首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied 21 patients (11 men and 10 women) with osteogenesis imperfecta (OI) and 21 age- and sex-matched controls. In all patients we measured serum levels of total alkaline phosphatase (ALP), type I procollagen carboxy-terminal propeptide (PICP), osteocalcin (BGP), urinary excretion of hydroxyproline (HOP/Cr), and pyridinoline crosslinks (Pyr/Cr). Bone mineral density was measured at the distal radius (BMD-R) and at the lumbar spine (BMD-LS) by dual X-ray absorptiometry (DXA). Ultrasound parameters were also performed at the calcaneous with the Achilles device and at the phalanxes with DBM Sonic 1200. A significant reduction (P < 0.001) in BMD and in ultrasound parameters was found in OI patients compared with normals. PICP was significantly reduced in the OI patients compared with controls (P < 0.001); other markers of bone turnover were higher in OI than in controls, but the difference did not reach the statistical significance. A significant correlation (P < 0.05) was found between PICP and BMD at the lumbar spine and between PICP and ultrasound parameters at the calcaneous. On the basis of our data, we conclude that patients with OI show low values of BMD and ultrasound parameters; therefore in these patients, not only is bone mass disturbed but also bone quality. The reduced levels of PICP in OI patients confirm that most OI patients have defects in collagen I biosynthesis. These defects may contribute to the fragility of OI bone by interfering with complete mineralization and/or normal tissue structure. PICP may be considered a useful marker in the clinical management of OI. Received: 26 March 1998 / Accepted: 15 January 1999  相似文献   

2.
Although over 90% of hip fractures occur in patients over age 70, few data are available on femoral bone loss in this age group. To examine the relationship between biochemical markers of bone turnover and femoral bone loss in the elderly, 36 female and 17 male, healthy, community-dwelling elderly over age 65 (mean ± SD age: women 71 ± 4 years, men 75 ± 5 years) were followed for 3 years. Annual bone mineral density measurements of the hip and lumbar spine by dual-energy x-ray absorptiometry (DXA) were obtained and biochemical markers of bone resorption (urinary N-telopeptide crosslinks, free pyridinoline, total pyridinoline, total deoxypyridinoline, and hydroxyproline) and bone formation (serum osteocalcin, bone-specific alkaline phosphatase) were obtained at the end of year 3. In elderly women, longitudinal bone loss at the total hip was negatively correlated with markers of bone resorption (r =−0.39 to −0.52, P < 0.05), bone formation (r =−0.38, P < 0.05), and age (r =−0.39, P < 0.05). Markers of bone resorption were correlated with markers of bone formation (r = 0.63 to 0.74, P < 0.01). In multiple regression analysis, urinary N-telopeptide crosslinks (marker of resorption), serum osteocalcin (marker of formation), and serum parathyroid hormone explained 43% of the variability of bone loss at the total hip in women. These parameters were not related to bone loss in men. We conclude that femoral bone loss increases with age in women over 65. Measurements of specific biochemical markers of bone turnover are correlated with longitudinal bone loss in elderly women. These markers may help identify women at greatest risk for bone loss who would benefit most from therapeutic interventions. Received: 28 January 1996 / Accepted: 3 May 1996  相似文献   

3.
To evaluate the long-term effect of calcitriol treatment on bone mineral density (BMD) of the femoral neck and lumbar spine and the parameters of calcium and bone metabolism in elderly women, 55 healthy, postmenopausal women, all aged 66 years, were enrolled in the study. Eighteen started a 4-year supplementation with 0.5 μg of calcitriol daily and 37 served as controls. Calcium intake of all the subjects was adjusted to 800 mg daily. In 4 years femoral neck BMD increased by 3.0% in the calcitriol group, but decreased by 1.6% in the control group (P= 0.009). The respective changes in lumbar spine BMD were +2.3% and +0.9% (P= 0.067). Two years' treatment with calcitriol increased the intestinal absorption of strontium by 57% (P < 0.001), doubled the urinary excretion of calcium (P < 0.001), and decreased the mean parathyroid hormone (PTH) level by 32% (P < 0.01). In the calcitriol group the marker of bone formation, serum osteocalcin, decreased by 27% (P < 0.01), and the marker of bone resorption, serum C-telopeptide of type I collagen (CTx), by 33% (P= 0.05) after 2 years. In two subjects the calcitriol dose had to be reduced because of hypercalciuria. We conclude that calcitriol treatment increases bone mass at the femoral neck and lumbar spine, the increases being maintained for up to 4 years. The gain in bone mass results from reduced bone turnover which is partly a consequence of the enhanced intestinal absorption of calcium and suppressed serum PTH levels. Received: 8 January 1999 / Accepted: 29 February 2000  相似文献   

4.
To evaluate bone biochemical markers as predictors of the efficacy of a hormone replacement therapy (HRT), we studied the bone changes induced by the cessation and return of ovarian function in 28 patients treated for 6 months with a GnRH agonist. This model reproduced the effects observed in postmenopausal women with high bone turnover treated with HRT. At the end of the treatment, Z scores were 1.8 ± 0.3 for Crosslaps (CTx) and deoxypyridinoline (D-Pyr), and 1.1 ± 0.2 for bone alkaline phosphatase (B-ALP) and osteocalcin (OC). This indicated an imbalance in bone remodeling with a high bone resorption. Bone mineral density (BMD) fell by 4.2 ± 2.5%. The changes in BMD between the 6th and 12th months were 0.34 ± 2.24 and −1.73 ± 3.25% at the lumbar spine and the femoral neck, respectively. Biochemical markers except urinary calcium and hydroxyproline measured at 6 months were positively correlated with the BMD changes at the lumbar spine. After the resumption of menstruation, 13 of 28 women displayed positive spine BMD changes between the 6th and 12th months; in this group, bone biochemical markers measured at 6 months were significantly higher (P= 0.02). Stepwise regression analysis showed that the association of B-ALP and D-Pyr measured at 6 months explained 40% of BMD variance and the association of B-ALP, PTH, and estradiol 56%. We conclude that measuring individual biochemical bone markers can help to predict the bone effect of an increase in the circulating estradiol in women with ovarian deficiency. Received: 16 January 1997 / Accepted: 17 June 1997  相似文献   

5.
Active hyperthyroidism is associated with reduced bone mass. Nevertheless, not all patients show the same risk for developing osteoporosis. Our aim was to analyze some clinical and biochemical potential predictors of low bone mass in hyperthyroid patients. We studied 127 consecutive hyperthyroid patients (110 females, 17 males; aged 42 ± 16 years). Bone mineral density (BMD) was measured by dual X-ray absorptiometry (DXA) at lumbar spine (LS; L2–L4) and femoral neck (FN). Data were expressed as g/cm2 and T-score. Patients were placed into two groups based on recent WHO criteria: Group A, no osteoporosis (n = 98); and group B, lumbar or femoral osteoporosis (n = 29). Study protocol included evaluation of osteoporosis risk factors, anthropometrical variables, thyroid function, and bone turnover markers. Receiver-operating characteristic (ROC) plots for the precision of bone markers and multivariate analysis for the prediction of BMD and osteoporosis were performed. Group B showed greater age and proportion of menopausal females; lower weight, height, and calcium intake; longer duration of menopause; and greater levels of total and bone alkaline phosphatase and of urine hydroxyproline. No differences in thyroid function, osteocalcin, tartrate-resistant acid phosphatase, and type I collagen C-telopeptide (ICTP) were found. The best predictive model accounted for 46% and 62% of the variability of lumbar and femoral BMD respectively and correctly classified 89% of the osteoporotic hyperthyroid patients. No significant difference in ROC plots was observed. It is concluded that hyperthyroid patients with lumbar or femoral osteoporosis show a typical clinical and biochemical profile illustrating that the relationship between BMD and bone markers is better in high turnover states. Classical bone turnover markers show high performance in the evaluation of hyperthyroid bone disease. Received: 5 May 1997 / Accepted: 5 June 1997  相似文献   

6.
Bone loss before and around the time of menopause is not well characterized by longitudinal studies. We measured bone mineral density at various skeletal sites – total body, femoral neck, trochanter, anteroposterior (AP) and lateral spine, and forearm – with dual-energy X-ray absorptiometry in a large prospective cohort of 272 untreated pre- and perimenopausal women aged 31–59 years, at 1 year intervals for 3 years. Sex steroids and the following markers of bone remodeling were measured: serum osteocalcin (OC), procollagen I carboxyterminal extension peptide, bone alkaline phosphatase (BAP) and urinary crosslinks (CTX and NTX). Seventy-six women were classified as perimenopausal and 196 as premenopausal. Over the 3 years, premenopausal women had no significant bone loss at any site and a small but significant increase in bone mineral density at the trochanter, total hip, AP spine and radius. Perimenopausal women significantly lost bone from cancellous and cortical sites, i.e., the femoral neck, trochanter and lumbar spine. In perimenopausal women with increased follicle stimulating hormone, the rate of bone loss at the femoral neck correlated negatively with OC and BAP. In perimenopausal women, serum estradiol levels decreased during the 3 years of follow-up and bone loss from the trochanter and the AP spine was correlated with serum estradiol after 3 years. In conclusion, among premenopausal women there is no bone loss. In contrast, there is a rapid and diffuse bone loss in perimenopausal women, related to decreased estrogen secretion. Bone markers may be useful to identify these women losing bone. Received: 13 October 1997 / Accepted: 19 October 1998  相似文献   

7.
While several studies have described the rate and pattern of involutional bone loss in women, far less information is available for men. Furthermore, the roles of lifestyle and body build in determining bone loss rate in both sexes have been largely extrapolated from cross-sectional studies. We addressed this issue in a population-based longitudinal study which sought to ascertain rates of bone loss at the femoral neck and lumbar spine in a cohort of men and women aged 60–75 years at baseline, and to relate this loss to anthropometric and lifestyle variables. We additionally investigated the capacity of biochemical markers of bone turnover to predict bone loss rates in these subjects. Women lost bone at all sites; this ranged from 0.20%/year at the lumbar spine to 1.43%/year at the femoral trochanteric region. By contrast, men lost only 0.20%/year at the trochanteric region, and gained at the lumbar spine (0.33%/year) and at Ward’s triangle (0.27%/year) over the 4-year period. Anthropometric measurements were associated with bone loss in both sexes; lower baseline body mass index (BMI) and a greater rate of loss of adiposity over the follow-up period were both associated with greater bone loss at all proximal femoral sites. These attained statistical significance after Bonferroni correction at the total proximal femur among both men (r= 0.29), p<0.01) and women (r= 0.31, p<0.05). Lifestyle factors associated with lower rates of bone loss (after adjustment for BMI) included alcohol consumption at the femoral neck among women (p= 0.007) and physical activity at the lumbar spine among men (p = 0.05). Serum parathyroid hormone, 25-hydroxyvitamin D and biochemical markers of bone turnover did not predict bone loss after adjustment for adiposity. Received: 8 December 1998 / Accepted: 8 April 1999  相似文献   

8.
Moderate increases in ``classical' biochemical markers of bone turnover have been described only in some patients with Camurati–Engelmann disease. However, the determination of the following ``new' markers has not been previously performed: serum osteocalcin (BGP), bone alkaline phosphatase (BAP), carboxyterminal propeptide of type I procollagen (PICP), aminoterminal propeptide of type I procollagen (PINP), tartrate-resistant acid phosphatase (TRAP), telopeptide carboxyterminal of type I collagen (ICTP), urinary pyridinoline (PYR), crosslinked N-telopeptides of type I collagen (NTX), and Crosslaps (CL). Such a determination may improve the evaluation of the disease activity. To evaluate the usefulness of biochemical markers of bone turnover reflecting Camurati–Engelmann disease activity we measured the levels of all these markers in four affected patients. The results were compared with bone scintigraphic indices of disease activity. Except for PICP and TRAP, bone formation and resorption markers were abnormal in all patients and were related to bone scan indices of disease activity. Among the markers of bone formation PINP, BAP, and BGP showed the highest values, whereas NTX and CL were the most sensitive markers of bone resorption. These results suggest that the determination of NTX or CL, and PINP or either BAP and BGP, associated with bone scan evaluation, provides the best assessment of Camurati–Engelmann disease activity. Received: 14 June 1996 / Accepted: 31 December 1996  相似文献   

9.
Hepatic osteodystrophy occurs in up to 50% of patients with chronic liver disease (CLD). The aim of this study was to determine the relative contribution of increased resorption and decreased formation to hepatic osteodystrophy by measuring biochemical markers. Twenty-seven patients with advanced CLD (14 female, 13 male) were enrolled. Bone mineral density (BMD), measured at the lumbar spine, and femoral neck, were measured by dual energy X-ray absorptiometry (DXA); bone turnover was assessed using biochemical markers of bone formation and resorption. Based on WHO criteria, osteoporosis and osteopenia were present in 41% and 18% of patients, respectively. All three markers of bone resorption (free deoxypyridinoline, pyridinoline, and hydroxyproline) were increased significantly in patients with CLD. There was a less marked change in the markers of bone formation (osteocalcin, procollagen type 1 peptide, and bone alkaline phosphatase), resulting in a negative uncoupling index in 23/27 (85%) of the patients. Only two (7%) patients had biochemical changes consistent with osteomalacia. The results suggest that increased bone resorption is the predominant cause of hepatic osteodystrophy and therapeutic strategies should be designed to suppress bone resorption, especially in preparation for liver transplantation. Bone biomarkers may be useful alternatives to bone biopsy in evaluating hepatic osteodystrophy. Received: 11 September 1997 / Accepted: 22 September 1998  相似文献   

10.
Lifetime occupational and leisure time activities were assessed by a questionnaire in order to evaluate their relationship to bone mass measurements and biochemical markers of bone metabolism in a population of 61 women and 61 men, randomly selected from a Swedish population register, to represent ages between 22 and 85 years. We also considered possible confounders by using questions about smoking habits, milk consumption, hormone replacement therapy (HRT), and menopausal age. Bone mineral density (BMD) and bone mineral content (bone mass, BMC) of the total body, lumbar spine, and proximal femur (neck, trochanter, Ward's triangle) were measured by dual energy X-ray absorptiometry (DXA), and BMD of the forearm with single energy X-ray absorptiometry (SXA). In addition, both DXA and SXA provided information on bone area. Quantitative ultrasound measurements (QUS) at the heel were performed to assess the speed of sound (SOS) and broadband ultrasound attenuation (BUA). Fasting blood samples were analyzed for biochemical markers of bone metabolism as well as parathyroid hormone (PTH) and total serum calcium. After adjustment for confounding factors, neither BMD nor QUS measurements were consistently related to lifetime leisure time or occupational activities; nor were there any consistent patterns relating biochemical markers of bone metabolism to bone mass measurements. However, physical activity seemed to influence bone mass, area, and width more than density. In men, high levels of leisure time activity were associated with raised values for lumbar spine area (6.2%) and width (3.3%) as well as for femoral neck area (5.5%) compared with their low activity counterpart. Men exposed to high levels of occupational activity demonstrated lower lumbar spine BMD (10.9%) and area (5.3%) than men with low activity levels. Within an unselected Swedish population, estimation of lifetime occupational and sport activities as well as bedrest, using a questionnaire, demonstrated no major effects on bone density. However, the association between high levels of lifetime activity and raised values for bone mass, area, and width indicate that geometrical changes in bone may provide better estimations of mechanically induced bone strength than bone density, at least in men. Received: 20 May 1997 / Accepted: 15 October 1997  相似文献   

11.
Bone density change and biochemical indices of skeletal turnover   总被引:9,自引:0,他引:9  
Although biochemical markers of skeletal turnover cannot replace bone density scanning for the diagnosis of osteoporosis, it is thought that they may help add to prediction of fracture risk and help determine adequacy of osteoporosis therapy. Nevertheless, whether biochemical markers in the serum or urine can predict individual rates of bone loss in the spine or hip region is unknown. We studied a heterogeneous group of women (n=81) who were premenopausal, untreated postmenopausal, and estrogentreated postmenopausal with baseline determination of body mass index (BMI), calcium intake, biochemical measurements, and serial bone densitometry over 3 years. Serum assays included bone Gla protein (BGP), total and bonespecific specific included bone Gla protein (BGP), total and bone-specific alkaline phosphatase (AP, BSAP), carboxyterminal propeptide of type I procollagen (PICP), carboxyterminal telopeptide of type I collagen (ICTP) and tartrate-resistant acid phosphatase (TRAP). Urine assays included hydroxyproline (OHP), calcium, total pyridinoline, and total deoxypyridinoline. Individual biochemical markers and calcium intake were modestly correlated with bone density changes but were inconsistent regarding the spine versus the hip. All of the formation variables were significantly correlated to spine density change (r=−0.24 to −0.49) whereas the only resorption variable that correlated was urine OHp/Cr (r=−0.31). The only formation variable that correlated with hip density change was serum PICP whereas all of the resorption variables except serum TRAP were correlated (r=−0.23 to −0.35). “High turnover” individuals were defined as those with levels of biochemical variables at least 1 SD above the mean young normal for each variable. Higher bone loss rates were seen in this group for several of the turnover markers compared with bone loss rates in all other individuals. However, the sensitivity of this “high turnover” status for identifying high bone losers did not exceed 60% for any of the variables. In untreated postmenopausal women, a model using urine OHp, serum ICTP, serum BSAP, and calcium intake was able to predict 42% of the variance of change in BMD of the lumbar spine. A model using BMI, serum ICTP, and serum BGP could predict 32% of the variance of change in BMD of the femoral neck. No combination of markers could predict variance in bone density change at either site in estrogenized women (premenopausal and estrogen-treated postmenopausal). We conclude that measuring individual serum and urine markers of bone turnover cannot accurately predict bone loss rates in the spine and hip; however, combinations of demographic and biochemical variables could predict some of the variance in untreated postmenopausal women. Biochemical markers cannot replace serial bone densitometry for accurate determination of change in bone mass at the most clinically relevant sites.  相似文献   

12.
Bone Mineral Density and Androgen Levels in Elderly Males   总被引:4,自引:0,他引:4  
To clarify the relationship of sex male hormones and bone in men, we studied in 140 healthy elderly men (aged 55–90 years) the relation between serum levels of androgens and related sex hormones, bone mineral density (BMD) at different sites, and other parameters related to bone metabolism. Our results show a slight decrease of serum-free testosterone with age, with an increase of follicle stimulating hormone (FSH) and luteinizing hormone (LH) in a third of the elderly subjects studied. BMD decreased significantly with age in all regions studied, except in the lumbar spine. We found a positive correlation between body mass index (BMI) and BMD at the lumbar spine and femoral neck (P < 0.001). No relationship was found (uni- and multivariate regression analysis) between serum androgens or sex hormone-binding globulin (SHBG) and BMD. We found a positive correlation of vitamin D binding protein (DBP) and osteocalcin with lumbar spine BMD and with BMI, DBP, IGF-1, and PTH with femoral neck BMD. In conclusion, there is a slight decline in free testosterone and BMD in the healthy elderly males. However, sex male hormones are not correlated to the decrease in hip BMD. Other age-related factors must be associated with bone loss in elderly males. Received: 29 April 1997 / Accepted: 9 November 1997  相似文献   

13.
A Prospective Study of Bone Loss in Menopausal Australian-Born Women   总被引:8,自引:4,他引:4  
Two hundred and twenty-four women (74 pre-, 90 peri-, 60 post-menopausal), aged 46–59 years, from a population-based cohort participated in a longitudinal study of bone mineral density (BMD). BMD was measured by dual-energy X-ray absorptiometry (DXA) at the lumbar spine and femoral neck and the time between bone scans was on average 25 (range 14–41) months. The aim of the study was to assess changes in BMD in relation to changes in normal menopausal status. During the study period women who were between 3 and 12 months past their last menstrual period (n= 22, late perimenopausal) at the time of the second bone scan had a mean (SE) annual change in BMD of 70.9% (0.4%) at the lumbar spine and 70.7% (0.6%) at the femoral neck (both p50.05 compared with women who remained premenopausal). In the women who became postmenopausal (n= 42) the mean annual changes in BMD were 72.5% (0.2%) at the lumbar spine and 71.7% (0.2%) at the femoral neck (both p50.0005), and in the women who remained postmenopausal (n= 60) they were 70.7% (0.2%) per year and 70.5% (0.3%) per year respectively (both p50.05), compared with women who remained premenopausal. In the 1–3 years after the final menstrual period (FMP) there was greater bone loss from the lumbar spine than the femoral neck (p50.05). In women who were menstruating at the time of the second bone scan and whose FMP could be dated prospectively (n= 35), higher baseline oestradiol levels were associated with less lumbar spine bone loss (p50.005). In the women who remained postmenopausal there was an association between baseline body mass index (BMI) and percentage change per year in femoral neck BMD (p50.05), such that women with higher BMI had less bone loss. In conclusion, during the time of transition from peri- to post-menopause, women had accelerated BMD loss at both the hip and spine. Received: 23 June 1997 / Accepted: 5 November 1997  相似文献   

14.
Bone mineral density (BMD), the major determinant of fracture risk, is under strong genetic control. Although polymorphisms of the vitamin D receptor (VDR) gene have been suggested to account for some of the genetic variation in bone mass, the influence of VDR genotypes on osteoporosis remains controversial. Previous published studies have focused mainly on women, but the pattern of response in men has not been determined. Using the BsmI restriction enzyme, we studied the influence of the different VDR genotypes on bone mass, bone loss and the prevalence of vertebral fractures in a population-based sample of both sexes (n = 326). BMD was measured at the lumbar spine and femoral neck, with a 4-year interval, using dual-energy X-ray absorptiometry. Vertebral fractures were assessed by two lateral radiographs at the beginning and end of the study. The prevalence of the three possible VDR genotypes was similar to those in other Caucasian populations and no differences were found between men and women. Women with the favorable bb genotype showed significantly higher BMD values at the lumbar spine and femoral neck, and a positive rate of BMD change at the femoral neck compared with women with the BB and Bb genotypes. Moreover, women with the bb genotype showed a trend toward a lower prevalence and incidence of vertebral fractures (p= 0.07). We have not found any differences between VDR genotypes in men. In conclusion, VDR gene polymorphisms are related to bone mass and bone loss in women; also a trend in the prevalence of vertebral fractures was observed in postmenopausal women but not in men. Received: 8 June 1998 / Accepted: 7 December 1998  相似文献   

15.
Bone ultrasonometry and turnover markers in primary hyperparathyroidism   总被引:1,自引:1,他引:0  
Quantitative ultrasound (QUS) of bone and new markers of bone remodeling have been poorly investigated in mild primary hyperparathyroidism (PHPT). In this study 26 patients (20 females and 6 males) were evaluated. BUA and SOS were measured by QUS at the heel. Markers of bone remodeling assessed were bone alkaline phosphatase (BAP), osteocalcin (OC), procollagen type I N- and C-terminal propeptides (PINP et PICP), and procollagen type I C-terminal telopeptide in blood and urine (ICTP and CTX). Bone mineral density (BMD) was measured at the lumbar spine (LS), femoral neck (FN), and Ward's triangle (WT). The control group comprised 35 sex- and age-matched subjects. The statistically significant variables between the two groups were (P < 0.05) BUA, BMDLS, BMDFN, BMDWT, BAP, and OC. Corresponding z-scores were −0.55 ± 0.75, −0.66 ± 0.77, −0.66 ± 0.71, −0.67 ± 0.52, 1.87 ± 3.87, and 1.93 ± 3.53, respectively. Although PICP and PINP levels were higher in PHPT patients as compared with controls, the difference was not significant. Several markers of bone turnover were moderately correlated with both QUS (r =−0.39 to −0.55) and BMD (r =−0.48 to 0.63). In conclusion QUS seems to be a relevant tool in the assessment of bone status for patients with mild PHPT. Received: 1 October 1998 / Accepted: 1 July 1999  相似文献   

16.
Cardiac transplantation exposes recipients to osteoporosis and increased risk of consequent fractures. The purpose of the present study was to examine the magnitude, timing and mechanism of bone loss following cardiac transplantation, and to establish whether bone loss can be prevented by calcium with or without calcitonin. Thirty patients (29 men, 1 woman), aged 26 – 68 years (mean 48 years), were randomized into three groups of 10 to receive either no additional treatment, oral calcium 1 g twice daily for 12 months or the same dose of calcium plus intranasal calcitonin 400 IU/day for the first month and then 200 IU/day for 11 months. Bone mineral density (BMD) at the lumbar spine and three femoral sites (femoral neck, trochanter, Ward’s triangle) was measured by dual-energy X-ray absorptiometry (DXA) at the time of transplantation and 6 and 12 months later. Markers of bone formation [serum bone-specific alkaline phosphatase (B-ALP), type I procollagen carboxyterminal propeptide (PICP) and aminoterminal propeptide (PINP)] and resorption [serum type I collagen carboxyterminal telopeptide (ICTP)], as well as serum testosterone in men, were assayed before transplantation and at 1 week and 1, 3, 6 and 12 months after transplantation. During the first 6 post-transplant months BMD calculated as a percent change from baseline decreased in the control group by 6.4% (p= 0.014) in the lumbar spine, by 6.0% (p= 0.003) in the femoral neck, by 5.0% (p= 0.003) in the trochanter and by 5.5% (p= 0.130) in Ward’s triangle. Between 6 and 12 months a further decline in BMD occurred only at the three femoral sites, ranging from 2.2% to 9.8% (p= 0.004-0.079). In comparison with the control group, the group receiving calcium alone lost less bone in the trochanter between 0 and 6 months (p= 0.019), and the group receiving calcium together with calcitonin lost less bone in the femoral neck (p= 0.068) and Ward′s triangle (p= 0.076) between 0 and 12 months. Seven (28%) of 25 assessable patients experienced vertebral compression fractures. Calcium with or without calcitonin had no effect on changes in biochemical parameters; consequently, the three study groups were combined. The markers of bone formation increased, the elevations in mean values being 59% for B-ALP at 1 month (p= 0.009), 152% for PICP at 1 week (p < 0.0001) and 27% for PINP at 1 week (p= 0.021). After a temporary decline at 3 months B-ALP (p= 0.0002) and PINP (p < 0.0001) at 1 year were nearly doubled compared with baseline values. Throughout the study the marker of bone resorption, serum ICTP, was above normal, with a peak (mean values 67–69% above baseline) at 1 week (p= 0.0002) to 1 month (p < 0.0001). The mean concentration of total testosterone was decreased by 48% (p < 0.0001) 1 week and by 28% (p= 0.0005) 1 month after transplantation, but this was mainly explained by the concomitant drop in serum albumin. High bone turnover underlies bone loss after cardiac transplantation. Bone loss is most rapid during the first 6 post-transplant months. In the upper femur this bone loss may be reduced by treatment with calcium and calcitonin. Received: 5 May 1998 / Accepted: 12 January 1999  相似文献   

17.
Generally, the incidence of osteoporotic fracture is lower in black populations and in men. These effects of ethnicity and gender may result from differences in peak bone mineral density (PBMD) and bone turnover (BT), which in turn are affected by bone size. Therefore, the aims of this study were to examine the effects of ethnicity and gender on bone mineral density (BMD) and BT in young African-Caribbean and Caucasian adults, and to adjust for the effect of bone size on BMD and BT. BMD was measured at the lumbar spine, L2–L4 (LS), total body (TB) and femoral neck (FN) by dual-energy X-ray absorptiometry in 44 blacks (16 men, 28 women) and 59 whites (28 men, 31 women) ages 20–37 years. We measured serum bone-specific alkaline phosphatase (BAP) and serum osteocalcin (OC) as markers of bone formation and urinary immunoreactive free deoxypyridinoline (ifDpd) and crosslinked N-telopeptide of type I collagen (NTx) as markers of bone resorption. To adjust the data for any differences in bone size, we calculated: (a) bone mineral apparent density (BMAD), an estimated volumetric bone density which attempts to normalize BMD measurements for bone size; and (b) bone resorption markers as a ratio to total body bone mineral content (TB BMC). Two-way analysis of variance was used to compare the effects of race and gender, and to test for any interaction between these two factors. Blacks had higher BMD compared with whites at the TB (p<0.001), LS (p= 0.0001) and FN (p= 0.0005). This increase remained significant at the LS only after calculating BMAD. Men had higher BMD at all sites (except at the LS). This increase was no longer significant at the FN after calculating BMAD, and LS BMAD was actually greater in women (p<0.0001). Blacks and whites had similar concentrations of turnover markers, but men had higher bone turnover markers than women (BAP, p<0.0001; OC, p= 0.002; ifDpd, p= 0.03; NTx, p<0.0001). This increase in bone resorption markers was no longer significant after adjusting for TB BMC (except for NTx in whites). We conclude that the skeletal advantage in blacks during young adulthood is not explained by bone size. However, it seems probable that bone size effects partially explain gender differences in BMD and bone turnover. Received: 2 February 1999 / Accepted: 2 December 1999  相似文献   

18.
The objective of this study was to evaluate whether the pharmacological activity of cyclical etidronate therapy is sustained beyond the dosing period. A group of 121 postmenopausal women who had completed a 2-year, double-blind, placebo-controlled parallel study with etidronate or placebo (400 mg/day for 14 days every 3 months) and calcium agreed to participate in a 1-year open-label follow-up study to evaluate the effect of discontinuing etidronate treatment. Fifty-nine subjects in the former etidronate group and 62 in the placebo group received 500 mg/day of elemental calcium; 54/59 and 58/62 subjects, respectively, completed the study. Outcomes of the study were bone mineral density (BMD), measured by dual energy X-ray absorptiometry (DXA), and biochemical markers of bone turnover (urinary deoxypyridinoline/creatinine and serum osteocalcin). To determine whether there was a residual effect of previous therapy we compared mean percentage changes from baseline (year 0) to year 3 for both spinal and femoral neck BMD and markers of bone turnover in the former cyclical etidronate and placebo groups. To evaluate the carryover effect of treatment we compared the percent change from year 2 to year 3 for the same variables. Mean percentage change (SEM) from year 2 to year 3 for spinal BMD in the former cyclical etidronate group was −2.87% (0.48%) versus −0.99% (0.36%) in the placebo group (P= 0.0022). In the femoral neck, the BMD changes were −0.86% (0.42%) versus −1.01% (0.41%) (NS). Biochemical markers increased within 6 months toward baseline levels. Mean percentage changes from baseline (year 0) in both spinal and femoral neck BMD were significantly different between groups 1 year after treatment discontinuation. No differences between groups were maintained in deoxypyridinoline and osteocalcin. It is concluded that following withdrawal of cyclical etidronate therapy bone loss resumes at a normal and moderately accelerated rate in the proximal femur and lumbar spine, respectively. A positive effect on BMD at both cortical and trabecular sites is maintained for 1 year after treatment withdrawal. Received: 8 May 1999 / Accepted: 10 December 1999  相似文献   

19.
Glucocorticoid-induced osteoporosis has been reported to be caused by enhanced bone resorption and suppressed bone formation. To clarify whether administration of vitamin K, which enhances bone formation, prevents prednisolone-induced loss of bone mineral density (BMD), a randomized, prospective, controlled study was conducted on 20 patients with chronic glomerulonephritis scheduled for treatment with prednisolone. All patients were initially treated with 0.8 mg/kg body weight/day of prednisolone (maximum of 40 mg) for 4 weeks, tapering to 20 mg/day over approximately 6 weeks. Ten patients received prednisolone alone (Group 1), and the other 10 patients received prednisolone plus 15 mg of menatetrenone, vitamin K, three times per day (Group 2). BMD of the lumbar spine measured by dual-energy X-ray absorptiometry (DXA) and biochemical markers of bone metabolism in blood and urine were evaluated before and 10 weeks after administration of prednisolone alone or with menatetrenone. In Group 1, treatment with prednisolone significantly reduced BMD of the lumbar spine from 1.14 ± 0.12 to 1.10 ± 0.11 g/cm2 (P= 0.0029). Serum intact osteocalcin and procollagen type I C-peptide (PICP) concentrations, biochemical markers of bone formation, were markedly reduced. A biochemical marker of bone resorption, urinary excretion of deoxypyridinoline, was significantly reduced. In Group 2, prednisolone-induced reduction of BMD was prevented by menatetrenone administration (1.09 ± 0.09 to 1.07 ± 0.07 g/cm2, P= 0.153). Menatetrenone prevented reduction of PICP concentration by prednisolone but not in serum intact osteocalcin concentration and urinary excretion of deoxypyridinoline. Thus, treatment with prednisolone resulted in loss of BMD of the lumbar spine associated with suppression of both bone formation and bone resorption. Menatetrenone is a useful agent in preventing prednisolone-induced loss of BMD. Received: 7 July 1998 / Accepted: 13 August 1999  相似文献   

20.
Reduced bone mineral density (BMD) and the prevalence for osteoporotic vertebral fractures are symptoms of growth hormone deficiency (GHD) syndrome, and GH replacement therapy is now available for GH-deficient adults. We investigated the long-term effects of GH replacement therapy on bone mineral density (BMD) and bone metabolism in 19 adult patients with GHD over a period of 18 months. In response to GH treatment, the initially decreased IGF-I concentrations rose significantly during 18 months of therapy to levels within the normal range (matched for sex and age) (mean change 158.1 ± 50.8 ng/ml, P < 0.001). Parameters of bone formation such as osteocalcin (OC) and procollagen I-C-Peptide (PICP) showed a significant increase in the first 6 months of therapy, followed by a slight decrease in the next months. Markers of bone resorption (CrosslapsR and deoxypyridinoline (D-Pyr) also increased significantly with a peak value after 6 months and all parameters except PICP remained above baseline values after 18 months. BMD of the femoral neck (FN) showed an increase after 18 months of therapy (mean change 0.01 ± 0.03 g/cm2 after 18 months, n.s.). However, the increase in BMD was significant only in the lumbar spine (LS) (mean change 0.03 ± 0.04 g/cm2, P < 0.05 after 18 months). We conclude that GH replacement therapy in adult patients with GHD over a period of 18 months causes a pronounced increase in bone turnover mainly during the first 12 months of therapy and increases BMD of the lumbar spine and the femoral neck after 18 months. Received: 13 March 1997 / Accepted: 7 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号