首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new phenolic glycoside syringate, 4′-hydroxy-2′,6′-dimethoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (1), together with two known ones, 2′-hydroxy-4′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (2) and 4′-hydroxy-2′-methoxyphenol 1-O-β-d-(6-O-syringoyl) glucopyranoside (3), were isolated from the bark of Juglans mandshurica MAXIM. var. sieboldiana MAKINO. Their structures were established on the basis of spectral and chemical data.  相似文献   

2.
A new compound, 4-caffeoyl quinic acid 5-O-methyl ether (2), together with 12 known compounds—identified as (2R,3R)-pterosin L 3-O-β-d-glucopyrannoside (3), β-sitosterol β-d-glucopyranoside (4), apigenin 7-Ο-β-d-glucopyranoside (5), luteolin 7-Ο-β-d-glucopyranoside (6), sucrose (7), caffeic acid (8), pterosin C 3-Ο-β-d-glucopyranoside (9), pteroside C (10), 4,5-dicaffeoyl quinic acid (11), pteroside A (12), wallichoside (13) and (2S)-5,7,3′,5′-tetrahydroxyflavanone (14)—were isolated from Pteris multifida. The structure of the new compound was determined by means of physical, chemical and spectroscopic evidence. Compounds 5 and 6 were the main constituents of the plant, with yields of 0.19% and 0.16%, respectively. The cytotoxic activities of 2, 3, and 913 were evaluated against a human cell line (KB cells). Among the isolated compounds, pterosin C 3-Ο-β-d-glucopyrannoside (9) and 4,5-dicaffeoylquinic acid (11) showed a significant selective cytotoxicity (IC50 2.35 and 5.38, respectively), while moderate activity was observed for compound 2 (IC50 12.3). The chemosystematics of Pteris species is also discussed.  相似文献   

3.
From the fruits of Phaleria macrocarpa, icariside C3 (1), phalerin (2), and mangiferin (3) were isolated and their structures were identified on the basis of spectroscopic data. Icariside C3 (1) showed a slow vasorelaxant activity against noradrenaline-induced contraction of isolated rat aorta. The structure of phalerin (2) was revised as 2,4′,6-trihydroxy-4-methoxybenzophenone-2-O-β-d-glucoside.  相似文献   

4.
Five new glycosides, quercetin 3′-O-β-d-galactopyranoside (1), quercetin 3-O-(2″-acetyl)-β-d-glucopyranoside (2), 4,6-dihydroxy-2-methoxyphenyl 1-O-β-d-glucopyranoside (3), 4-hydroxy-2,6-dimethoxyphenyl 1-O-α-l-rhamnopyranosyl (1 → 6)-β-d-glucopyranoside (4) and 3-methyl-but-2-en-1-yl β-d-glucopyranosyl (1 → 6)-β-d-glucopyranoside (5), were isolated from Hypericum erectum Thunb. Their structures were established on the basis of spectral and chemical data.  相似文献   

5.
From dried whole plants of Glechoma hederacea L. (Labiatae), seven known glycosides were isolated and identified: (6R,7E,9R)-megastigma-4,7-dien-3-one 9-O-β-d-glucopyranoside (1), apigenin 7-O-neohesperidoside (2), chrysoeriol 7-O-neohesperidoside (3), (+)-pinoresinol 4,4′-bis-O-β-d-glucopyranoside (4), (+)-syringaresinol 4,4′-bis-O-β-d-glucopyranoside (5), (+)-lariciresinol 4,4′-bis-O-β-d-glucopyranoside (6), and (7R,8R)-threo-7,9,9′-trihydroxy-3,3′-dimethoxy-8-O-4′-neolignan 4-O-β-d-glucopyranoside (7).  相似文献   

6.
The purification of the MeOH extract from the rhizome of Sparganium stoloniferum Buch.-Hamil. (Sparganiaceae) using column chromatography furnished one new phenylpropanoid glycoside (7) and known phenolic compounds (1–6, and 8–13). The structural elucidation of 7 was based on 1D- and 2D-NMR spectroscopic data analysis to be β-d-(6-O-trans-feruloyl) fructofuranosyl-α-d-O-glucopyranoside. Compounds 1–6, and 8–13 were elucidated by spectroscopy and confirmed by comparison with reported data; 24-methylenecycloartanol (1), p-hydroxybenzaldehyde (2), ferulic acid (3), p-coumaric acid (4), vanillic acid (5), β-d-(1-O-acetyl-3-O-trans-feruloyl)fructofuranosy-α-d-2′,4′,6′.-O-triacetyglucopyranoisde (6), β-d-(1-O-acetyl-3,6-O-trans-diferuloyl)fructofuranosyl-β-d-2′,4′,6′.-O-triacetylglucopyranoisde (8), hydroxytyrosol acetate (9), hydroxytyrosol (10), isorhamnetin-3-O-rutinoside (11), n-butyl-α-d-fructofuranoside (12), and n-butyl-β-d-fructopyranoside (13). Compounds 3 and 9–13 were isolated for the first time from this plant. The isolated compounds were tested for cytotoxicity against four human tumor cell lines in vitro using a Sulforhodamin B bioassay.  相似文献   

7.
Two new isoflavone glycosides, tectorigenin 7-O-β-d-glucopyranoside-4′-O-[β-d-glucopyranosyl-(1″″ → 6′′′)-β-d-glucopyranoside] (1) and iristectorigenin B 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (2), together with 11 known compounds, including six isoflavones, tectorigenin 7-O-β-d-glucopyranoside-4′-O-β-d-glucopyranoside (3), tectorigenin 4′-O-[β-d-glucopyranosyl-(1′′′ → 6″)-β-d-glucopyranoside] (4), tectorigenin 7-O-β-d-glucopyranoside (5), genistein 7-O-β-d-glucopyranoside (6), tectorigenin 4′-O-β-d-glucopyranoside (7), and tectorigenin (8); two phenolic acid glycosides, vanillic acid 4-O-β-d-glucopyranoside (9) and glucosyringic acid (10); a phenylpropanoid glycoside, E-coniferin (11); an auronol derivative, maesopsin 6-O-β-d-glucopyranoside (12); and a pyrrole derivative, 4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid (13), were isolated from fresh Iris spuria (Calizona) rhizomes. The structures of these compounds were established on the basis of spectroscopic and chemical evidence. Inhibitory effects on the activation of Epstein–Barr virus early antigen were examined for compounds 18 and 12.  相似文献   

8.
Eleven compounds of interest were isolated from the aerial parts of Caryopteris incana, specifically a new acyl derivative (3) of 8-O-acetylharpagide, two new (3R)-oct-1-en-3-ol glycosides (5, 6), and 6-O-caffeoylphlinoside A (11) along with seven known compounds, 8-O-acetylharpagide (1), 6′-O-p-coumaroyl-8-O-acetylharpagide (2), (3R)-oct-1-en-3-ol (matsutake alcohol) O-α-l-arabinopyranosyl-(1″ → 6′)-O-β-d-glucopyranoside (4), apigenin 7-O-neohesperidinoside (7), 6′-O-caffeoylarbutin (8), and two phenylethanoids, leucosceptoside A (9) and phlinoside A (10). This paper deals with structural elucidation of the new compounds.  相似文献   

9.
Two new phenolic glycosides—3′-O-β-d-glucopyranosysalidroside (1) and cis-echinacoside (2)—together with four known ones—forsythoside B (3), decaffeoylacteoside (4), osmanthuside F (5) and (−)-olivil-4′-O-β-d-glucopyranoside (6)—were isolated from the leaves of Syringa reticulata. Their structures were established on the basis of spectral and chemical data.  相似文献   

10.
Two new neolignan glycosides, (7R, 8R)-threo-guaiacylglycerol-8-O-4′-sinapyl ether 7-O-β-d-glucopyranoside (1) and (7S, 8R)-5-methoxydehydrodiconiferyl alcohol 4-O-β-d-glucopyranoside (2), and four known ones (36), were isolated from the leaves of Osmanthus heterophyllus. The structures of compounds 16 were established on the basis of spectral and chemical data.  相似文献   

11.
Five new triterpene saponins, arganine L (1), O (2), P (3), Q (4) and R (5), were isolated from the barks of Argania spinosa (L.) Skeels. Arganines L-P and R are bidesmosidic saponins. The structures of 15 were elucidated as 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-apiofuranosyl-(1–3)-β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[α-l-arabinopyranosyl] bayogenin, 3-O-[β-d-xylopyranosyl-(1–4)-β-d-glucuronopyranosyl] bayogenin, and 3-O-[β-d-apiofuranosyl-(1–4)-β-d-glucuronopyranosyl]-28-O-[β-d-xylopyranosyl-(1–4)-α-l-rhamnopyranosyl-(1–2)-α-l-arabinopyranosyl] bayogenin, respectively, mainly on the basis of their spectroscopic data.  相似文献   

12.
Five flavonoids, myricetin-3′-methylether 3-O-β-d-galactopyranoside (1), myricetin-3′,5′-dimethylether 3-O-β-d-galactopyranoside (2), quercetin (3), kaempferol (4), and tamarixetin (5) were isolated from the buds of Cleistocalyx operculatus (Myrtaceae). The chemical structures of these compounds were determined on the basis of spectroscopic analyses, including 2D NMR. Their anti-Alzheimer effects were evaluated via acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activity assays. All five compounds 1–5 showed potential inhibitory activities against AChE with IC50 values of 19.9, 37.8, 25.9, 30.4 and 22.3 μM, respectively, while compounds 1, 3, 4 and 5 also possessed BChE inhibitory activity with IC50 values of 152.5, 177.8, 62.5, and 160.6 μM, respectively.  相似文献   

13.
The chromatographic separation of MeOH extract from Clerodendron trichotomum Thunberg leaves led to the isolation of three phenylpropanoid compounds. Using spectroscopic methods, the structures of these compounds were determined as β-(3′, 4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, acteoside (verbascoside) (1), β-(3′, 4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-(6-O-caffeoyl)-glucopyranoside, isoacteoside (2), β-(3′, 4′-dihydroxyphenyl) ethyl-O-α-L-rhamnopyranosyl (1→3)-β-D-glucopyranoside, and decaffeoylacteoside (3). We measured the anti-inflammatory activity of these three phenylpropanoid compounds both in vitro (DPPH Reduction Assay, TBARS Assay on Cu 2+-induced oxidized LDL, PGE2 assay) and in vivo (acetic acidinduced vascular permeability in mice and carrageenan-induced hind paw edema in rats). 80% methanol fraction and acteoside had the activity.  相似文献   

14.
A new flavonol galloylrhamnoside, kaempferol 3-O-(2″,3″-di-O-galloyl)-α-l-rhamnopyranoside, and a new lignan glycoside, hinokinin 7-O-β-d-glucopyranoside were isolated from the leaves of Koelreuteria henryi, along with 18 known compounds, including six flavonol glycosides (38), three lignans (911), four chlorophyll derivatives (1215), two steroids (16, 17), and three aromatic compounds (1820). The structures were determined on the basis of spectral analysis and chemical evidence. The scavenging effect of 18 and 20 on the stable free radical 1,1-diphenyl-2-picrylhydrazyl was examined. Compounds 1, 5, 6, and 20 showed more potent activity than that of trolox.  相似文献   

15.
Constituents from leaves of Apocynum venetum L.   总被引:1,自引:0,他引:1  
An analysis using HPLC–MS revealed that an extract from dried leaves of Apocynum venetum L. contained more than 15 kinds of phenolic constituents. Two malonated flavonol glycosides were further isolated, and their structures were determined to be quercetin 3-O-(6′′-O-malonyl)-β-d-glucoside (1) and quercetin 3-O-(6′′-O-malonyl)-β-d-galactoside (2) by NMR spectroscopic analysis. This is the first report describing the isolation of these malonated flavonol glycosides from A. venetum L. Both glycosides showed strong scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical.  相似文献   

16.
The water extract of Juglans mandshurica fruit has been shown to strongly inhibit pancreatic lipase in vitro in a dose-dependent manner. The extract was observed to inhibit the normal elevation in the level of plasma triacylglycerol in rats 2–4 h after oral administration of a lipid emulsion. Fourteen compounds isolated from J. mandshurica fruit were evaluated for their inhibitory activity against pancreatic lipase. Of these, 1,4,8-trihydroxynaphthalene-1-O-β-d-[6′-O-(3″,4″,5″-trihydroxybenzoyl)]glucopyranoside (1) showed the strongest inhibitory activity.  相似文献   

17.
A new compound named pinoresinol 4-O-α-l-rhamnopyranosyl (1 → 2)-β-d-glucopyranoside (1) together with six known compounds, isolariciresinol 9-O-β-D-glucopyranoside (2), apigenin 6,8-di-C-β-d-glucopyranoside (3), luteolin 7-O-neohesperidoside (4), luteolin 7-O-β-d-glucopyranoside (5), 5-methoxyluteolin 7-O-β-d-glucopyranoside (6), and rutin (7), were isolated from the aerial parts of Urtica laetevirens Maxim. All of the above compounds were isolated from this plant for the first time.  相似文献   

18.
A new ceramide, (2S,2′R,3R,4E,8E)-N-2′-hydroxyoctadecanoyl-2-amino-9-methyl-4,8-heptadecadiene-1,3-diol (1), was isolated together with four known sterols, 5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one (2), ergosterol peroxide (3), cerevisterol (4) and 9α-hydroxycerevisterol (5), from the fruiting bodies of Ramaria botrytis (Pers.) Ricken (Ramariaceae). The structure of the new compound was elucidated based on spectral data.  相似文献   

19.
A novel gallate of tannin, (−)-epigallocatechin-(2β→O→7′,4β→8′)-epicatechin-3′-O-gallate (8), together with (−)-epicatechin-3-O-gallate (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-O-gallate (6), and (+)-gallocatechin-(4α→8′)-epigallocatechin (7), were isolated from the tea plant Camellia sinensis (L.) O. Kuntze var. sinensis (cv., Yabukita). The structure of 8, including stereochemistry, was elucidated by spectroscopic methods and hydrolysis. The compounds, along with commercially available pyrogallol (1), (+)-catechin (2), and (−)-epicatechin (3), were examined for toxicity towards egg-bearing adults of Caenorhabditis elegans. The anthelmintic mebendazole (9) was used as a positive control. Neither 2 nor 3 were toxic but the other compounds were toxic in the descending order 8, 7 6, 9, 4, 5, 1. The LC50 (96 h) values of 8 and 9 were evaluated as 49 and 334 μmol L−1, respectively. These data show that many green tea polyphenols may be potential anthelmintics.  相似文献   

20.
Two new triterpene saponins, named stellatoside B (1) and erucasaponin A (2), were isolated from a cactaceous plant, Stenocereus eruca A. C. Gibson & K. E. Horak (Machaerocereus eruca Br. & R.). The structures of 1 and 2 were elucidated as 3-O-β-d-xylopyranosyl-(1→2)-β-d-glucopyranosyl-(1→2)-β-d-glucuronopyranosyl stellatogenin and 3-O-α-l-rhamnopyranosyl-(1→2)-[α-l-rhamnopyranosyl-(1→3)]-β-d-glucuronopyranosyl betulinic acid 28-O-α-l-rhamnopyranosyl ester, respectively, on the basis of their spectroscopic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号