首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new spontaneous mouse mutation named fierce (frc) is deleted for the nuclear receptor Nr2e1 gene (also known as Tlx, mouse homolog of Drosophila tailless). The fierce mutation is genetically and phenotypically similar to Nr2e1 targeted mutations previously studied on segregating genetic backgrounds. However, we have characterized the fierce brain, eye, and behavioural phenotypes on three defined genetic backgrounds (C57BL/6J, 129P3/JEms, and B6129F1). The data revealed many novel and background-dependent phenotypic characteristics. Whereas abnormalities in brain development, hypoplasia of cerebrum and olfactory lobes, were consistent on all three backgrounds, our novel finding of enlarged ventricles in 100% and overt hydrocephalus in up to 30% of fierce mice were unique to the C57BL/6J background. Developmental eye abnormalities were also background-dependent with B6129F1-frc mice having less severe thinning of optic layers and less affected electroretinogram responses. Impaired regression of hyaloid vessels was observed in all backgrounds. Furthermore, retinal vessels were deficient in size and number in 129P3/JEms-frc and B6129F1-frc mice but almost entirely absent in C57BL/6J-frc mice. We present the first standardized behavioural tests conducted on Nr2e1 mutant mice and show that C57BL/6J-frc and B6129F1-frc mice have deficits in sensorimotor assays and are hyperaggressive in both sexes and backgrounds. However, C57BL/6J-frc mice were significantly more aggressive than B6129F1-frc mice. Overall, this extensive characterization of the fierce mutation is essential to its application for the study of behavioural, and brain and eye developmental disorders. In addition, the background-dependent differences revealed will enable the identification of important genetic modifiers.  相似文献   

2.
The interpretation of knockout and transgenic mouse studies in pain research critically depends on detailed knowledge of the performance profile of the background strains. Pain-related behavior was compared between four relevant mouse strains (C57BL/6J, 129S6/SvEv, B6 129 F1 and NMRI mice of both sexes) using an extended test battery that included an unusual variety of assays for thermal and mechanical acute nociception, and inflammatory and neuropathic pain. Strain- and gender-dependent differences were demonstrated in many of these nociceptive assays. Particularly, C57BL and 129 mice, which serve as the default genetic backgrounds for experiments in genetically altered mice, display quite different patterns of nociceptive performance. Compared to C57BL/6J mice, 129S6/SvEv animals are less sensitive to inflammatory pain conditions (thermal sensitivity after carrageenan subplantar injection; flinch behavior after formalin injection), while the opposite is observed in the neuropathic pain condition and the visceral pain model. These data may be of special interest for genetic studies, where issues related to the background phenotype may confound their interpretation.  相似文献   

3.
Targeted gene disruptions have revealed significant roles for caspase family members in the regulation of neuronal programmed cell death. Both caspase-3- and caspase-9-deficient mice exhibit a variably severe neurodevelopmental phenotype that may include marked ventricular zone expansion, exencephaly, and ectopic neuronal structures. Our previous studies of caspase-3- and caspase-9-deficient mice were performed using mice on mixed genetic backgrounds, raising the possibility that strain-specific generic factors influence the effects of caspase deficiency on nervous system development. To directly test this hypothesis. we backcrossed the caspase-3 mutation for 7-10 generations onto pure C57BL/6J and 129X1/SvJ genetic backgrounds. Caspase-3-deficient 129X1/SvJ mice were uniformly and severely affected. These mice died during the perinatal period and exhibited marked neural precursor cell expansion and exencephaly. In contrast, caspase-3-deficient C57BL/6J mice reached adulthood, were fertile and showed minimal brain pathology. Intercrosses of C57BL/6J and 129X1/SvJ mutants revealed that the vast majority of caspase-3-/- F1 mice displayed the severe 129X1/SvJ-"like" phenotype. These findings are consistent with an incompletely penetrant strain-dependent genetic modifier (or modifiers) that alters the neurodevelopmental consequences of caspase-3 deficiency. Since caspase-9- and Apaf-1-deficient mice also display variably severe developmental neuropathology, this strain-dependent modifier(s) may be involved in the activation of a caspase-independent death pathway; alternatively, strain-dependent compensatory caspase activation and/or its inhibition may influence the severity of the caspase-3-deficient neuronal phenotype.  相似文献   

4.
Although many kinds of rat and gerbil cerebral ischemic preconditioning models are available, only a focal ischemic preconditioning model in mice has been reported. As most genetic alterations have been performed in mice, it is urgent to develop mouse ischemic preconditioning models for investigating the molecular mechanisms of ischemic preconditioning in transgenic mice. In the present study, we developed a forebrain ischemic preconditioning model in C57Black/Crj6 (C57BL/6) mice. Forebrain ischemia was induced in C57BL/6 mice (8-10 weeks old) by bilateral common carotid artery occlusion (BCCAO) for 18 min. The conditioning ischemic insult lasting for 6 min was carried out 48 h before the 18-min BCCAO. On the seventh day after BCCAO, neuronal damage was visualized by microtubule-associated protein-2 immunohistochemistry and quantified by cresyl violet staining. Terminal deoxytransferase-mediated dUTP-nick end labeling (TUNEL) was performed 72 h after reperfusion to detect DNA fragmentation. Ischemia for 18 min resulted in injury to the striatum, cortex and hippocampus. In comparison to the hippocampus, striatal neuronal injury was more severe and reproducible. Although the conditioning ischemia itself caused neither noticeable striatal neuronal damage nor DNA fragmentation, it significantly reduced striatal neuronal damage and DNA fragmentation caused by the subsequent 18-min ischemia. These results indicate that striatal neuronal injury after transient BCCAO can be strongly reduced by a sublethal ischemic episode in C57BL/6 mice. As many kinds of gene-altered C57BL/6 mice are available, this preconditioning model may be useful for investigating the molecular mechanisms of ischemic preconditioning in transgenic mice.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder. While most cases of ALS are sporadic, 10-15% are familial, and of these 15-20% possess a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1). In families of ALS patients with specific SOD1 mutations, affected members demonstrate significant heterogeneity of disease and a large variation in age of onset and severity, suggesting that there are genetic modifiers of disease expression. Transgenic mice expressing mutant forms of SOD1 demonstrate symptoms similar to those seen in patients with ALS. We have observed in our colony of G93A SOD1 transgenic mice a milder phenotype in mice in a C57BL/6J background than the C57BL/6JxSJL/J hybrid background used by Jackson Laboratories to maintain their colony. To investigate the effect of genetic background on phenotype, we have constructed congenic lines on two genetic backgrounds, C57BL/6J (B6) and SJL/J (SJL). We report the influence of background and gender on the survival of these congenic lines compared to the hybrid C57BL/6JxSJL/J background. The mean survival of G93A SOD1 mice in the hybrid B6/SJL background was 130 days, with females surviving significantly longer than males. When compared to the hybrid B6/SJL background, the survival of mice in the SJL background significantly decreased, and the gender difference in survival was maintained. On the other hand, mean survival in the B6 background significantly increased, and in contrast to the B6/SJL and SJL backgrounds, there was no difference in survival between males and females. Transgene copy numbers were verified in all animals to ensure that any phenotypic differences observed were not due to alterations in copy number. This is the first report of a shortened lifespan when the G93A SOD1 transgene is placed on the SJL/J background and an increased survival with the loss of gender influences when the transgene is placed on the C57BL/6J background.  相似文献   

6.
Animal models of genetic diseases obtained by transferring human mutated genes in the mouse are widely used in biomedical based research. They constitute efficient tools to study mechanisms underlying abnormal phenotypes. Unfortunately, the phenotype of the transgene is often obscured by the genetic background of the embryonic stem cells and that of the recipient strain used to create the transgenic line. It is also known, from the literature, that repeatedly backcrossing a transgenic strain to an inbred background may have unfavorable effects that can result in the loss of the transgenic line. In order to analyze the influences of the genetic background on the transgene expression, we studied the effects of the hAPPswe transgene involved in Alzheimer's Amyloid Pathology, in 3 genetic backgrounds differing by their genetic heterogeneity (homozygous vs heterozygous) and the strain of origin (C57BL6, CBA, B6SJL F1) after only one generation backcrossing. Three different behavioral paradigms were used to assess the psychological and cognitive phenotypic differences: elevated plus maze, morris navigation task and contextual fear conditioning. Our data indicate that the best solution to maintain the transgenic line is to backcross repeatedly the transgenic mice into the F1 hybrid cross that was used to create the transgenic strain, whereas phenotyping should be performed comparatively after only one generation backcrossing into various well chosen F1 or inbred backgrounds.  相似文献   

7.
p25, a degradation product of p35, has been reported to accumulate in the forebrain of patients with Alzheimer's disease. p25 as well as p35 are activators of cyclin-dependent kinase 5 (Cdk5) although p25/Cdk5 and p35/Cdk5 complexes have distinct properties. Several mouse models with high levels of p25 expression exhibit signs of neurodegeneration. On the contrary, we have shown that low levels of p25 expression do not cause neurodegeneration and are even beneficial for particular types of learning and memory [Angelo et al., (2003) Eur J. Neurosci., 18, 423-431]. Here, we have studied the influence of low-level p25 expression in hippocampal synaptic plasticity and in learning and memory for each sex separately in two different genetic backgrounds (129B6F1 and C57BL/6). Surprisingly, we found that low-level p25 expression had different consequences in male and female mutants. In the two genetic backgrounds LTP induced by a strong stimulation of the Schaffer's collaterals (four trains, 1-s duration, 5-min interval) was severely impaired in male, but not in female, p25 mutants. Furthermore, in the two genetic backgrounds spatial learning in the Morris water maze was faster in female p25 mutants than in male transgenic mice. These results suggest that, in women, the production of p25 in Alzheimer's disease could be a compensation for some early learning and memory deficits.  相似文献   

8.
Transgenic mouse models of Alzheimer's disease (AD) are being utilized as models for elucidating AD etiology and potential therapeutic approaches. However, two major drawbacks of these models are: (1) transgenic animals often over-express amyloid beta (Abeta) to high levels compared to that seen in sporadic human AD and (2) the current intellectual property issues surrounding a number of these models make them difficult to utilize in a commercial setting. Our goal was to identify an appropriate non-transgenic mouse strain, devoid of these patent restrictions and test whether amyloid-modulating compounds will lower total brain and plasma Abeta. Plasma and brain samples were collected from eight commonly used mouse strains (C57BL/6, SJL, CF-1, DBA/2, CD-1, 129, FVB and B6D2F1; Charles River Labs) and total Abetalevels were validated and quantified with a rodent-specific monoclonal Abetaantibody. Plasma Abeta in SJL mice was the highest of the eight strains tested (213 pM +/- 21 pM), but was not significantly different than the seven other strains. Total brain Abeta in SJL mice was also the greatest of the mouse strains tested (356 pM +/- 73 pM). SJL, C57BL/6 and CF-1 mice had total brain Abeta levels that were significantly greater than Abeta levels in B6D2F1 mice (242 +/- 20 pM). In vivo efficacy of an Abeta lowering agent was observed in CF-1 mice upon oral administration of the gamma-secretase inhibitors, DAPT and LY-411575. The absolute levels of rodent brain Abeta detected and the efficacy of the gamma-secretase treatment were dependent upon the antibodies used, as well as the extraction methodology. The measurement of total brain Abeta lowering in a common mouse strain could help accelerate drug discovery programs for Alzheimer's disease without relying on costly transgenic animals that overexpress APP in a manner that may not be predictive of the effects of these compounds in human AD.  相似文献   

9.
As in humans, genetic background in rodents may influence a peculiar set of behavioural traits such as sensitivity to pain and stressors or anxiety-related behaviours. Therefore, we tested the hypothesis that mice with different genetic backgrounds [outbred (CD1), inbred (C57BL/6J) and hybrid (B6C3F1) adult male mice] display altered reactivity to pain, stress and anxiety related behaviours.We demonstrated that B6C3F1 mice displayed the more anxious phenotype with respect to C57BL/6J or CD1 animals, with the latter being the less anxious strain when tested in an open field and on an elevated plus maze. No difference was observed across strains in thermal sensitivity to a radiant heat source. Mice were then treated with a sub-plantar injection of the inflammatory agent Complete Freund's Adjuvant (CFA), 24 h later they were hyperalgesic with respect to saline exposed animals, irrespective of strain. We then measured intra-strain differences and CFA-induced inter-strain effects on the expression of various genes with a recognized role in pain and anxiety: BDNF, IL-6, IL-1β, IL-18 and NMDA receptor subunits in the mouse thalamus, hippocampus and hypothalamus. The more anxious phenotype observed in B6C3F1 hybrid mice displayed lower levels of BDNF mRNA in the hippocampus and hypothalamus when compared to outbred CD1 and C57BL/6J inbred mice. CFA led to a general decrease in central gene expression of the evaluated targets especially in CD1 mice, while BDNF hypothalamic downregulation stands out as a common effect of CFA in all three strains evaluated.  相似文献   

10.
11.
The availability of pluripotent embryonic stem (ES) cells for gene targeting has resulted in laboratory mice becoming important animal models of human neurological disease. Inbred strains of mice differ in many behavioural phenotypes, such that the same gene mutation can appear to have different phenotypic effects when introduced onto different genetic backgrounds. Prior knowledge of the behavioural phenotypes of the inbred strains used for gene targeting would, therefore, allow the selection of the most appropriate genetic background for the hypothesis to be tested. With this in mind, we tested eight strains of mice (129S1/SvImJ, 129S2/SvPasIcoCrlBR, 129S6/SvEvTac, B6129SF1/J, C57BL/6J, C57BL/6N, LP/J and SM/J), including the sources of five ES cell lines commonly used for gene targeting, in the spatial (submerged platform) version of the Morris water maze, the most widely used paradigm to evaluate the cognitive abilities of genetically modified mice. The three 129 substrain sources of ES cell lines demonstrated spatial learning in the water maze that was superior to that of C57BL/6J, the inbred strain most commonly used for the maintenance and phenotypic testing of mutations. In addition, 129S6/SvEvTac was unique amongst the eight strains tested in having a particular capacity for reversal learning, when the submerged platform was relocated to the opposite quadrant. We conclude that some substrains of 129 could provide suitable genetic backgrounds for testing gene mutations that might be expected to impair cognitive function, thus negating the need to backcross to C57BL/6J, thereby avoiding the so-called "flanking gene problem".  相似文献   

12.
The discovery that aerobic exercise increases adult hippocampal neurogenesis and can enhance cognitive performance holds promise as a model for regenerative medicine. This study adds two new pieces of information to the rapidly growing field. First, we tested whether exercise increases vascular density in the granular layer of the dentate gyrus, whole hippocampus, and striatum in C57BL/6J mice known to display procognitive effects of exercise. Second, we determined the extent to which new neurons from exercise participate in the acute neuronal response to high levels of running in B6D2F1/J (F1 hybrid of C57BL/6J female by DBA/2J male). Mice were housed with or without a running wheel for 50 days (runner vs. sedentary). The first 10 days, they received daily injections of BrdU to label dividing cells. The last 10 days, mice were tested for performance on the Morris water maze and rotarod and then euthanized to measure neurogenesis, c‐Fos induction from running and vascular density. In C57BL/6J, exercise increased neurogenesis, density of blood vessels in the dentate gyrus and striatum (but not whole hippocampus), and enhanced performance on the water maze and rotarod. In B6D2F1/J, exercise also increased hippocampal neurogenesis but not vascular density in the granular layer. Improvement on the water maze from exercise was marginal, and no gain was seen for rotarod, possibly because of a ceiling effect. Running increased the number of c‐Fos positive neurons in the granular layer by fivefold, and level of running was strongly correlated with c‐Fos within 90 min before euthanasia. In runners, ~3.3% (±0.008 S.E.) of BrdU‐positive neurons in the middle of the granule layer displayed c‐Fos when compared with 0.8% (±0.001) of BrdU‐negative neurons. Results suggest that procognitive effects of exercise are associated with increased vascular density in the dentate gyrus and striatum in C57BL/6J mice, and that new neurons from exercise preferentially function in the neuronal response to running in B6D2F1/J. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
目的探讨Aβ3-10重复片段质粒免疫接种3月龄APPswe/PSEN1双转基因(AD)鼠脑内BACE1的影响。方法应用Aβ3-10重复片段质粒免疫3月龄APPswe/PSEN1双转基因鼠,同等剂量的PBS免疫对照组及C57BL/6J组小鼠,各组小鼠均在免疫后2、4、6次后通过RT-PCR法检测BACE1 m RNA水平,Western blotting法检测BACE1/GFAP/NF-κB蛋白水平,免疫组化法观察Aβ1-42脑内分布情况。水迷宫检测其行为学改变。结果在免疫2次后BACE1 m RNA表达水平C57BL/6J组Aβ3-10组对照组(F=4.649,P=0.021);免疫4次Aβ3-10组C57BL/6J组对照组(F=115.683,P=0.001);免疫6次C57BL/6J组Aβ3-10组对照组(F=86.600,P0.001)。BACE1的蛋白表达水平在免疫2、4、6次后C57BL/6J组Aβ3-10组对照组(F=432.843,P0.001;F=57.673,P0.001;F=26.550,P=0.001),NF-κB的蛋白表达水平在免疫2次后C57BL/6J组Aβ3-10组对照组(F=109.127,P0.001);免疫4,6次后Aβ3-10组C57BL/6J组对照组(F=30.301,P0.001;F=129.967,P0.001)。GFAP的蛋白表达水平在免疫2、4、6次后C57BL/6J组Aβ3-10组对照组(F=27.782,P=0.001;F=26.132,P=0.001;F=26.450,P=0.001);Aβ1-42在脑内的分布C57BL/6J组Aβ3-10组对照组(皮质:F=5.395,P=0.021;F=47.135,P=0.000;F=25.306,P=0.000,海马:F=11.023,P=0.002;F=14.936,P=0.001;F=50.132,P=0.000)。总潜伏期C57BL/6J组Aβ3-10组对照组(F=8.938,P=0.016;F=5.745,P=0.04;F=7.073,P=0.017)。结论 Aβ3-10重复片段质粒可以影响脑内BACE1的表达,影响Aβ产生,改善空间记忆能力。  相似文献   

14.
Fragile X syndrome results from inadequate production of the fragile X mental retardation protein (FMRP). Mice with a mutation targeted to the Fmr1 gene lack FMRP and thus are a valuable animal model for studying the behavioral and neural phenotype of this human disorder. Mice of two genetic backgrounds containing the Fmr1 mutation, C57BL/6J (C57-KO) and an F1 hybrid (C57BL/6J mutant x FVB/NJ; F1-KO) did not differ from control mice in behavior in the elevated plus maze or the open field. Both the C57-KO and F1-KO mice exhibited greater startle responses than normal mice to low intensity (80 dB) white noise bursts and decreased responses to high intensity (120 dB) white noise bursts. These behavioral alterations appear to be specific to the Fmr1 mutation since they are present on both genetic backgrounds. Furthermore, the mice lacking FMRP resemble individuals with fragile X syndrome in their increased sensitivity to low intensity auditory stimuli. These findings should prove useful in determining how the absence of FMRP alters the brain and behavior, and in testing potential treatments for fragile X syndrome.  相似文献   

15.
The effective treatment or cure of motoneuron disease will require understanding the disease processes that precede irreversible cell loss. To study these early stages, and to evaluate potential treatments in relevant animal models, requires a sensitive functional assay. To this end, we sought to determine whether the gait pattern of SOD1 transgenic mice changed prior to overt symptoms. Using a simplified video-based approach we compared the treadmill gait of C57BL/6J and B6.SOD1 transgenic mice at 8 and 10 weeks of age. B6.SOD1 mice had significantly longer stride and stance times than controls by 8 weeks. Consistent with disease progression, hindpaw measures of B6.SOD1 mice showed larger changes than front paws. Differences between control and B6.SOD1 mice increased at 10 weeks, but only because repeat testing caused habituation in control mice to a greater extent than in B6.SOD1 mice. Together the results demonstrate that simplified gait analysis is sensitive to early processes of motor system disease in mice.  相似文献   

16.
D R Garris 《Brain research》1989,501(1):162-170
The influence of the obese (ob/ob) and diabetes (db/db) genetic mutations on hypothalamic structure was investigated in C57BL/KsJ and C57BL/6J mice strains by morphometric analysis of medial basal nuclei which are recognized to possess glucoregulatory neurons. Brains were collected and prepared for histomorphometric analysis at selected times following the development of expressed obesity and diabetes (Type II, non-insulin dependent) syndromes in order to compare both the strain and genomic influences on neuronal viability in the hypothalamic ventromedial (VMH) and arcuate (ARC) nuclei of mutant and age-matched control mice. The severity of each syndrome was determined by monitoring the concomitant changes in body weight and blood glucose levels in all groups. Both (db/db) and (ob/ob) mutant C57BL/KsJ mice exhibited an increase in the number and distribution of degenerated neurons in the VMH and ARC nuclei relative to corresponding controls. The mutation-associated exacerbation of the normal age-related neuronal loss, as observed in control MBH nuclei, was temporally associated with the overt expression of the hyperglycemic component of the obese and diabetes syndromes in aging C57BL/KsJ mice. No temporal or causal relationships were noted between the enhanced rate of premature neuronal degeneration, and either body weight or blood glucose levels, in either (db/db) or (ob/ob) C57BL/6J mice relative to controls. These data suggest that the hyperglycemic condition which characterizes the (ob/ob) and (db/db) mutant C57BL/KsJ mice is causally associated with the pronounced, premature MBH neuronal degeneration in these mouse strains. Neuronal changes were not pronounced when the genetic mutations were expressed in C57BL/6J mice. The accompanying alterations in brain glucose metabolism, hormone sensitivity, bioamine content and function which are recognized to occur in these mutant C57BL/KsJ mice may be causally associated consequences of the observed changes in MBH structural integrity and neuronal competence, with the severity of the mutation-associated changes being related to genetic background of the murine strain.  相似文献   

17.
Delayed Wallerian degeneration after neuronal injury is a feature of the C57BL/Wlds mouse mutant. In the present study, we examined the effect of unilateral controlled cortical impact (CCI) on motor and cognitive performance in C57BL/6 and C57BL/Wlds mice. Performance on a beam-walking task was impaired in both injured groups over the first 3 weeks; however, between 28 and 35 days post injury, C57BL/6 mice continued to improve whereas C57BL/Wlds mice showed increased footfaults. In a spatial learning task, C57BL/Wlds animals performed consistently better than C57BL/6 mice when tested 7–10 days and 14–17 days following CCI. C57BL/Wlds mice also demonstrated improved working memory performance as compared with C57BL/6 mice when trained on days 21–22 after injury; this effect was lost on days 23 and 24, and was not evident in other animals tested in the same task at 28–31 days following injury. These results indicate a marked delay in motor and cognitive impairment following CCI in C57BL/Wlds mice compared with injured C57BL/6 controls. This is consistent with previous work showing delayed temporal evolution of neuronal degeneration in C57BL/Wlds mice and suggests CCI may be a suitable model for examining the functional consequences of traumatic brain injury (TBI) in genetically altered mice. J. Neurosci. Res. 53:718–727, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Rats and gerbils have been used widely to investigate the molecular mechanism of selective neuronal death following transient global ischemia. Recently, the availability of transgenic mice has enabled us to examine the involvement of specific gene products in various pathophysiological conditions. However, there has been only limited information about the experimental model of cerebral ischemia in mice, particularly in regard of selective neuronal death. We examined whether bilateral carotid occlusion produced global forebrain ischemia in seven common mouse strains including C57BL/6, ICR, BALB/c, C3H, CBA, ddY and DBA/2, based on neurological signs, histological findings and cortical microcirculatory as well as India ink perfusion patterns. The C57BL/6 strain was found to be the most susceptible among seven strains. All C57BL/6 mice died within 6 h after permanent bilateral carotid occlusion. After transient bilateral carotid occlusion for 20 min, more than 90% of C57BL/6 mice showed typical neurological signs such as torsion of the neck and rolling fits, and developed selective neuronal death in the hippocampus and caudoputamen. Hypothermia prevented the neuronal death. Visualization of brain vasculature by India ink perfusion indicated that the susceptibility of the mice after bilateral carotid occlusion depended mainly on the degree of anastomosis between carotid and basilar arteries. Our results showed the feasibility of investigating selective neuronal death in transgenic mice with simple temporary occlusion of both common carotid arteries, when those from the C57BL/6 strain or inbred transgenic mice from other strains with the C57BL/6 strain in a back-cross manner are used.  相似文献   

19.
A model of global cerebral ischemia in C57 BL/6 mice.   总被引:5,自引:0,他引:5  
A reproducible model of global cerebral ischemia in mice is essential for elucidating the molecular mechanism of ischemic neuronal injury. Such a model is particularly important in the mouse because many genetically engineered mutant animals are available. In C57BL/6 and SV129/EMS mice, we evaluated a three-vessel occlusion model. Occlusion of the basilar artery with a miniature clip was followed by bilateral carotid occlusion. The mean cortical cerebral blood flow was reduced to less than 10% of the preischemic value, and the mean anoxic depolarization was attained within 1 minute. In C57BL/6 mice, there was CA1 hippocampal neuronal degeneration 4 days after ischemia. Neuronal damage depended upon ischemic duration: the surviving neuronal count was 78.5 +/- 8.5% after 8-minute ischemia and 8.4 +/- 12.7% after 14-minute ischemia. In SV129/EMS mice, similar neuronal degeneration was not observed after 14-minute ischemia. The global ischemia model in C57BL/6 mice showed high reproducibility and consistent neuronal injury in the CA1 sector, indicating that comparison of ischemic outcome between wild-type and mutant mice could provide meaningful data using the C57BL/6 genetic background. Strain differences in this study highlight the need for consideration of genetic background when evaluating ischemia experiments in mice.  相似文献   

20.
Previous seizure models have demonstrated genetic differences in generalized seizure threshold (GST) in inbred mice, but the genetic control of epileptogenesis is relatively unexplored. The present study examined, through analysis of inbred strains of mice, whether the seizure characteristics observed in the flurothyl kindling model are under genetic control. Eight consecutive, daily generalized seizures were induced by flurothyl in mice from five inbred strains. Following a 28-day rest period, mice were retested with flurothyl. The five strains of mice demonstrated inter-strain differences in GST, decreases in GST across seizure trials, and differences in the behavioral seizure phenotypes expressed. Since many of the seizure characteristics that we examined in the flurothyl kindling model were dissociable between C57BL/6J and DBA/2J mice, we analyzed these strains in detail. Unlike C57BL/6J mice, DBA/2J mice had a lower GST on trial 1, did not demonstrate a decrease in GST across trials, nor did they show an alteration in seizure phenotype upon flurothyl retest. Surprisingly, [C57BL/6J × DBA/2J] F1-hybrids had initial GST on trial 1 and GST decreases across trials similar to what was found for C57BL/6J, but they did not undergo the alteration in behavioral seizure phenotype that had been observed for C57BL/6J mice. Our data establish the significance of the genetic background in flurothyl-induced epileptogenesis. The [C57BL/6J × DBA/2J] F1-hybrid data demonstrate that initial GST, the decrease in GST across trials, and the change in seizure phenotype differ from the characteristics of the parental strains, suggesting that these phenotypes are controlled by independent genetic loci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号