首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The topographic projections of the retina upon the optic tectum and ventral lateral geniculate nucleus (GLv) of the chick were investigated by making small intraretinal injections of 3H-proline. The retinotectal projection pattern was similar to that described for the pigeon. The retinal projection to the GLv was also topographic and was restricted to the outermost lamina of the nucleus. The anteroposterior retinal axis was reversed in the GLv relative to its orientation in the tectum but the superoinferior axis was oriented identically in both. Furthermore, the posterior retina had an enlarged area of projection in the GLv similar to the enlarged area of retinotectal projection for the “red field” found in pigeons. The tectogeniculate projection was topographic and was confined to the outermost geniculate lamina. The secondorder retionotopic map made by the tectogeniculate projections was in register with the retinogeniculate projection. Although the retinal and tectal projection areas were coextensive in the outermost geniculate lamina, the grain density distributions peaked at different points along a radial path through the geniculate laminae. Injections of HRP into the optic tectum led to very light retrograde labeling of a small population of GLv cells topographically corresponding to the tectogeniculate projection zone of the injection site. The data suggest that the chick GLv is comparable to the GLv of other non-primate mammals.  相似文献   

2.
The development of the optic tectum and the establishment of retinotectal projections were investigated in the quail embryo from day E2 to hatching day (E16) with Cresyl violet-thionine, silver staining and anterograde axonal tracing methods. Both tectal cytodifferentiation and retinotectal innervation occur according to a rostroventral-caudodorsal gradient. Radial migration of postmitotic neurons starts on day E4. At E14, the tectum is fully laminated. Optic fibers reach the tectum on day E5 and cover its surface on day E10. 'Golgi-like' staining of optic fibers with HRP injected in vitro on the surface of the tectum reveals that: growing fronts are formed exclusively by axons extending over the tectal surface; fibers penetrating the outer tectal layers are always observed behind the growing fronts; the penetrating fibers are either the tip of the optic axons or collateral branches; as they penetrate the tectum, optic fibers give off branches which may extend for long distances within their terminal domains; the optic fiber terminal arbors acquire their mature morphology by day E14. The temporal sequence of retinotectal development in the quail was compared to that already established for the chick, thus providing a basis for further investigation of the development of the retinotectal system in chimeric avian embryos obtained after xenoplastic transplantation of quail tectal primordia into the chick neural tube.  相似文献   

3.
The retinotectal projection is organized in a precise retinotopic manner. We find, though, that during development the growth and arborization of temporal retinal axons within the optic tectum of chick embryos is initially imprecise. Axonal targeting errors occur along the rostral-caudal and medial-lateral tectal axes, and arbors are formed at topographically inappropriate positions. Subsequent course corrections along both tectal axes and large-scale axonal remodeling lead to the retinotopic ordering of terminal arborizations characteristic of the mature projection. The trajectories and branching patterns of temporal retinal axons labeled with Dil or DiO were determined in whole mounts of retina and tectum from chicks ranging in age from embryonic day 9 to posthatching. Within the retina, labeled retinofugal axons travel in a compact bundle but do not maintain strict neighbor relations, as they course to the optic fissure. The axons enter the contralateral tectum at its rostral edge and grow caudally. Many extend well past their appropriate terminal zone within rostral tectum; a proportion of these later reverse their direction of growth. Many axons grow onto the tectum at incorrect positions along the medial-lateral tectal axis. Some correct this error in a directed manner by altering their trajectory or extending collateral branches at right angles. About 80% of the positional changes of this type are made in the direction appropriate to correct axon position, and thus are likely a response to tectal positional cues. After maturation of retinotopic order, about half of the axons that project to a mature terminal zone have made abrupt course corrections along one or both tectal axes, indicating that initially mistargeted axons can establish appropriately positioned arbors and survive. The development of temporal axons within the tectum is characterized by 3 phases: elongation, branch and arbor formation, and remodeling. After considerable rostrocaudal elongation, an axon typically develops numerous side branches and arbors, many at inappropriate locations. Most arbors are formed by side branches that develop as interstitial collaterals; few axons grow directly to their appropriate terminal zone and arborize. Aberrant arbors, and axons and axon segments that fail to form arbors in the appropriate terminal zone, are rapidly eliminated over about a 2 d period. Axon degeneration appears to play a role in this remodeling process.  相似文献   

4.
The retinogeniculate projection in the chick undergoes apparent augmentation following lesions in the optic tectum. Using autoradiographic tracing techniques we determined that the alteration of the retinal projection required a minimum of 4 days to be detected if tectal lesions were made at hatching and could be produced by lesions placed up to 1.5 years posthatch.  相似文献   

5.
The nucleus geniculatus lateralis pars ventralis (GLv) is a prominent retinal target in all amniotes. In birds, it is in receipt of a dense and topographically organized retinal projection. The GLv is also the target of substantial and topographically organized projections from the optic tectum and the visual wulst (hyperpallium). Tectal and retinal afferents terminate homotopically within the external GLv‐neuropil. Efferents from the GLv follow a descending course through the tegmentum and can be traced into the medial pontine nucleus. At present, the cells of origin of the Tecto‐GLv projection are only partially described. Here we characterized the laminar location, morphology, projection pattern, and neurochemical identity of these cells by means of neural tracer injections and intracellular fillings in slice preparations and extracellular tracer injections in vivo. The Tecto‐GLv projection arises from a distinct subset of layer 10 bipolar neurons, whose apical dendrites show a complex transverse arborization at the level of layer 7. Axons of these bipolar cells arise from the apical dendrites and follow a course through the optic tract to finally form very fine and restricted terminal endings inside the GLv‐neuropil. Double‐label experiments showed that these bipolar cells were choline acetyltransferase (ChAT)‐immunoreactive. Our results strongly suggest that Tecto‐GLv neurons form a pathway by which integrated tectal activity rapidly feeds back to the GLv and exerts a focal cholinergic modulation of incoming retinal inputs. J. Comp. Neurol. 522:2377–2396, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The ipsilateral retinotectal projection in the developing chick was examined by using rhodamine-B-isothiocyanate (RITC)as an anterograde and retrograde vital marker for the retinal ganglion cells and their axons. Staining of the entire retina following intravitreal RITC injection between incubation days 3 and 16 revealed a small number of anterogradely labeled fibers in the optic tract and the anterior half of the optic tectum ipsilateral to the injection site. The total number of ipsilaterally projecting fibers was estimated to be about 2,000 on developmental day 9. The ipsilateral projection totally disappeared after day 15. The arrangement of fibers within the ipsilateral projection was examined by local anterograde RITC staining of localized retinal regions between days 9 and 10. The projection was retinotopically organized along the dorsoventral axis such that fibers of dorsal retinal origin projected on the ventral tectal half, whereas fibers of ventral retinal orgin projected on the dorsal tectal half. The localization of ipsilaterally projecting ganglion cell bodies was examined by retrograde RITC staining during days 9 and 15. Ganglion cells of all four quadrants of the central retina contributed to the production of the ipsilateral projection. The ipsilaterally growing retinotectal fibers did not represent collaterals of contralaterally projecting retinotectal axons. We assume that the tendency of early growing retinotectal axons to grow straight, as well as the ability of axonal growth cones to “sample” the environment, lead to a crossing of axons to the contralateral side. Ipsilateral projections would therefore represent “pathfinding errors.” Explanations for the elimination of the ipsilateral retinotectal projection are discussed.  相似文献   

7.
Retinal axons of Xenopus tadpoles at various stages of larval development were filled with horseradish peroxidase (HRP), and their trajectories and the patterns of branching within the tectum were analyzed in wholemount preparations. To clarify temporal and spatial modes of growth of retinal axons during larval development, special attention was directed to labeling a restricted regional population of retinal axons with HRP, following reported procedures (H. Fujisawa, K. Watanabe, N. Tani, and Y. Ibata, Brain Res. 206:9-20, 1981; 206:21-26, 1981; H. Fujisawa, Dev. Growth Differ 26:545-553, 1984). In developing tadpoles, individual retinal axons arrived at the tectum, without clear sprouting. Axonal sprouting first began when growing tips of each retinal axon had arrived at the vicinity of its site of normal innervation within the tectum. Thus, the terminals of the newly added retinal axons were retinotopically aligned within the tectum. The retinotopic alignment of the terminals may be due to an active choice of topographically appropriate tectal regions by growth cones of individual retinal axons. The stereotyped alignment of the newly added retinal axons was followed by widespread axonal branching and preferential selection of those branches. Each retinal axon was sequentially bifurcated within the tectum, and old branches that had inevitably been left at ectopic parts of the tectum (owing to tectal growth) were retracted or degenerated in the following larval development. The above mode of axonal growth provides an adequate explanation of cellular mechanisms of terminal shifting of retinal axons within the tectum during development of retinotectal projection. Selection of appropriate branches may also lead to a reduction in the size of terminal arborization of retinal axons, resulting in a refinement in targeting.  相似文献   

8.
The ability of pre- and postsynaptic populations to achieve the proper convergence ratios during development is especially critical in topographically mapped systems such as the retinotectal system. The ratio of retinal ganglion cells to their target cells in the optic tectum can be altered experimentally either by early partial tectal ablation, which results in an orderly compression of near-normal numbers of retinal projections into a smaller tectal area, or by early monocular enucleation, which results in the expansion of a reduced number of axons in a near-normal tectal volume. Our previous studies showed that changes in cell death and synaptic density consequent to these manipulations can account for only a minor component of this compensation for the population mismatch. In this study, we examine other mechanisms of population matching in the hamster retinotectal system. We used an in vitro horseradish peroxidase labeling method to trace individual retinal ganglion cell axons in superior colliculi partially ablated on the day of birth, as well as in colliculi contralateral to a monocular enucleation. We found that individual axon arbors within the partially lesioned tectum occupy a smaller area, with fewer branches and fewer terminal boutons, but preserve a normal bouton denstiy. In contrst, ipsilaterally projecting axon arbors in monoculary enucleated animals occupy a greater area than in the normal condition, with a much larger arbor length and greater number of boutons and branches compared with normal ipsilaterally projecting cells. Alteration of axonal arborization of retinalganglion cells is the main factor responsible for matching the retinal and tectal cell populations within the tectum. This process conserves normal electrophysiological function over a wide range of convergence ratios and may occur through strict selectivity of tectal cells for their normal number of inputs. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The pattern in which optic axons invade the tectum and begin synaptogenesis was studied in the chick. The anterogradely transported marker, horseradish peroxidase, was injected into one eye of embryos between 5 and 16 days of development (E5 to E16). This labeled the optic axons in the brain. The first retinal axons arrived in the most superficial lamina of the tectum on E6. They entered the tectum at the rostroventral margin. During the next 6 days of development the axons grew over the tectal surface. First they filled the rostral tectum, the oldest portion of the tectum, and then they spread to the caudal pole. Shortly after the first axons entered the tectum on E6, labeled retinal axons were found penetrating from the surface into deeper tectal layers. In any given area of the tectum, optic axons were seen penetrating deeper layers shortly after arriving in that area. Electron microscopic examination showed that at least some of the labeled axons in rostral tectum formed synapses with tectal cells by E7. These results show two things which contrast with results from previous studies. First, there is no delay between the time the retinal axons enter the tectum and the time they penetrate into synaptic layers of the tectum. Second, the first retinotectal connections are formed in rostral tectum and not central tectum. Retrograde tracing showed the first optic axons that arrived in the tectum were from ganglion cells in central retina. Previous studies have shown that the ganglion cells of central retina project to the central tectum in the mature chick. This opens the possibility that the optic axons from central retina, which connect to rostral tectum in the young embryo, shift their connections to central tectum during subsequent development. As they enter the tectum the growth cones of retinal axons appear to be associated with the external limiting membrane. During the time that connections would begin to shift in the tectum a second population of axons appears at the bottom of stratum opticum, some with characteristics of growth cones. This late-appearing population may represent axons shifting their connections. These results have implications for theories on how the retinotopic pattern of retinotectal connections develops.  相似文献   

10.
The ipsilateral oculotectal projection in the frog is a topographic mapping of the binocular part of the visual field of one eye on the ipsilateral tectal lobe. The underlying neuronal circuitry consists of the topographic, crossed retinotectal projection and an intertectal pathway which relays information from a given point in one tectal lobe to the visually corresponding point in the other. During optic nerve regeneration, there is a period when the terminals of retinotectal afferents are found at abnormal locations in the opposite tectal lobe. Whether they form functional synapses at this time is not known. If so, one would expect to observe correlated abnormalities in the ipsilateral oculotectal projection. To determine whether such abnormalities exist, we have made parallel electrophysiological studies of the recovery of the retinotectal and ipsilateral oculotectal projections following crush of one optic nerve. The earliest stage of recovery was characterized by a lack of significant topographic order in the retinotectal projection and by the absence of a physiologically observable ipsilateral projection. Within a short time, the retinotectal projection became topographically organized and a similarly organized ipsilateral projection appeared. While topographic, the retinotectal projection at intermediate times was abnormal in that the multiunit receptive fields recorded at individual tectal loci were greatly enlarged. Multiunit receptive fields were similarly enlarged in the ipsilateral projection. In addition, some ipsilateral fields included areas of visual space not normally represented in the projection. The abnormalities in both projections subsequently disappeared over the same time course. Throughout recovery there was a high correlation between multiunit receptive field sizes in the contralateral tectal lobe and those at visually corresponding points in the ipsilateral tectal lobe. Enlarged multiunit receptive fields in the contralateral tectal lobe could not be accounted for in terms of optical or retinal abnormalities since single unit receptive field sizes were normal. Nor could they be accounted for in terms of changes in recording characteristics since simultaneously recorded fields activated by the undisturbed eye were normally sized. We conclude that the enlarged fields in the contralateral tectal lobe indicate the presence at individual tectal loci of afferents from wider than normal retinal regions. Similar considerations ruled out optical, retinal, and recording abnormalities as the explanation for the enlarged multiunit receptive fields in the ipsilateral tectal lobe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
We studied the effect of fluoxetine, a selective serotonin reuptake inhibitor, in the development and lesion-induced plasticity of retinotectal axons in pigmented rats. Neonatal rats received a daily injection of either fluoxetine or vehicle from postnatal day 1 (PND 1) to PND 10 or from PND 14 to PND 28 (fluoxetine, 7.5 and 10.0 mg/kg, respectively). In the latter group, some animals received a single lesion at the temporal periphery of the left retina at PND 21. Unoperated animals were use as the control. At the end of the treatment, the animals received an intraocular injection of horseradish peroxidase (HRP) in the right (intact) eye to trace the uncrossed retinotectal pathway. Chronic fluoxetine treatment, induced, in unoperated rats, an expansion of the retinal terminal fields along the rostro-caudal axis of the tectum both in the PND 10 and PND 28 groups. Following a retinal lesion in the left eye at PND 21, the vehicle-treated group showed a small reorganization of the intact uncrossed projection. In this group only a few terminals were labeled invading the denervated tectal surface one-week after the lesion. Fluoxetine-treated animals on the other hand, showed a great amplification of plasticity with a conspicuous sprouting of the uncrossed retinal axons into denervated areas. The data suggest that fluoxetine induces extensive axonal rearrangements in neonatal and juvenile central nervous system and amplifies neuroplasticity following retinal lesions late in development.  相似文献   

13.
The cell adhesion molecule-like tyrosine phosphatase CRYPalpha is localized on retinal axons and their growth cones. We present evidence that two isoforms of this type IIa phosphatase, CRYPalpha1 and CRYPalpha2, have extracellular ligands along the developing retinotectal pathway. Using alkaline phosphatase fusion proteins containing the CRYPalpha1 ectodomain, we detect a prominent ligand on basement membranes of the early retina, optic stalk, and chiasm. A second ligand is observed in the endfeet region of radial processes in the developing stratum opticum, the site of initial retinal axon invasion. This latter ligand binds CRYPalpha2 preferentially. Further ligand interactions are detected for both CRYPalpha protein isoforms in retinorecipient tectal laminae and on retinal fibers themselves. CRYPalpha thus has cell- and matrix-associated ligands along the entire retinotectal projection. Moreover, these ligands appear to be heterotypic and interact with CRYPalpha through both its immunoglobulin and fibronectin type III regions. The anteroposterior levels of the ligands are relatively uniform within the retina and tectum, suggesting that the CRYPalpha protein within retinal axons does not directly recognise topographically graded guidance cues. We propose that CRYPalpha may have a permissive role in promoting retinal axon growth across the eye and tectum and that its functions are modulated temporally and spatially by isoform-specific interactions with cell- and matrix-associated ligands.  相似文献   

14.
Developing retinal axons in the zebrafish embryo were stained with HRP or with the fluorescent dyes dil and diO to study the formation of the retinotectal projection. Retinal axons leave the eye at 34-36 hr postfertilization (PF), invade the tectum at 46-48 hr PF, and innervate the tectal neuropil at 70-72 hr PF. Dorsal and ventral axons occupy separate aspects of the optic nerve and tract and pass into their retinotopically appropriate ventral and dorsal hemitectum, respectively. Nasal and temporal axons are segregated in the nerve, mixed in the tract, and are coextensive over the rostral half of tectum until 56 hr PF. They then segregate again, due to the progression of nasal axons into the open caudal tectum. Thus, at 70-72 hr PF, dorsal and ventral as well as temporal and nasal axons occupy their retinotopically appropriate tectal quadrants. After ablation of the temporal retina prior to the time of axonal outgrowth, the nasal axons bypass the vacant rostral tectum to terminate in the caudal tectal half. Temporal axons in the absence of nasal axons remain restricted to their appropriate rostral tectal half, suggesting that nasal and temporal axons possess a preference for their retinotopically appropriate tectal domains. Measurements of individual terminal arbors and the tectal areas in embryos and in adult zebrafish showed that individual arbors are large with respect to the embryonic tectum but are about 14-15 times smaller than in the adult. However, the proportion of tectum covered by embryonic arbors is about 7 times larger than in the adult, suggesting that a higher precision of the adult projection is achieved as a result of a greater enlargement of the tectum than of the arbors.  相似文献   

15.
The retinal projection to the superficial pretectal parvicellular nucleus (SPp) of goldfish was examined by filling select groups of optic axons with cobaltous-lysine. The tracer was applied intraocularly to peripheral retinal slits in some fish. In other fish, it was applied to optic axons from an intact hemiretina after one-half of the retina was ablated and the corresponding optic axons had degenerated. The results indicated that SPp is a folded structure, having a dorsal surface innervated by axons from temporal retinal ganglion cells and a ventral surface innervated by axons from nasal retinal ganglion cells. Peripheral retina innervates the anterodorsal and anteroventral edges of SPp, while central retina innervates the posterior genu. Dorsal retina innervates lateral SPp and ventral retina innervates medial SPp. Thus, although SPp is a folded nucleus, the topography of the retino-SPp projection is similar to the topography of the retinotectal projection. That is, the relative position of optic axons within SPp mirrors the retinal location of the ganglion cells that project to SPp. Retino-SPp axons occupy the center of the main optic tract before it divides into the two optic brachia. These axons are topographically arranged, with temporal retino-SPp axons being flanked on both sides by nasal retino-SPp axons. Retino-SPp axons arborize within SPp and then continue to enter the superficial tectal retino-recipient lamina. Thus, these axons innervate both SPp and the optic tectum. These findings are discussed with respect to chemospecific and morphogenetic views of visual system topography.  相似文献   

16.
The optic tectum in birds and its homologue the superior colliculus in mammals both send major bilateral, nontopographic projections to the nucleus rotundus and caudal pulvinar, respectively. These projections originate from widefield tectal ganglion cells (TGCs) located in layer 13 in the avian tectum and in the lower superficial layers in the mammalian colliculus. The TGCs characteristically have monostratified arrays of brush‐like dendritic terminations and respond mostly to bidimensional motion or looming features. In birds, this TGC‐mediated tectofugal output is controlled by feedback signals from the nucleus isthmi pars parvocellularis (Ipc). The Ipc neurons display topographically organized axons that densely ramify in restricted columnar terminal fields overlapping various neural elements that could mediate this tectofugal control, including the retinal terminals and the TGC dendrites themselves. Whether the Ipc axons make synaptic contact with these or other tectal neural elements remains undetermined. We double labeled Ipc axons and their presumptive postsynaptic targets in the tectum of chickens (Gallus gallus) with neural tracers and performed an ultrastructural analysis. We found that the Ipc terminal boutons form glomerulus‐like structures in the superficial and intermediate tectal layers, establishing asymmetric synapses with several dendritic profiles. In these glomeruli, at least two of the postsynaptic dendrites originated from TGCs. We also found synaptic contacts between retinal terminals and TGC dendrites. These findings suggest that, in birds, Ipc axons control the ascending tectal outflow of retinal signals through direct synaptic contacts with the TGCs. J. Comp. Neurol. 524:362–379, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Neuroanatomical tracing of retinal axons and axonal terminals with the fluorescent dye, DiI, was combined with immunohistochemical characterization of radial glial cells in the developing chick retinotectal system. Emphasis was placed on the mode of the tectal innervation by individual retinal axons and on the distribution and fate of the tectal radial glial cells and their spatial relation to retinal axons. It was obvious from fluorescent images obtained from anterogradely filled axons that these axons deserted the superficial stratum opticum (SO) to penetrate the stratum griseum et fibrosum superficiale (SGFS) by making right-angled turns within the SO. Frequently, axons which had invaded the SGFS were bifurcated and had a superficial branch which remained within the SO. Terminal axonal arborization occurred at various depths within the SGFS. Characterization of the tectal glial cells and their radial fibers by means of the anti-filament antibody, R5, and post-mortem staining with the fluorescent dye, DiI, revealed the following. (a) At least from day E8 to P1, tectal glial fibers traversed all tectal layers from the periventricular location of their somata to the superficial interface between SO and pia mater. In this interface they enlarged and formed characteristic endfeet. (b) Glial endfeet covered the whole tectal surface. They showed at early ages anterior-posterior differences having a higher density in the posterior tectum. These differences disappeared at embryonic day E13. (c) After innervation, glial endfeet of the anterior tectal third were arranged in rows parallel to the retinal fibers within the SO. This arrangement was not observed in eyeless embryos. (d) Radial glial fibers could be stained with R5 from day E8 to late embryonic stages throughout their entire length. (e) At the first posthatching days, only the segments of the radial glial fibers restricted to the thickness of the SO were R5-positive, although the fibers still traversed throughout the depth of the tectum. The results are discussed in context to the genesis of the retinotectal projection.  相似文献   

18.
19.
The nature of the expansion of the visual field projection was studied in goldfish in which size disparities were created between the retina and the tectum. After removal of one-half of the retina, the remaining retinal ganglion cells expand their projections so that the entire contralateral optic tectum is encompassed (Schmidt et al.1978). We wished to determine whether this expansion is accompanied by increased arborization including proliferation of synaptic terminals by the spared retinal ganglion axons or whether field expansion is accomplished by increased arborization without changes in synaptic number. Portions of the retina were ablated and the animals were allowed to survive for at least 5 months, the time at which expansion can be demonstrated, before sacrifice. We mapped retinotectal projections to determine the extent of the expanded visual fields and used stereological and morphometric analyses of synaptic contacts in the retinal target lamina, the stratum fibrosum et griseum superficialis (SFGS), in the optic tectum to estimate synaptic number. Numbers of synaptic terminals in the SFGS contralateral to the lesioned retina were not different from numbers in the comparable portion of control tecta. These observations indicate that the surviving retinal axons increased the number of synaptic contacts on tectal target cells in response to removal of other retinal ganglion cells.  相似文献   

20.
Mapping of retinotectal projections in the tree frog Hyla regilla was carried out by both behavioral and electrophysiological recording techniques following tectal ablations, with and without optic nerve regeneration. Scotomata produced by unilateral and bilateral half tectum ablations and by unilateral rectangular midtectal excisions were found to remain essentially unaltered in all cases through recovery periods up to 334 days. Similarly, electrophysiological mapping of the rostral half tectum separated by Gelfilm implants from the caudal tectum for up to 191 days yielded a normal rostral visual field. The stability of the retinotectal projection in adult Hylidae observed in these experiments contrasts with the plastic readjustments obtained in young goldfish in which the retinotectal system is still probably growing and presumably capable of field regulation. The results are taken to support the original explanatory model for developmental patterning of retinotectal connections in terms of selective cytochemical affinities between retinal and tectal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号