 52.4 microM), P450 reductase (PR, 77.4 microM), pyruvate kinase (PK, 159 microM), glutathione reductase (GR, 230 microM), superoxide dismutase (SOD, 448 microM), catalase (562 microM), GST M1-1 (620 microM), thioredoxin reductase (TR, 694 microM), and glutathione peroxidase (GPX, 1410 microM). In contrast to the significant inhibition of total GST activity in these human breast cancer cells, 4-OHEN only slightly inhibited the cellular GAPDH activity, and other cellular enzymes including PR, PK, GR, SOD, catalase, TR, and GPX were resistant to 4-OHEN-induced inhibition. These data suggest that GST P1-1 may be a preferred protein target for equine catechol estrogens in vivo.  相似文献   

11.
Multidrug resistance (MDR) is a phenomenon associated with the emergence of simultaneous cross-resistance to the cytotoxic action of a wide variety of structurally and functionally unrelated antineoplastic agents. The present study was undertaken to determine if 8226 human myeloma cells possessing the MDR phenotype had an increased ability to resist the intercalating drug doxorubicin (DOX) via glutathione-based detoxification systems. Glutathione S-transferase (GST) was isolated by affinity chromatography, and the enzyme activity was assessed using 1-chloro-2,4-dinitrobenzene (CDNB) and glutathione (GSH) as substrates. There was no difference in overall GST activity between the sensitive and resistant cells. Using a cDNA probe (pGTSS1-2) for the human placental, anionic GST isoenzyme, no overexpression of mRNA for this isoenzyme was noted in the resistant line. When glutathione peroxidase activity (GSH-px) was assessed using either H2O2 or cumene hydroperoxide as substrate, again there was no difference in enzyme activity. Non-protein sulfhydryl (NPSH) levels were found to be elevated significantly in the resistant 8226/DOX40 subline (19.2 +/- 0.1 nmol NPSH/10(6) cells) as compared to the drug-sensitive parental subline 8226/S (11.6 +/- 1.9 nmol NPSH/10(6) cells) (P less than 0.001). In addition, when the 8226/DOX40 cells were cultured in medium without doxorubicin, there was a consistent decline in NPSH values reaching a steady state identical to that of the 8226/S cells. However, the decrease in NPSH level was not accompanied by a change in the level of doxorubicin resistance as assessed by colony-forming assays. Depletion of glutathione by D,L-buthionine-S,R-sulfoximine had no effect on doxorubicin sensitivity in either subline. Thus, it appears that GSH-based detoxification systems are not causally involved in maintaining the MDR phenotype in 8226 human myeloma cells; rather they appear to comprise an epiphenomenon associated with the resistance selection procedure.  相似文献   

12.
13.
Bromodichloromethane (CHBrCl(2)), a prevalent drinking water disinfection byproduct, was previously shown to be mutagenic in Salmonella that express rat GSH transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the kinetics of CHBrCl(2) reactions mediated by GST in different species as well as the isoform specificity and reaction products of the GST pathway. Conjugation activity of CHBrCl(2) with GSH in mouse liver cytosol was time- and protein-dependent, was not inhibited by the GST alpha, mu and pi inhibitor S-hexyl-GSH, and correlated with GST T1-1 activity toward the substrate 1,2-epoxy-3-(4'-nitrophenoxy)propane. Conjugation activities in hepatic cytosols of different species toward CHBrCl(2) followed the order mouse > rat > human. As compared with CH(2)Cl(2), the catalytic efficiency (k(cat)/K(m)) of conjugation of CHBrCl(2) with GSH by pure recombinant rat GST T1-1 was approximately 3-6-fold less. Taken together, this suggests that GST T1-1 is the primary catalyst for conjugation of CHBrCl(2) with GSH and that flux through this pathway is less than for CH(2)Cl(2). The initial GSCHCl(2) conjugate formed was unstable and degraded to several metabolites, including GSCH(2)OH, S-formyl-GSH, and HCOOH. Addition of NAD(+) to cytosol did not alter the rate of conjugation of CHBrCl(2) with GSH; however, it did increase the amount of [(14)C]HCOOH produced ( approximately 10-fold). A similar result was seen in a reaction containing pure rat GST T1-1 and GSH-dependent formaldehyde dehydrogenase, indicating that GSCH(2)OH was formed as a precursor to S-formyl-GSH. The half-life of synthetic S-formyl-GSH in pH 7.4 buffer was approximately 1 h at ambient temperature and decreased to approximately 7 min in pH 9.0 buffer, and it does not react with deoxyguanosine. In conclusion, GST T1-1 conjugation of CHBrCl(2) has been definitively demonstrated and the kinetics of conjugation of CHBrCl(2) with GSH characterized in mouse, rat, and human hepatic cytosols. The significance of this GST pathway is that reactive GSH conjugates are produced resulting in possible formation of DNA adducts. Comparisons with CH(2)Cl(2) suggest that the reactive intermediates specific to GSH conjugation of CHBrCl(2) are more mutagenic/genotoxic than those derived from CH(2)Cl(2).  相似文献   

14.
Resistance against anticancer drugs remains a serious obstacle in cancer treatment. Here we used novel strategies to target microsomal glutathione transferase 1 (MGST1) and glutathione transferase pi (GSTP) that are often overexpressed in tumors and confer resistance against a number of cytostatic drugs, including cisplatin and doxorubicin (DOX). By synthetically combining cisplatin with a GST inhibitor, ethacrynic acid, to form ethacraplatin, it was previously shown that cytosolic GST inhibition was improved and that cells became more sensitive to cisplatin. Here we show that ethacraplatin is easily taken up by the cells and can reverse cisplatin resistance in MGST1 overexpressing MCF7 cells. A second and novel strategy to overcome GST mediated resistance involves using GST releasable cytostatic drugs. Here we synthesized two derivatives of DOX, 2,4-dinitrobenzenesulfonyl doxorubicin (DNS-DOX) and 4-mononitrobenzenesulfonyl doxorubicin (MNS-DOX) and showed that they are substrates for MGST1 and GSTP (releasing DOX). MGST1 overexpressing cells are resistant to DOX. The resistance is partially reversed by DNS-DOX. Interestingly, the less reactive MNS-DOX was more cytotoxic to cells overexpressing MGST1 than control cells. It would appear that, by controlling the reactivity of the prodrug, and thereby the DOX release rate, selective toxicity to MGST1 overexpressing cells can be achieved. In the case of V79 cells, DOX resistance proportional to GSTP expression levels was noted. In this case, not only was drug resistance eliminated by DNS-DOX but a striking GSTP-dependent increase in toxicity was observed in the clonogenic assay. In summary, MGST1 and GSTP resistance to cytostatic drugs can be overcome and cytotoxicity can be enhanced in GST overexpressing cells.  相似文献   

15.
Energy-dependent drug efflux is a major factor in cellular resistance of P388/R84 mouse leukemic cells to anthracyclines such as doxorubicin (DOX), and blocking of efflux increases sensitivity. However, efflux does not play a significant role in resistance to N-trifluoroacetyladriamycin-14-valerate (AD 32), a DOX analog. Since drug efflux alone cannot account for resistance to anthracyclines, we have, in the present study, measured cellular glutathione (GSH) content and activity of GSH cycle related enzymes to determine their role in resistance. Cellular GSH content was similar in DOX-sensitive and -resistant mouse leukemic cells (P388 and P388/R84). GSH peroxidase, glucose-6-phosphate dehydrogenase and glutathione reductase activities were 1.36-, 1.58- and 1.14-fold higher in P388/R84 cells. Incubation of P388/R84 cells with 100 microM buthionine-S,R-sulfoximine (BSO) for 24 hr reduced cellular GSH content to 6% of control and reduced their resistance to DOX [dose modification factor (DMF) 3.9]. GSH depletion had no significant effect on the cytotoxicity of AD 32 (DMF 1.5). Exposure of P388/R84 cells to BSO (for GSH depletion) and trifluoperazine (for efflux blocking) further reduced their resistance to DOX (DMF 14). These results indicate that DOX resistance in P388/R84 cells is multifactorial and that changes in GSH cycle related enzymes such as GSH peroxidase may also contribute to their resistance.  相似文献   

16.
In a panel of 10 human tumour cell lines with no prior exposure to drugs in vitro, resistance to cisplatin correlated with resistance to the nitrogen mustard derivatives Asta Z-7557 (mafosfamide, an activated form of cyclophosphamide), melphalan and chlorambucil. Simultaneous treatment with ,R-sulfoximine did not enhance the toxicity of cisplatin or Asta Z-7557, and no correlation was found between drug resistance and cellular levels of metallothioneins (as judged by sensitivity to cadmium chloride), glutathione (GSH), GSH reductase, GSH transferase, or γ-glutamyltranspeptidase. The two cell lines most resistant to Asta Z-7557 expressed aldehyde dehydrogenase cytosolic isozyme 1, found also in normal ovary, but not isozyme 3. Treatment of resistant cells with cisplatin or Asta Z-7557 inhibited cellular DNA synthesis and replication of adenovirus 5 to a lesser extent than in sensitive cells. The virus could be directly inactivated by both drugs prior to infection, subsequent replication being inhibited to the same extent in sensitive and resistant cells. In contrast to Asta Z-7557 and other DNA damaging agents, cisplatin was much more toxic to adenovirus ( 37 0.022–0.048 μM) than to cells ( 37 0.25–2.5 μM). The adenovirus 5 mutant Ad5ts125 having a G → A substitution was even more sensitive to cisplatin ( 37 7–8 nM) than wild type virus and another mutant. Cisplatin was detoxified less by sonicated resistant cells than sensitive cells, as judged by inactivation of Ad5ts125 added to the reaction mixture. It can be inferred that (i) the major differences in cellular resistance to cisplatin and Asta Z-7557 in the present material did not involve enhanced DNA repair or protection by metallothioneins or GSH, but were associated with the ability to continue cellular and viral DNA synthesis during treatment, (ii) resistance was not associated with less template damage, and (iii) the adenovirus genome may be a suitable probe for predicting tumour resistance to cisplatin and for elucidating the DNA sequence dependence of cisplatin toxicity.  相似文献   

17.
In the present study, a site-saturation mutagenesis library of drug-metabolizing CYP102A1 M11H with all 20 amino acids at position 87 was applied as a biocatalyst for the production of stable and reactive metabolites of clozapine. Clozapine is an atypical antipsychotic drug in which formation of reactive metabolites is considered to be responsible for several adverse drug reactions. Reactive intermediates of clozapine can be inactivated by GSH to multiple GSH conjugates by nonenzymatic and glutathione transferase (GST)-mediated conjugation reactions. The structures of several GST-dependent metabolites have not yet been elucidated unequivocally. The present study shows that the nature of the amino acid at position 87 of CYP102A1 M11H strongly determines the activity and regioselectivity of clozapine metabolism. Some mutants showed preference for N-demethylation and N-oxidation, whereas others showed high selectivity for bioactivation to reactive intermediates. The mutant containing Phe87 showed high activity and high selectivity for the bioactivation pathway and was used for the large-scale production of GST-dependent GSH conjugates by incubation in the presence of recombinant human GST P1-1. Five human-relevant GSH adducts were produced at high levels, enabling structural characterization by (1)H NMR. This work shows that drug-metabolizing CYP102A1 mutants, in combination with GSTs, are very useful tools for the generation of GSH conjugates of reactive metabolites of drugs to enable their isolation and structural elucidation.  相似文献   

18.
Reactive intermediates are a continuous burden in biology and several defense mechanisms have evolved. Here we focus on the functions of glutathione transferases (GSTs) with the aim to discuss the quantitative aspects of defense against reactive intermediates. Humans excrete approximately 0.1 mmol of thioether conjugates per day. As the amount of GST active sites in liver is approximately 0.5 mmol, it appears that glutathione transferase catalysts are present in tremendous excess. In fact, the known catalytic properties of GSTs reveal that the enzymes can empty the liver glutathione (GSH) pool in a matter of seconds when provided with a suitable substrate. However, based on the urinary output of conjugates (or derivatives thereof), individual GSTs turn over (i.e., catalyze a single reaction) only once every few days. Glutathione transferase overcapacity reflects the fact that there is a linear relation between GST enzyme amount and protection level (provided that GSH is not depleted). Put in a different perspective, a few reactive molecules will always escape conjugation and reach cellular targets. It is therefore not surprising that signaling systems sensing reactive intermediates have evolved resulting in the increase of GSH and GST levels. Precisely for this reason, more moderately reactive electrophiles (Michael acceptors) are receiving growing interest due to their anticarcinogenic properties. Another putative regulatory mechanism involves direct activation of microsomal GST1 by thiol-reactive electrophiles through cysteine 49. The toxicological significance of low levels of reactive intermediates are of interest also in drug development, and here we discuss the use of microsomal GST1 activation as a surrogate detection marker.  相似文献   

19.
Glutathione S-transferase pi (GST, E.C.2.5.1.18) overexpression contributes to resistance of cancer cells towards cytostatic drugs. Furthermore, GSTpi is involved in the cellular stress response through inhibition of Jun N-terminal-kinase (JNK), a process that can be modulated by GST inhibitors. GSH conjugates are potent GST inhibitors, but are sensitive towards gamma-glutamyltranspeptidase (gammaGT)-mediated breakdown. In search for new peptidase stable GST inhibitors we employed the following strategy: (1) selection of a suitable (GST inhibiting) peptide-bond isostere from a series of previously synthesized gammaGT stabilized GSH-analogs. (2) The use of this peptidomimetic strategy to prepare a GSTpi selective inhibitor. Two gammaGT stable GSH conjugate analogs inhibited human GSTs, although non-selectively. One of these, a urethane-type peptide-bond is well accepted by GSTs and we selected this modification for the development of a gammaGT stable, GSTpi selective inhibitor, UrPhg-Et(2). This compound displayed selectivity for GSTpi compared to alpha and mu class enzymes. Furthermore, the inhibitor reversed GSTpi-mediated drug resistance (MDR) in breast tumor cells. In addition, short-term exposure of cells to UrPhg-Et(2) led to GSTpi oligomerization and JNK activation, suggesting that it activates the JNK-cJun signaling module through GSTpi dissociation. Altogether, we show the successful use of peptidomimetic glutathione conjugate analogs as GST inhibitors and MDR-modifiers. As many MDR related enzymes, such as MRP1, glyoxalase 1 and DNA-pk are also inhibited by GSH conjugates, these peptidomimetic compounds can be used as scaffolds for the development of multi-target MDR drugs.  相似文献   

20.
Recent association studies suggest that genetically determined deficiencies in GSTs might be a risk factor for idiosyncratic adverse drug reactions resulting from the formation of reactive drug metabolites. hGSTP1-1 is polymorphic in the human population with a number of single nucleotide polymorphisms that yield an amino acid change in the encoded protein. Three allelic variants of hGSTP1-1 containing an Ile105Val or Ala114Val substitution, or a combination of both, have been the most widely studied and showed different activity when compared to wild-type hGSTP1-1*A (Ile105/Ala114). In the present study, we studied the ability of these allelic variants to catalyze the GSH conjugation of reactive metabolites of acetaminophen, clozapine, and diclofenac formed by bioactivation in in vitro incubations by human liver microsomes and drug metabolizing P450 BM3 mutants. The results show that effects of the change of amino acid at residue 105 and 114 on conjugation reactions were substrate dependent. A single substitution at residue 105 affects the ability to catalyze GSH conjugation, while when both residue 105 and 114 were substituted the effect was additionally enhanced. Single mutation at position 114 did not show a significant effect. The different hGSTP1-1 mutants showed slightly altered regioselectivities in formation of individual GSH conjugates of clozapine which suggests that the binding orientation of the reactive nitrenium ion of clozapine is affected by the mutations. For diclofenac, a significant decrease in activity in GSH-conjugation of diclofenac 1′,4′-quinone imine was observed for variants hGSTP1-1*B (Val105/Ala114) and hGSTP1-1*C (Val105/Val114). However, since the differences in total GSH conjugation activity catalyzed by these allelic variants were not higher than 30%, differences in inactivation of reactive intermediates by hGSTP1-1 are not likely to be a major factor in determining interindividual difference in susceptibility to adverse drug reactions induced by the drugs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号