首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Previous inhibition studies with taurocholate and cardiac glycosides suggested the presence of separate uptake systems for small "type I" (system1) and for bulky "type II" (system2) organic cations in rat hepatocytes. To identify the transport systems involved in type I and type II organic cation uptake, we compared the organic cation transport properties of the rat and human organic cation transporter 1 (rOCT1; hOCT1) and of the organic anion-transporting polypeptides 2 and A (rat Oatp2; human OATP-A) in cRNA-injected Xenopus laevis oocytes. Based on characteristic cis-inhibition patterns of rOCT1-mediated tributylmethylammonium and Oatp2-mediated rocuronium uptake, rOCT1 and Oatp2 could be identified as the organic cation uptake systems1 and 2, respectively, in rat liver. While hOCT1 exhibited similar transport properties as rOCT1, OATP-A- but not Oatp2-mediated rocuronium uptake was inhibited by the OATP-A substrate N-methyl-quinidine. The latter substrate was also transported by rOCT1 and hOCT1, demonstrating distinct organic cation transport activities for rOCT1 and Oatp2 and overlapping organic cation transport activities for hOCT1 and OATP-A. Finally, the data demonstrate that unmethylated quinidine is transported by rOCT1, hOCT1, and OATP-A at pH 6.0, but not at pH 7.5, indicating that quinidine requires a positive charge for carrier-mediated uptake into hepatocytes. In conclusion, the studies demonstrate that in rat liver the suggested organic cation uptake systems1 and 2 correspond to rOCT1 and Oatp2, respectively. However, the rat-based type I and II organic cation transporter classification cannot be extended without modification from rat to human.  相似文献   

2.
Although Oatp1a1 (rat organic anion-transporting polypeptide 1a1) was the transporter found responsible for the hepatocellular entry of enalapril (EN) into the rat liver, the canalicular transporter involved for excretion of EN and the metabolite, enalaprilat (ENA), was unknown. The Eisai hyperbilirubinemic rat (EHBR) that lacks Mrp2 (multidrug resistance-associated protein 2) was used to appraise the role of Mrp2 in the excretion of [3H]EN and its metabolite [3H]ENA in single-pass rat liver preparations. Although the total and metabolic clearances and hepatic extraction ratios at steady-state were virtually unaltered for EN in EHBR compared with published values of Sprague-Dawley rats, the biliary clearances of EN and ENA were significantly reduced almost to zero (P<0.05). Involvement of human OATP1B1, OATP1B3, and MRP2 in EN transport was further assessed in single- or double-transfected mammalian cells. Human embryonic kidney 293 cells that expressed OATP1B1 or OATP1B3 showed that OATP1B3 transport of EN (20-500 microM) was of low affinity, whereas transport of EN by OATP1B1 was associated with the Km of 262+/-35 microM, a value similar to that for Oatp1a1 (214 microM). The transcellular transport of EN via human OATP1B1 and MRP2, investigated with the double-transfected Madin-Darby canine kidney (MDCK) II cells in the Transwell system, showed that the sinusoidal to canalicular flux of EN in the OATP1B1/MRP2/MDCK cells was significantly higher (P<0.05) than that of mock/MDCK and OATP1B1/MDCK cells. EN was transported by Oatp1a1 and Mrp2 in rats and OATP1B1/OATP1B3 and MRP2 in humans.  相似文献   

3.
Gadoxetate is a new hepatobiliary magnetic resonance imaging contrast agent. It is specifically taken up by hepatocytes, and its uptake can be inhibited by the coadministration of bromosulfophthalein, suggesting an involvement of one or several of the cloned organic anion transporting polypeptides Oatp1, Oatp2, and/or OATP. In this study, we demonstrated saturable uptake of gadoxetate by Oatp1 cRNA-injected Xenopus laevis oocytes (Km approximately 3.3 mM). In contrast, gadoxetate was not taken up by Oatp2 or OATP cRNA-injected oocytes. Oatp1-mediated gadoxetate uptake (100 microM) could be inhibited by 10 microM bromosulfophthalein (45%), 200 microM taurocholate (92%), 100 microM rifamycin SV (97%), and 100 microM rifampicin (51%). These results show that gadoxetate is a low-affinity substrate of Oatp1. Oatp1-mediated gadoxetate transport demonstrated a similar apparent Km value and cis-inhibition pattern as previously determined in rats in vivo, indicating that Oatp1 is significantly involved in gadoxetate uptake into rat liver.  相似文献   

4.
The contribution of organic anion transporters to the total efflux of 17beta-estradiol-D-17beta-glucuronide (E(2)17betaG) through the blood-brain barrier (BBB) was investigated using the Brain Efflux Index method by examining the inhibitory effects of probenecid, taurocholate (TCA), p-aminohippurate (PAH), and digoxin. E(2)17betaG was eliminated through the BBB with a rate constant of 0.037 min(-1) after the microinjection into the brain. Probenecid and TCA inhibited this elimination with an IC50 value of 34 and 1.8 nmol/0.5 microl of injectate, respectively, whereas PAH and digoxin reduced the total efflux to about 80 and 60% of the control value, respectively. The selectivity of these inhibitors was confirmed by examining their inhibitory effects on the transport via organic anion transporting polypeptide 1 (Oatp1), Oatp2, organic anion transporter 1 (Oat1), and Oat3 transfectants using LLC-PK1 cells as hosts. Digoxin specifically inhibited the transport via Oatp2 (K(i) = 0.037 microM). The K(i) values of TCA for Oatp1 and Oatp2 (11 and 39 microM, respectively) were about 20 times lower than those for Oat1 and Oat3 (2.8 and 0.8 mM, respectively). PAH did not affect the transport via the Oatp family, but had a similar affinity for Oat1 and Oat3 (85 and 300 microM, respectively). Probenecid had a similar affinity for these transporters (Oatp1, Oatp2, Oat1, and Oat3) examined in this study. Taking the selectivity of these inhibitors into consideration, the maximum contribution made by the Oatp2 and Oat family to the total efflux of E(2)17betaG from the brain appears to be about 40 and 20%, respectively.  相似文献   

5.
Insulin crosses the blood-brain barrier (BBB) via receptor-mediated transcytosis and has been suggested to augment uptake of peripheral substances across the BBB. The delta-opioid receptor-selective peptide D-penicillamine(2,5) (DPDPE), a Met-enkephalin analog, produces analgesia via a central nervous system-derived effect. In vitro (K(cell), microl. min(-1). mg(-1)) and in situ (K(in), microl. min(-1). g(-1)) analyses of DPDPE transport (K(cell) = 0.56 +/- 0. 15; K(in) = 0.28 +/- 0.03) revealed significant (P <.01) increases in DPDPE uptake by the BBB with 10 microM insulin (K(cell) = 1.61 +/- 0.25; K(in) = 0.48 +/- 0.04). In vitro cellular uptake was significantly increased (P <.05) at 1 microM insulin, whereas no significant uptake was observed with CTAP (a somatostatin opioid peptide analog) or sucrose (a paracellular diffusionary marker). No significant change in uptake was seen with DPDPE, CTAP, or sucrose in the presence of holo-transferrin (0-100 microM), indicating that the effect of insulin on DPDPE was not a generalized effect of receptor endocytosis. Insulin did not affect P-glycoprotein efflux, a mechanism that has shown affinity for DPDPE. A similar uptake of DPDPE into the brain (64% increase) was seen with the in situ brain perfusion model. Analgesic assessment revealed a significant decline in DPDPE (i.v.)-induced analgesia with increasing concentrations of insulin (i.v., i.c.v., s.c.) in a dose-dependent manner. Thus, insulin significantly increases DPDPE uptake across the BBB by a specific mechanism. The analgesic effect seen with DPDPE and insulin coadministration was shown to decrease, indicating that insulin reduces the analgesic effect within the central nervous system rather than at the BBB.  相似文献   

6.
This study evaluated the contribution of supraspinal opioid receptors to gastric mucosal protection in the rat. Intracerebroventricular (i.c.v.) and intracisternal (i.c.) injections of selective delta- [[D-Ala(2),D-Leu(5)]-enkephalin (DADLE), [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE), deltorphin II], selective mu- [[D-Ala(2),Phe(4),Gly(5)-ol]-enkephalin (DAGO)] opioid receptor agonists and beta-endorphin (ligand of both receptor types) produced a dose-dependent inhibition of acidified ethanol-induced gastric mucosal damage. The ED(50) values for beta-endorphin, DAGO, DADLE, deltorphin II, and DPDPE were 3.5, 6.8, 75, 120, and 1100 pmol/rat, respectively, following i.c.v. and 0.8, 9.0, 45, 0.25, and 7 pmol/rat following i.c. injection. The gastroprotective effect of DADLE, deltorphin II, and DPDPE, but not that of DAGO, was inhibited by naltrindole, the selective delta-receptor antagonist. Since the delta(2)-receptor agonist deltorphin II was more potent than the delta(1)-receptor agonist DPDPE, the dominant role of central delta(2)-receptors in gastroprotection might be raised. The site of action for delta-receptor agonists is likely to be the brain stem since the peptides were more potent following i.c. than following i.c.v. administration. The gastroprotective effect was reduced following acute bilateral cervical vagotomy. Moreover, both the nitric-oxide synthase inhibitor N(G)-nitro-L-arginine (3 mg/kg i.v.) and the prostaglandin synthesis inhibitor indomethacin (20 mg/kg p.o.) decreased the protective effect of opioid peptides. The results indicate that 1) activation of supraspinal delta- and mu-opioid receptors induces gastric mucosal protection, 2) integrity of vagal nerve is necessary for the gastroprotective action of opioids, and 3) mucosal nitric oxide and prostaglandins may be involved in the opioid-induced gastroprotection.  相似文献   

7.
Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms that enable peripheral pain/inflammation to "transmit" upstream signals and alter CNS drug transport processes. Our goal was to investigate, in vivo, BBB functional expression of Oatp1a4 in animals subjected to peripheral inflammatory pain. Inflammatory pain was induced in female Sprague-Dawley rats (200-250 g) by subcutaneous injection of 3% λ-carrageenan into the right hind paw; control animals were injected with 0.9% saline. In rat brain microvessels, Oatp1a4 expression was increased during acute pain/inflammation. Uptake of taurocholate and [d-penicillamine(2,5)]-enkephalin, two established Oatp substrates, was increased in animals subjected to peripheral pain, suggesting increased Oatp1a4-mediated transport. Inhibition of inflammatory pain with the anti-inflammatory drug diclofenac attenuated these changes in Oatp1a4 functional expression, suggesting that inflammation in the periphery can modulate BBB transporters. In addition, diclofenac prevented changes in the peripheral signaling cytokine transforming growth factor-β1 (TGF-β1) levels and brain microvascular TGF-β receptor expression induced by inflammatory pain. Pretreatment with the pharmacological TGF-β receptor inhibitor 4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide (SB431542) increased Oatp1a4 functional expression in λ-carrageenan-treated animals and saline controls, suggesting that TGF-β signaling is involved in Oatp1a4 regulation at the BBB. Our findings indicate that BBB transporters (i.e., Oatp1a4) can be targeted during drug development to improve CNS delivery of highly promising therapeutics.  相似文献   

8.
The cloned delta-opioid receptor (DOR) is being investigated as a potential target for novel analgesics with an improved safety profile over mu-opioid receptor agonists such as morphine. The current study used antisense techniques to evaluate the role of DOR in mediating supraspinal antinociception in rats. All of the opioid agonists tested (delta-selective: deltorphin II, DPDPE, pCl-DPDPE, SNC80; mu-selective: DAMGO; i.c.v.) provided significant, dose-dependent antinociception in the paw pressure assay. Administration of a phosphodiester antisense oligonucleotide (i.c.v. ) targeted against DOR inhibited antinociception in response to SNC80, deltorphin II, and pCl-DPDPE compared with mismatch and saline-treated controls. However, antisense treatment did not inhibit the response to DPDPE or DAMGO. In contrast, the highly selective mu-antagonist CTOP blocked antinociception in response to ED(80) concentrations of DAMGO and DPDPE, reduced the response to pCl-DPDPE, and did not alter the response to deltorphin II or SNC80. In total, these data suggest that DOR mediates the antinociceptive response to deltorphin II, SNC80, and pCl-DPDPE at supraspinal sites and further demonstrates that the DOR-mediated response to deltorphin II and SNC80 is independent of mu-receptor activation. Conversely, supraspinal antinociception in response to DPDPE is mediated by a receptor distinct from DOR; this response is directly or indirectly sensitive to mu-receptor blockade. The distinct pharmacological profile of DPDPE suggests that either this prototypical delta-agonist mediates antinociception by a direct, nonselective interaction at mu-receptors or DPDPE interacts with a novel delta-subtype that, in turn, indirectly activates mu-receptors in the brain.  相似文献   

9.
CCK-8 (L-aspartyl-L-tyrosyl-L-methionylglycyl-L-tryptophyl-L-methionyl-L-aspartyl-L-phenylalaninamide hydrogen sulfate ester), a derivative of the gastrointestinal peptide hormone cholecystokinin, is specifically taken up into human hepatocytes by the organic anion transporter OATP1B3 (OATP8). So far it was unknown which transporter mediates the excretion of CCK-8 into bile. Double-transfected Madin-Darby canine kidney strain II cells, expressing recombinant human OATP1B3 in the basolateral membrane together with human ABCC2 (multidrug resistance protein 2, MRP2) in the apical membrane, represent a valuable model system to study vectorial transport. The importance of an appropriate filter support for optimized protein localization and substrate transport was demonstrated by the comparison of filter pore densities of 2 x 10(6) and 1 x 10(8) per cm(2). At the high pore density, immunofluorescence microscopy showed an intense OATP1B3 signal in the basolateral membrane of all cells, and 82 +/- 8% of cells expressed ABCC2 in the apical membrane. Uptake and efflux of radiolabeled CCK-8 in the double-transfected cells grown at high pore density was enhanced 3.5- and 5.6-fold, respectively, compared with cells grown at lower pore density. Higher transport rates were also observed with [(3)H]bromosulfophthalein. The high-affinity ATP-dependent transport of CCK-8 by ABCC2 was directly demonstrated in ABCC2-containing membrane vesicles with a K(m) value of 8.1 microM. The uptake by OATP1B3 and hence the vectorial transport of CCK-8 was inhibited by cyclosporin A (K(i) 1.2 microM) and by MK571 [(3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethylamino-3-oxopropyl)thio)methyl)thiopropanoic acid] (K(i) 0.6 microM); the respective K(i) values for the ABCC2-mediated transport were 24 and 8.5 microM. Thus, using an optimized filter support, we demonstrate vectorial transport of CCK-8 by OATP1B3 and by the apical export pump ABCC2.  相似文献   

10.
The organic anion transporting polypeptides OATPs are key membrane transporters for which crystal structures are not currently available. They transport a diverse array of xenobiotics and are expressed at the interface of hepatocytes, renal tubular cells, enterocytes, and the choroid plexus. To aid the understanding of the key molecular features for substrate-transporter interactions, pharmacophore models were produced for the two OATPs that have been most extensively studied, namely rat Oatp1a1 and human OATP1B1. Literature data from Chinese hamster ovary, HeLa, human embryonic kidney 293 cells, and Xenopus laevis oocytes were used to construct pharmacophores for each individual transporter which were later merged to show similarities across cell lines for the same transporter. Additionally, meta-pharmacophores were generated from the combined datasets of each cell system used with the same transporter. The pharmacophores for each transporter consisted of hydrogen bond acceptor and hydrophobic features. There was good agreement between the merged and meta-pharmacophores containing two hydrogen bond acceptors and two or three hydrophobic features for Oatp1a1 and OATP1B1. External test sets were used to validate the individual pharmacophores. The meta-pharmacophores were also used to make predictions for molecules not included in the models and provided new molecular insight into the key features for these OATP transporters. This approach can be extended to other transporters for which limited data are available.  相似文献   

11.
Hepatic uptake of albumin-bound amphipathic organic cations has been suggested to be mediated by multispecific bile salt and organic anion transport systems. Therefore, we investigated whether the recently cloned rat organic anion transporting polypeptides 1 and 2 as well as the human organic anion transporting polypeptide might be involved in the hepatocellular uptake of bulky type II organic cations. In cRNA-injected Xenopus laevis oocytes, all three carriers mediated uptake of the known type II model compounds N-(4, 4-azo-n-pentyl)-21-deoxy-ajmalinium and rocuronium, whereas the newly synthesized type II model compounds N-methyl-quinine and N-methyl-quinidine were transported only by the human organic anion transporting polypeptide. This carrier-mediated uptake of N-methyl-quinine and N-methyl-quinidine was sodium-independent and saturable with apparent K(m) values of approximately 5 and approximately 26 microM, respectively. In contrast to bulky type II organic cations, more hydrophilic type I organic cations such as tributylmethylammonium and choline were not transported by any of the organic anion transporting polypeptides. These findings demonstrate that organic anion transporting polypeptides can also mediate hepatocellular uptake of type II organic cations, whereas uptake of small and more water-soluble type I cations is mediated by different transport systems such as the organic cation transporters.  相似文献   

12.
We studied the influence of opioid agonists on the release of serotonin (5-HT) elicited by K+ (20 mM) in superfused slices of rat hippocampus. K+-evoked outflow of serotonin was inhibited significantly up to 50% in the presence of the mu-selective agonist [D-Ala2,N-methyl-Phe4,Gly5-ol]enkephalin (DAGO) and of the delta-selective agonist [D-Pen2,D-Pen5]enkephalin (DPDPE). U50,488H a selective kappa agonist, at concentrations between 0.1 to 1 microM, produced an inhibition of 5-HT-release lower than that observed in the presence of mu and delta agonists. The delta antagonist ICI 174,864 (N,N-diallyl-Tyr1,Aib2,Aib3)Leu-enkephalin potently inhibited the effect of DPDPE but did not affect the inhibition produced by DAGO. In contrast, the mu-selective antagonist D-Phe-Cys-Tyr-D-Trp-Nle-Thr-Pen-Thr-NH2 at 1 microM significantly reversed the inhibitory effect produced by a maximal dose of DAGO (0.1 microM) but not the corresponding effect produced by a maximal dose of DPDPE (1 microM). Naloxone was a competitive antagonist of DAGO but noncompetitive antagonist of DPDPE. Treatment of hippocampal slices with pertussis toxin did not alter the K+-evoked release of 5-HT but abolished the inhibitory effect of both DAGO and DPDPE.  相似文献   

13.
This study has investigated the development of antinociceptive tolerance to, and cross-tolerance between, two highly selective delta agonists, [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Ala2] deltorphin II as well as to [D-Ala2,NMePhe4,Gly-ol5]enkephalin (DAMGO), a highly selective mu agonist, in mice. Intracerebroventricular administration of DPDPE, [D-Ala2]deltorphin II and DAMGO each produced an antinociceptive effect. Pretreatment with i.c.v. DPDPE twice daily for 3 days resulted in tolerance to DPDPE as shown by a 4.8-fold rightward shift in the dose-response curve. In contrast, in DPDPE pretreated mice, the dose-response lines for [D-Ala2]deltorphin II and DAMGO were not altered when compared to those obtained in naive animals. The development of tolerance was also shown by pretreating mice with i.c.v. [D-Ala2]deltorphin II; following this pretreatment, the [D-Ala2]deltorphin II dose-response line was displaced to the right by more than 37-fold. In contrast, in [D-Ala2]deltorphin II-pretreated mice, the dose-response lines for DPDPE and DAMGO were not altered compared to those obtained in naive animals. Finally, pretreatment with i.c.v. DAMGO produced a rightward displacement of the DAMGO dose-response line of 47-fold, indicating the development of antinociceptive tolerance. In DAMGO-pretreated mice, however, the dose-response lines for DPDPE and [D-Ala2]deltorphin II were not altered compared to those obtained in naive mice. Thus, the data indicate that antinociceptive tolerance develops to DPDPE, [D-Ala2]deltorphin II and DAMGO but that there is no cross-tolerance between these compounds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The antidiarrheal and constipating effects of opiates are partly attributed to reductions in active anion secretion across the intestinal mucosa that are modulated by submucosal neurons. In this study, the opioid receptor mediating the actions of opioids on ion transport was characterized in mucosa-submucosa sheets from porcine ileum. Electrical transmural stimulation evoked transient increases in short-circuit current, an electrical measure of neurogenic ion transport, in this preparation. After serosal addition, the peptidic delta-opioid agonists [D-Ala(2)]-deltorphin II (pIC(50) = 8.4 +/- 0.7), [D-Ala(2),D-Leu(5)]-enkephalin (DADLE), [D-Pen(2),D-Pen(5)]-enkephalin (DPDPE), and [D-Ser(2),Leu(5),Thr(6)]-enkephalin (DSLET), and the mu-opioid agonists [D-Ala(2),N-methyl-Phe(4),Gly(5)-ol]-enkephalin (DAMGO) (pIC(50) = 8.0 +/- 0.1), endomorphin I, and PL-017 inhibited short-circuit current elevations. Nonpeptidic mu- or delta-opioid agonists (morphine, loperamide, and SNC80) and kappa-opioid agonists (U-50,488H and U-69,593) were <360-fold less potent than deltorphin II. At 100 nM, the delta(1)-opioid antagonist 7-benzylidenenaltrexone reduced the potencies of DPDPE and DAMGO by 13.5- and 15.5-fold, respectively; at an identical concentration naltriben, a delta(2)-opioid antagonist, or the mu-opioid antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP) reduced DPDPE potency by 4.1- and 3.4-fold, respectively, but had no significant effect on DAMGO potency. Using primary antisera directed toward cloned opioid receptors, delta-opioid receptor immunoreactivity was immunohistochemically localized in submucosal neurons and nerve fibers, but immunoreactivities to kappa- or mu-opioid receptors were not detected in the mucosa-submucosa. These results suggest that a novel 7-benzylidenenaltrexone-sensitive opioid receptor is expressed in submucosal neurons of the porcine ileum, which mediates the inhibitory effects of peptidic mu- and delta-opioid agonists on neurogenic ion transport.  相似文献   

15.
The present study has investigated the direct opioid delta receptor-mediated antinociception produced by i.c.v. administration of the highly selective delta agonists, [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Ala2]deltorphin II, as well as that of the less delta-selective [D-Ser2,Leu5,Thr6]enkephalin (DSLET), by using two novel nonequilibrium opioid antagonists, [D-Ala2,Leu5,Cys6] enkephalin (DALCE) and naltrindole 5'-isothiocyanate (5'-NTII). At times ranging from 8 to 48 hr after a single i.c.v. pretreatment of mice with 5'-NTII, the antinociceptive effects of [D-Ala2] deltorphin II were significantly antagonized. In contrast, 5'-NTII pretreatment at times between 10 min and 24 hr failed to antagonize the antinociceptive effects of DPDPE. Previous studies have shown that pretreatment with i.c.v. DALCE produces a dose- and time-related antagonism of DPDPE, but not morphine, antinociception. However, pretreatment with i.c.v. DALCE failed to antagonize the antinociceptive effects of [D-Ala2]deltorphin II. Similarly, i.c.v. administration of DSLET produced time- and dose-related antinociception which was partially antagonized by either beta-funaltrexamine (beta-FNA) or by ICI 174,864 (N,N-dialyl-Tyr-Aib-Aib-Phe-Leu-OH), suggesting mixed activity at mu and delta receptors. ICI 174,864 produced essentially complete antagonism of DSLET antinociception in beta-FNA-pretreated mice. Pretreatment with 5'-NTII (at -8 to -48 hr), blocked the antinociception produced by DSLET in control or in beta-FNA-pretreated mice. In contrast, pretreatment with DALCE failed to antagonize the antinociception produced by i.c.v. DSLET in either control or in beta-FNA-pretreated mice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Guo XH  Fairbanks CA  Stone LS  Loh HH 《Pain》2003,104(1-2):209-217
When agonists to alpha(2)adrenergic receptor (AR) and delta opioid receptor (DOR) are co-administered, they act synergistically to inhibit nociceptive elicited behavior. Some previous studies of synergism have used the DOR-selective agonist [D-Pen(2),D-Pen(5)]-enkehphalin (DPDPE), however, DPDPE has been shown to be less potent in mu opioid receptor-knockout (MOR-KO) mice. It is possible, therefore, that MOR contributes to the synergism of DPDPE with the alpha(2)AR agonists. We compared the interactions of spinally administered DPDPE with an alpha(2)AR-adrenergic agonist in MOR-KO and MOR-wildtype (WT) mice. In these mice, morphine is ineffective and the potency of spinally administered DOR agonists, deltorphin II (DELT II) and DPDPE decreased 16- and 250-fold, respectively. Antagonism studies using the MOR-selective antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH(2) (CTOP) and the DOR-selective antagonist, naltrindole HCl (naltrindole) demonstrated that while DOR mediates DPDPE-induced antinociception in MOR-KO, both MOR and DOR participate in DPDPE antinociception in WT mice, suggesting that DPDPE is less selective for DOR than previously observed in binding studies when given in vivo. The potency of the alpha(2)AR agonist UK14,304 was equivalent in WT and MOR-KO, demonstrating that the loss of opioid-mediated antinociception in the MOR-KO was not due to generalized impairment of antinociceptive processing. Interestingly, isobolographic analysis showed that, despite substantial loss of DPDPE potency in MOR-KO, DPDPE-UK14,304 synergism is fully retained. Collectively, these experiments demonstrate that although MOR participates in DELT II- and DPDPE-mediated spinal antinociception, DOR independently participates in synergistic antinociception with alpha(2)AR. Resolution of the roles of the opioid receptor subtypes in opioid agonist-induced effects may require comparison of the effects of multiple selective agonists in knockout animals.  相似文献   

17.
Drug disposition and response are greatly determined by the activities of drug-metabolizing enzymes and transporters. While the knowledge in terms of CYP enzymes and efflux ABC transporters (such as MDR1, P-glycoprotein) is quite extensive, influx transporters are increasingly being unveiled as key contributors to the process of drug disposition. There is little information on the regulation of these proteins in human cells, especially as regards the effect of endogenous compounds. In this study, we analysed the expression of CYP3A4 and three uptake transporters NTCP (SLC10A1), OATP-A/OATP1A2 (SLCO1A2) and OCT-1 (SLC22A1) in HepG2 cells following treatment with cholesterol. While CYP3A4 and OATP1A2 expression was unaffected, cholesterol treatment led to increased levels of NTCP and OCT-1 mRNAs. Alterations in the functional characteristics and/or expression levels of drug transporters in the liver may conceivably contribute to the variability in drug oral bioavailability often observed in the clinical settings.  相似文献   

18.
Research in our laboratories involves the development of selective opioid agonists and antagonists as: 1) pharmacological tools to elucidate the mechanisms of opioid antinociception, and 2) potential analgesics that possess therapeutic advantages over currently available drugs. We hypothesized that the selectivity of peptide agonists toward the opioid receptor types and subtypes is topographically dependent. The current results assess the antinociceptive activity and opioid receptor selectivity of a series of beta-methyl-2',6'-dimethyltyrosine (TMT)-substituted cyclic [D-Pen(2),D-Pen(5)]enkephalin (DPDPE) and [D-Ala(2), Asp(4)]deltorphin (DELT I) analogs. Compounds were injected via the intracerebroventricular route into male ICR mice, and antinociception was assessed using the 55 degrees C warm water tail-flick test. Antinociceptive A(50) values ranged from 0.35 to 17 nmol for the DELT I analogs and from 7.05 to >100 nmol for the DPDPE analogs. To test for receptor selectivity, mice were treated with selective mu- and delta-opioid antagonists. In general, mu [beta-funaltrexamine (beta-FNA)]- and delta(1) ([D-Ala(2),Leu(5), Cys(6)] enkephalin)-antagonists blocked the antinociceptive actions of [TMT(1)]DPDPE analogs, whereas the antinociceptive actions of [TMT(1)]DELT I analogs were more sensitive to antagonism by the delta(2)-selective antagonist [Cys(4)]deltorphin and the mu-antagonist beta-FNA. The antinociceptive actions of the [(2R, 3S)-TMT(1)]DELT I analog was suppressed by both [D-Ala(2),Leu(5), Cys(6)]enkephalin and beta-FNA. These results are in contrast to those found with the parent molecules DPDPE (primarily a delta(1) agonist) and DELT I (a mixed delta(1)/delta(2) agonist). These results demonstrate that topographical modification in position 1 of the DPDPE and DELT I peptides affects antinociceptive potency and opioid receptor selectivity.  相似文献   

19.
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotor-syndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.  相似文献   

20.
Cigarette smoking is strongly implicated in the development of cardiovascular disorders. Recently identified nicotinium analogs may have therapeutic benefit as smoking cessation therapies but may have restricted entry into the central nervous system by the blood-brain barrier (BBB) due to their physicochemical properties. Using the in situ perfusion technique, lobeline, choline, and nicotinium analogs were evaluated for binding to the BBB choline transporter. Calculated apparent K(i) values for the choline transporter were 1.7 microM N-n-octyl choline, 2.2 microM N-n-hexyl choline, 27 microM N-n-decylnicotinium iodide, 31.9 microM N-n-octylpyridinium iodide, 49 microM N-n-octylnicotinium iodide (NONI), 393 microM lobeline, and >/=1000 microM N-methylnicotinium iodide. Nicotine and N-methylpyridinium iodide, however, do not apparently interact with the BBB choline transporter. Given NONI's apparent K(i) value determined in this study and its ability to inhibit nicotine-evoked dopamine release from superfused rat brain slices, potential brain entry of NONI via the BBB choline transporter was evaluated. [(3)H]NONI exhibited a BBB transfer coefficient value of approximately 1.6 x 10(-3) ml/s/g and a K(m) of approximately 250 microM. Unlabeled choline addition to the perfusion fluid reduced [(3)H]NONI brain uptake. We hypothesize the N-n-octyl group on the pyridinium nitrogen of NONI facilitates brain entry via the BBB choline transporter. Thus, NONI may have utility as a smoking cessation agent, given its ability to inhibit nAChRs mediating nicotine-evoked dopamine release centrally, and to be distributed to brain via the BBB choline transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号