首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Animal studies showed that dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid alpha-linolenic acid (ALA)], evening primrose oil [rich in the n-6 polyunsaturated fatty acid gamma-linolenic acid (GLA)], and fish oil [rich in the long-chain n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] can decrease natural killer (NK) cell activity. There have been no studies of the effect on NK cell activity of adding these oils to the diet of humans. OBJECTIVE: Our objective was to determine the effect of dietary supplementation with oil blends rich in ALA, GLA, arachidonic acid (AA), DHA, or EPA plus DHA (fish oil) on the NK cell activity of human peripheral blood mononuclear cells. DESIGN: A randomized, placebo-controlled, double-blind, parallel study was conducted. Healthy subjects aged 55-75 y consumed 9 capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil and oils rich in ALA, GLA, AA, DHA, or EPA plus DHA. Subjects in these groups consumed 2 g ALA, 770 mg GLA, 680 mg AA, 720 mg DHA, or 1 g EPA plus DHA (720 mg EPA + 280 mg DHA) daily, respectively. Total fat intake from the capsules was 4 g/d. RESULTS: The fatty acid composition of plasma phospholipids changed significantly in the GLA, AA, DHA, and fish oil groups. NK cell activity was not significantly affected by the placebo, ALA, GLA, AA, or DHA treatment. Fish oil caused a significant reduction (mean decline: 48%) in NK cell activity that was fully reversed by 4 wk after supplementation had ceased. CONCLUSION: A moderate amount of EPA but not of other n-6 or n-3 polyunsaturated fatty acids can decrease NK cell activity in healthy subjects.  相似文献   

2.
BACKGROUND: n-3 Fatty acid supplementation lowered serum triacylglycerol concentrations in studies in which most of the subjects were male. The effects of n-3 fatty acid supplementation in postmenopausal women receiving and not receiving hormone replacement therapy (HRT) have received little attention. OBJECTIVE: We sought to determine the effects of a fish-oil-derived n-3 fatty acid concentrate on serum lipid and lipoprotein risk factors for cardiovascular disease in postmenopausal women receiving and not receiving HRT, with an emphasis on serum triacylglycerol concentrations and the ratio of triacylglycerol to HDL cholesterol. DESIGN: Postmenopausal women (n = 36) were grouped according to exogenous hormone use and were randomly allocated to receive 8 capsules/d of either placebo oil (control) or n-3 fatty acid-enriched oil (supplement). The supplement provided 2.4 g eicosapentaenoic acid (EPA) plus 1.6 g docosahexaenoic acid (DHA) daily. Serum lipids and the fatty acid composition of serum phospholipids were determined on days 0 and 28. RESULTS: Supplementation with n-3 fatty acids was associated with 26% lower serum triacylglycerol concentrations (P < 0.0001), a 28% lower overall ratio of serum triacylglycerol to HDL cholesterol (P < 0.01), and markedly greater EPA and DHA concentrations in serum phospholipids (P < 0.05). CONCLUSIONS: These results show that supplementation with a fish-oil-derived concentrate can favorably influence selected cardiovascular disease risk factors, particularly by achieving marked reductions in serum triacylglycerol concentrations and triacylglycerol:HDL cholesterol in postmenopausal women receiving and not receiving HRT. This approach could potentially reduce the risk of coronary heart disease by 27% in postmenopausal women.  相似文献   

3.
Animal and human studies have shown that greatly increasing the amounts of flax seed oil [rich in the (n-3) polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALNA)] or fish oil [FO; rich in the long chain (n-3) PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] in the diet can decrease mitogen-stimulated lymphocyte proliferation. The objective of this study was to determine the effect of dietary supplementation with moderate levels of ALNA, gamma-linolenic acid (GLA), arachidonic acid (ARA), DHA or FO on the proliferation of mitogen-stimulated human peripheral blood mononuclear cells (PBMC) and on the production of cytokines by those cells. The study was randomized, placebo-controlled, double-blinded and parallel. Healthy subjects ages 55-75 y consumed nine capsules/d for 12 wk; the capsules contained placebo oil (an 80:20 mix of palm and sunflower seed oils) or blends of placebo oil with oils rich in ALNA, GLA, ARA or DHA or FO. Subjects in these groups consumed 2 g of ALNA or 770 mg of GLA or 680 mg of ARA or 720 mg of DHA or 1 g of EPA plus DHA (720 mg of EPA + 280 mg of DHA) daily from the capsules. Total fat intake from the capsules was 4 g/d. The fatty acid composition of PBMC phospholipids was significantly changed in the GLA, ARA, DHA and FO groups. Lymphocyte proliferation was not significantly affected by the placebo, ALNA, ARA or DHA treatments. GLA and FO caused a significant decrease (up to 65%) in lymphocyte proliferation. This decrease was partly reversed by 4 wk after stopping the supplementation. None of the treatments affected the production of interleukin-2 or interferon-gamma by PBMC and none of the treatments affected the number or proportion of T or B lymphocytes, helper or cytotoxic T lymphocytes or memory helper T lymphocytes in the circulation. We conclude that a moderate level GLA or EPA but not of other (n-6) or (n-3) PUFA can decrease lymphocyte proliferation but not production of interleukin-2 or interferon-gamma.  相似文献   

4.
BACKGROUND: Dietary docosahexaenoic acid (DHA) has triacylglycerol-lowering potential and undergoes in vivo retroconversion to eicosapentaenoic acid (EPA) in humans. Hormone replacement therapy (HRT) influences circulating lipid concentrations and fatty acid metabolism. DHA supplementation has not been studied in postmenopausal women. OBJECTIVE: We studied the effects of supplementation with DHA (free of EPA) on the resulting elevation in EPA and on selected cardiovascular disease risk factors in postmenopausal women. DESIGN: Women receiving (n = 18) and not receiving (n = 14) HRT completed a randomized, double-blind, placebo-controlled crossover trial with a DHA supplement (2.8 g DHA/d). A washout period of > or =6 wk divided the two 28-d intervention periods. Fasting blood samples were collected for analysis. RESULTS: In all women, DHA supplementation was associated with significant changes (P < 0.05), including 20% lower serum triacylglycerol concentrations, 8% higher HDL-cholesterol concentrations, a 28% lower overall ratio of serum triacylglycerol to HDL cholesterol, and a 7% decrease in resting heart rate. DHA supplementation resulted in a 45% lower net increase (P = 0.02) in EPA and a 42% lower (P = 0.0028) estimated percentage retroconversion of DHA to EPA [DeltaEPA/(DeltaEPA + DeltaDHA) x 100] in women receiving than in those not receiving HRT. CONCLUSION: With DHA supplementation, the accumulation of EPA in serum phospholipids is significantly attenuated in postmenopausal women receiving HRT compared with that in women not receiving HRT. DHA supplementation can also favorably influence selected cardiovascular disease risk factors in postmenopausal women.  相似文献   

5.
BACKGROUND: Better understanding of the mechanisms involved in docosahexaenoic acid (DHA) transfer to the neonate may contribute to improve dietary support for infants born prematurely to mothers with placental lipid transport disorders. OBJECTIVE: We studied whether DHA supplements modify the messenger RNA (mRNA) expression of placental lipid transport proteins to allow a selective transfer of DHA to the fetus. DESIGN: Healthy pregnant women (n = 136) received, in a double-blind randomized trial, 500 mg DHA + 150 mg eicosapentaenoic acid, 400 microg 5-methyl-tetrahydrofolic acid, 500 mg DHA + 400 microg 5-methyl-tetrahydrofolic acid, or placebo during the second half of gestation. We analyzed the fatty acid composition of maternal and cord blood phospholipids and of placenta; we quantified placental mRNA expression of fatty acid-transport protein 1 (FATP-1), FATP-4, FATP-6, fatty acid translocase, fatty acid-binding protein (FABP) plasma membrane, heart-FABP, adipocyte-FABP, and brain-FABP. RESULTS: The mRNA expression of the lipid carriers assayed did not differ significantly between the 4 groups. However, the mRNA expression of FATP-1 and FATP-4 in placenta was correlated with DHA in both maternal plasma and placental phospholipids, although only FATP-4 expression was significantly correlated with DHA in cord blood phospholipids. Additionally, the mRNA expression of several membrane lipid carriers was correlated with EPA and DHA in placental triacylglycerols and with EPA in placental free fatty acids. CONCLUSIONS: Correlation of the mRNA expression of the membrane placental proteins FATP-1 and especially of FATP-4 with maternal and cord DHA leads us to conclude that these lipid carriers are involved in placental transfer of long-chain polyunsaturated fatty acids.  相似文献   

6.
The effect of feeding redfish (Sebastes marinus or mantella) oil or a derived n-3 fatty acid concentrate containing eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the fatty acid compositions of individual phospholipids in selected neural tissues was studied in growing male rats. Control animals were given sunflower oil in the diet for the 5-wk feeding trial. Lipid analyses revealed that EPA (20:5n-3) became significantly enriched in all phospholipid fractions (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol) in the tissues studied (brain, retina and sciatic nerve) in the two n-3 fatty acid dietary groups relative to controls. Corresponding changes were also found in the 22:5n-3 contents of these tissues, whereas little or no significant elevation in DHA (22:6n-3) was found. In contrast, the percentages by weight of the n-6 fatty acids including 18:2n-6, 20:4n-6 (arachidonic acid, AA), 22:4n-6 and 22:5n-6 were generally lower in the various phospholipids/tissues of the animals given fish oil or the n-3 fatty acid concentrate; the levels of 22:5n-6 and 22:4n-6 were markedly affected in this regard. These results indicate that dietary n-3 fatty acids (as EPA plus DHA) can greatly affect the fatty acid compositions of the various membrane phospholipids in nervous tissues within a relatively short time. These biochemical alterations may be important for functional changes including altered membrane fluidity, cellular responses, ion transport and the biosyntheses of AA- and EPA-derived prostaglandins and leukotrienes.  相似文献   

7.
ABSTRACT: Since the amounts of arachidonic acid (AA) and EPA in food may have implications for human health, we investigated whether a small change in chicken feed influenced the blood lipid concentration in humans ingesting the chicken. Forty-six young healthy volunteers (age 19--29) were randomly allocated into two groups in a double-blind dietary intervention trial, involving ingestion of about 160 g chicken meat per day for 4 weeks. The ingested meat was either from chickens given a feed concentrate resembling the commercial chicken feed, containing 4% soybean oil (SO), or the meat was from chickens given a feed where the soybean oil had been replaced by 2% rapeseed oil plus 2% linseed oil (RLO).Serum total cholesterol, LDL and HDL cholesterol, triacylglycerols, serum phospholipid fatty acid concentration, blood pressure, body weight and C-reactive protein were determined at baseline and post-intervention. In subjects consuming chicken meat from the RLO group there was a significantly (p < 0.001) increased concentration of EPA in serum phospholipids, and a reduced ratio between AA and EPA. The participants that had a low% of EPA + DHA in serum phospholipids (less than 4.6%), all increased their% of EPA + DHA after the four week intervention period when consuming the RLO chicken. No significant response differences in cholesterol, triacylglycerol, C-reactive protein, body weight or blood pressure were observed between the groups. This trial demonstrates that a simple change in chicken feed can have beneficial effects on amount of EPA and the AA/EPA ratio in human serum phospholipids.  相似文献   

8.
BACKGROUND: n-3 Fatty acids influence vascular function, but the effect of individual fatty acids on systemic arterial compliance (SAC) has not been reported. SAC, which reflects arterial elasticity, is emerging as a new cardiovascular risk factor and appears to predict future cardiovascular events. OBJECTIVE: We tested whether the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) improve SAC in dyslipidemic subjects. DESIGN: Thirty-eight dyslipidemic subjects were randomly assigned to receive 3 g EPA/d (n = 12), 3 g DHA/d (n = 12), or a placebo (n = 14) in a 7-wk parallel, double-blind trial. Arterial functions were measured at the beginning and end of the interventions. Plasma lipids and plasma fatty acids were also measured. RESULTS: Consumption of the n-3 fatty acids significantly increased SAC, whereas consumption of the placebo did not (P = 0.043; repeated-measures analysis of variance across the 3 groups); the increase was 36% with EPA and 27% with DHA. The major components contributing to the increase in SAC (systolic and pulse pressures and total vascular resistance) tended to decrease but not significantly. Plasma total and VLDL triacylglycerol were significantly lower in the n-3 fatty acid groups (P = 0.026 and 0.006, respectively; repeated-measures analysis of variance) than in the placebo group. CONCLUSION: EPA and DHA increase SAC and tend to reduce pulse pressure and total vascular resistance, effects that may reduce the risk of adverse cardiovascular events.  相似文献   

9.
gamma-Linolenic acid [GLA, 18:3(n-6)], eicosapentaenoic acid [EPA, 20:5(n-3)] and docosahexaenoic acid [DHA, 22:6(n-3)] have been reported to prevent cardiovascular diseases. However, they are highly unsaturated and therefore more sensitive to oxidation damage. We investigated the effects of a diet rich in these polyunsaturated fatty acids (PUFA) on blood pressure, plasma and lipoprotein lipid concentrations, total antioxidant status, lipid peroxidation and platelet function in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Five-week-old SHR and WKY rats were fed for 10 wk either a diet containing Isio 4 oil or a diet rich in GLA, EPA and DHA (5.65, 6.39 and 4.94 g/kg dry diet, respectively). The total antioxidant status was assayed by monitoring the rate of free radical-induced hemolysis. VLDL-LDL sensitivity to copper-induced lipid peroxidation was determined as the production of thiobarbituric acid reactive substances. After dietary PUFA supplementation, a significant decrease in blood pressure of SHR rats (-20 mm Hg) was observed and the total antioxidant status was enhanced. VLDL-LDL resistance to copper-induced peroxidation was increased in both strains. The PUFA supplementation did not change platelet maximum aggregation in SHR rats, but it decreased the aggregation speed. In hypertensive rats, GLA + EPA + DHA supplementation lowers blood pressure, enhances total anti-oxidant status and resistance to lipid peroxidation, diminishes platelet aggregation speed and lowers plasma lipid concentrations. Thus, it enhances protection against cardiovascular diseases. Therefore, nutritional recommendations for cardiovascular disease prevention should take into account the pharmacologic properties of GLA, EPA and DHA.  相似文献   

10.
The effects of conjugated linoleic acid (CLA), gamma-linolenic acid (GLA), linoleic acid (LA), and their combinations, on skin composition in mice were investigated. Mice (8 weeks old) were orally administered with either LA, GLA, CLA, LA + GLA, LA + CLA, or CLA + GLA for 4 weeks. Then, the skin was analysed for triacylglycerol content, fatty acid composition and collagen content. Additionally, thicknesses of the dermis layer and subcutaneous tissue layer, and the size and number of adipocytes were measured histologically. The skin fatty acid composition was modified depending upon the fatty acid composition of supplemented oils. In each oil-alone group, skin triacylglycerol content was the highest in LA, followed by GLA and CLA treatments. Combinations with CLA had a similar triacylglycerol content compared with the CLA-alone group. No significant changes in collagen content were observed among any treatments. The effects on subcutaneous thickness were similar to the results obtained in the triacylglycerol contents, where groups supplemented with CLA alone or other fatty acids had significantly thinner subcutaneous tissue compared with the LA-alone group. However, no significant difference was detected in the thickness of the dermis layers. The number of adipocytes was highest in the LA + GLA group and tended to be reduced by CLA with or without the other fatty acids. These results suggest that CLA alone or in combination with other fatty acids strongly modifies skin composition in mice.  相似文献   

11.
OBJECTIVES: We compared serum phospholipid fatty acid compositions, in particular the status of omega-3 polyunsaturated fatty acid (PUFA), of postmenopausal Greenland Inuit women and postmenopausal Canadian women at baseline and after supplementing the Canadian women with a fish-oil product. METHODS: Fasting serum samples were collected from 15 Inuit subjects from Greenland and 16 non-Inuit subjects from Canada. In addition, eight Canadian subjects provided fasting serum samples after completing a long-chain omega-3 PUFA intervention (2.4 g of eicosapentaenoic acid [EPA] plus 1.6 g of docosahexaenoic acid [DHA] per day) for 28 d. Fatty acid compositions of serum phospholipids of the samples were determined and compared by one-way analysis of variance. RESULTS: In comparison with the Greenlanders, baseline Canadian women had 73% and 46% less EPA (20:5omega-3) and DHA (22:6omega-3), respectively, and 32% and 91% more linoleic acid (LA; 18:2omega-6) and arachidonic acid (AA; 20:4omega-6), respectively. The omega-3 supplementation in Canadian women increased DHA and decreased LA levels to approach those in Greenland Inuit and raised EPA levels to surpass (45% higher) those in Greenland women (P < 0.0001). In contrast, AA was only moderately lowered (by 16% overall) such that AA levels remained 62% higher in the supplemented Canadians than in the Greenlanders (P < 0.0001). CONCLUSIONS: Short-term EPA plus DHA supplementation of postmenopausal North American women can mimic the high EPA and DHA levels and lower LA levels in corresponding Inuit women but not the markedly lower levels of AA. The present findings also support the hypothesis of genetically decreased Delta5-desaturase potential in the Greenland Inuit compared with Canadian postmenopausal women.  相似文献   

12.
BACKGROUND: Greatly increasing dietary flaxseed oil [rich in the n-3 polyunsaturated fatty acid (PUFA) alpha-linolenic acid (ALA)] or fish oil [rich in the long-chain n-3 PUFAs eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] can reduce markers of immune cell function. The effects of more modest doses are unclear, and it is not known whether ALA has the same effects as its long-chain derivatives. OBJECTIVE: The objective was to determine the effects of enriching the diet with ALA or EPA+DHA on immune outcomes representing key functions of human neutrophils, monocytes, and lymphocytes. DESIGN: In a placebo-controlled, double-blind, parallel study, 150 healthy men and women aged 25-72 y were randomly assigned to 1 of 5 interventions: placebo (no additional n-3 PUFAs), 4.5 or 9.5 g ALA/d, and 0.77 or 1.7 g EPA+DHA/d for 6 mo. The n-3 PUFAs were provided in 25 g fat spread plus 3 oil capsules. Blood samples were taken at 0, 3, and 6 mo. RESULTS: The fatty acid composition of peripheral blood mononuclear cell phospholipids was significantly different in the groups with higher intakes of ALA or EPA+DHA. The interventions did not alter the percentages of neutrophils or monocytes engaged in phagocytosis of Escherichia coli or in phagocytic activity, the percentages of neutrophils or monocytes undergoing oxidative burst in response to E. coli or phorbol ester, the proliferation of lymphocytes in response to a T cell mitogen, the production of numerous cytokines by monocytes and lymphocytes, or the in vivo delayed-type hypersensitivity response. CONCLUSION: An intake of 相似文献   

13.
The effects of altering the type of n-3 polyunsaturated fatty acid (PUFA) in the mouse diet on the ability of monocytes and neutrophils to perform phagocytosis were investigated. Male weanling mice were fed for 7 d on one of nine diets which contained 178 g lipid/kg and which differed in the type of n-3 PUFA and in the position of these in dietary triacylglycerol (TAG). The control diet contained 4.4 g alpha-linolenic acid/100 g total fatty acids. In the other diets, eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) replaced a proportion (50 or 100 %) of the alpha-linolenic acid, and were in the sn-2 or the sn-1(3) position of dietary TAG. There were significant increases in the content of n-3 PUFA in spleen-cell phospholipids when EPA or DHA was fed. These increases were largely independent of the position of EPA or DHA in dietary TAG except when EPA was fed at the highest level, when the incorporation was greater when it was fed in the sn-2 than in the sn-1(3) position. There was no significant effect of dietary DHA on monocyte or neutrophil phagocytic activity. Dietary EPA dose-dependently decreased the number of monocytes and neutrophils performing phagocytosis. However, when EPA was fed in the sn-2 position, the ability of active monocytes or neutrophils to engulf bacteria was increased in a dose-dependent fashion. This did not occur when EPA was fed in the sn-1(3) position. Thus, there appears to be an influence of the position of EPA, but not of DHA, in dietary TAG on its incorporation into cell phospholipids and on the activity of phagocytic cells.  相似文献   

14.
Effects of fish-oil supplementation on myocardial fatty acids in humans   总被引:5,自引:0,他引:5  
BACKGROUND: Increased fish or fish-oil consumption is associated with reduced risk of cardiac mortality, especially sudden death. This benefit putatively arises from the incorporation of the long-chain n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) into cardiomyocyte phospholipids. OBJECTIVE: The study examined the kinetics of incorporation of n-3 fatty acids into human myocardial membrane phospholipids during supplementation with fish oil and alpha-linolenic acid-rich flaxseed oil. DESIGN: Patients with low self-reported fish intake (<1 fish meal/wk and no oil supplements) accepted for elective cardiac surgery involving cardiopulmonary bypass were randomly allocated to 1 of 6 groups: no supplement; fish oil (6 g EPA+DHA/d) for either 7, 14, or 21 d before surgery; flaxseed oil; or olive oil (both 10 mL/d for 21 d before surgery). Right atrial appendage tissue removed during surgery and blood collected at enrollment and before surgery were analyzed for phospholipid fatty acids. RESULTS: Surgery rescheduling resulted in a range of treatment times from 7 to 118 d. In the fish-oil-treated subjects, accumulation of EPA and DHA in the right atrium was curvilinear with time and reached a maximum at approximately 30 d of treatment and displaced mainly arachidonic acid. Flaxseed oil supplementation yielded a small increase in atrial EPA but not DHA, whereas olive oil did not significantly change atrial n-3 fatty acids. CONCLUSION: The results of the present study show that dietary n-3 fatty acids are rapidly incorporated into human myocardial phospholipids at the expense of arachidonic acid during high-dose fish-oil supplementation.  相似文献   

15.
We showed previously that dietary eicosapentaenoic acid [EPA, 20:5(n-3)] is antitumorigenic in the APC:(Min/+) mouse, a genetic model of intestinal tumorigenesis. Only a few studies have evaluated the effects of dietary fatty acids, including EPA and docosahexaenoic acid [DHA, 22:6(n-3)], in this animal model and none have evaluated the previously touted antitumorigenicity of alpha-linolenic acid [ALA, 18:3(n-3)], conjugated linoleic acid [CLA, 77% 18:2(n-7)], or gamma-linolenic acid [GLA, 18:3(n-6)]. Stearidonic acid [SDA, 18:4(n-3)], the Delta6-desaturase product of ALA, which is readily metabolized to EPA, has not been evaluated previously for antitumorigenic efficacy. This study was undertaken to evaluate the antitumorigenicity of these dietary fatty acids (ALA, SDA, EPA, DHA, CLA and GLA) compared with oleic acid [OA, 18:1(n-9)] at a level of 3 g/100 g in the diets of APC:(Min/+) mice and to determine whether any alterations in tumorigenesis correspond to alterations in prostaglandin biosynthesis. Tumor multiplicity was significantly lower by approximately 50% in mice fed SDA or EPA compared with controls, whereas less pronounced effects were observed in mice fed DHA (P: = 0.15). ALA, CLA and GLA were ineffective at the dose tested. Although lower tumor numbers coincided with significantly lower prostaglandin levels in SDA- and EPA-fed mice, ALA and DHA supplementation resulted in equally low prostaglandin levels, despite proving less efficacious with regard to tumor number. Prostaglandin levels did not differ significantly in the CLA and GLA groups compared with controls. These results suggest that SDA and EPA attenuate tumorigenesis in this model and that this effect may be related in part to alterations in prostaglandin biosynthesis.  相似文献   

16.
Summary Background: The dietary supplementation with EPA (eicosapentaenoic adic; 20:5n3) and DHA (docosahexaenoic acid; 22:6n3) has been recommended because of their favourable effects on the cardiovascular system (including complications of NIDDM). Oleic acid (18:1n9) from olive oil has some analogous and complementary effects. Potential competitive relations between long-chain n-3 fatty acids (FAs) and the oleic acid would therefore mean a problem. Aim of the study: We focused primarily on the oleic acid changes in serum phospholipids (SPL) after a supplementation with EPA and DHA. Methods: Thirty-five patients with type 2 diabetes mellitus (NIDDM) were supplemented for 28 days with 1.7 g of EPA plus 1.15 g of DHA/day (as Maxepa? capsules, Seven Seas?, U. K.). After that, a 3-month wash-out control period with 21 patients followed. A fatty acid composition of serum phospholipids (SPL) was determined by capillary gas-chromatography. Values were calculated as relative percentages of all FAs. Results: After the supplementation with the Maxepa? capsules, there was a very strong increase in EPA, docosapentaenoic acid (22:5n3) and DHA content in SPL. It was followed by a stron decrease after the wash-out (all p<0.0001). The oleic acid SPL content after the intervention significantly decreased from 10.105±0.307% (mean ±S.E.M.) to 9.082±0.276% (p<0.0003). During the wash-out, the change was in the opposite direction (p<0.0001). When the intervention and the wash-out periods were taken together, changes in the oleic acid were inversely correlated with changes in EPA, docosapentaenoic acid and DHA (r = −0.729; r = −0.552; r = −0.629, respectively; p<0.0001; n = 56). On the background of the overall n-6 FA reduction, the decline in the arachidonic acid after the supplementation (p<0.0001) and its rise after the wash-out (p<0.0003) were similar. There were no significant changes in the saturared FA spectrum. Conclusions: Supplementation with long-chain n-3 FAs in NIDDM patients leads to the lowering of oleic acid SPL content. Whereas the reduction of the arachidonic acid may have some desirable aspects (e. g. suppression of thromboxane TxA2 or 4 series leukotriene production), the decline of the former is to be regarded as a potential problem. Therefore, the search for optimally balanced blends of n-3 polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) seems to be more promising than a supplementation with only one type of FA. Received: 13 March 2000, Accepted: 21 July 2000  相似文献   

17.
Fish oil supplementation during pregnancy not only improves maternal and neonatal DHA status, but often reduces gamma-linolenic acid (GLA), dihomo-GLA (DGLA), and arachidonic acid (ARA) levels also, which may compromise foetal and infant development. The present study investigated the effects of a fish oil/evening primrose oil (FSO/EPO) blend (456 mg DHA/d and 353 mg GLA/d) compared to a placebo (mixture of habitual dietary fatty acids) on the plasma fatty acid (FA) composition in two groups of twenty non-pregnant women using a randomised, double-blind, placebo-controlled parallel design. FA were quantified in plasma total lipids, phospholipids, cholesterol esters, and TAG at weeks 0, 4, 6 and 8. After 8 weeks of intervention, percentage changes from baseline values of plasma total lipid FA were significantly different between FSO/EPO and placebo for GLA (+49.9 % v. +2.1 %, means), DGLA (+13.8 % v. +0.7 %) and DHA (+59.6 % v. +5.5 %), while there was no significant difference for ARA ( - 2.2 % v. - 5.9 %). FA changes were largely comparable between plasma lipid fractions. In both groups three subjects reported mild adverse effects. As compared with placebo, FSO/EPO supplementation did not result in any physiologically relevant changes of safety parameters (blood cell count, liver enzymes). In women of childbearing age the tested FSO/EPO blend was well tolerated and appears safe. It increases plasma GLA, DGLA, and DHA levels without impairing ARA status. These data provide a basis for testing this FSO/EPO blend in pregnant women for its effects on maternal and neonatal FA status and infant development.  相似文献   

18.
The present study evaluates the effect of dietary trans fatty acids on diaphragm phospholipid fatty acid composition, intramyocellular triacylglycerol content and insulin-stimulated glucose uptake in comparison with dietary saturated fatty acids. Male weanling WNIN rats were divided into three groups and fed for 3 months on one of the following diets containing 10 % oil differing in fatty acid composition: control diet, saturated fatty acid diet and trans fatty acid diet. Dietary trans fatty acids increased the intramyocellular triacylglycerols and decreased the ratio of 20 : 4n-6 to 18 : 2n-6 and long-chain PUFA levels (20 %) in diaphragm phospholipids, indicating inhibition of PUFA biosynthesis. However, saturated fatty acids decreased both 18 : 2n-6 and 20 : 4n-6 without change in the ratio. Trans fatty acid-induced alterations in diaphragm phospholipid fatty acid composition and intramyocellular triacylglycerol content were associated with decreased insulin-stimulated glucose transport in the diaphragm. These observations suggest that dietary trans fatty acids decrease diaphragm insulin sensitivity, possibly due to increased intramyocellular triacylglycerol accumulation and decreased long-chain PUFA in phospholipids.  相似文献   

19.
Diets enriched in the (n-3) PUFAs, docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and their precursor alpha-linolenic acid (ALA), were evaluated for efficacy in ameliorating the development of IgA nephropathy (IgAN) induced in mice by the mycotoxin deoxynivalenol (DON). The effects of DON were compared in mice that were fed for 18 wk with AIN-93G diets containing 1) 10 g/kg corn oil plus 60 g/kg oleic acid (control); 2) 10 g/kg corn oil plus 35 g/kg oleic acid and 25 g/kg DHA-enriched fish oil (DHA); 3) 10 g/kg corn oil plus 33 g/kg oleic acid and 27 g/kg EPA-enriched fish oil (EPA); and 4) 10 g/kg corn oil plus 37 g/kg oleic acid and 23 g/kg DHA + EPA (1:1) enriched fish oil (DHA + EPA). The DHA, EPA and DHA + EPA diets attenuated induction by dietary DON (10 mg/kg) of serum IgA and IgA immune complexes, kidney mesangial IgA deposition, and ex vivo IgA secretion by spleen cells. Consumption of the DHA + EPA diet for 8 wk significantly abrogated the DON-induced gene expression of interleukin (IL)-6, a requisite cytokine for DON-induced IgA nephropathy, in spleen and Peyer's patches. Finally, incorporation of ALA-containing flaxseed oil up to 60 g/kg in the AIN-93G diet did not affect DON-induced IgA dysregulation in mice. Taken together, both DHA and EPA, but not ALA, ameliorated the early stages of IgAN, and these effects might be related to a reduced capacity for IL-6 production.  相似文献   

20.
BACKGROUND: For many persons who wish to obtain the health benefits provided by dietary n-3 fatty acids, daily ingestion of fish or fish oil is not a sustainable long-term approach. To increase the number of sustainable dietary options, a land-based source of n-3 fatty acids that is effective in increasing tissue concentrations of the long-chain n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is required. OBJECTIVE: The objective of the study was to examine the ability of dietary stearidonic acid (SDA) to increase tissue concentrations of EPA and DHA in healthy human subjects and to compare the effectiveness of SDA with that of the n-3 fatty acids alpha-linolenic acid (ALA) and EPA. DESIGN: Encapsulated SDA, ALA, or EPA was ingested daily in doses of 0.75 g and then 1.5 g for periods of 3 wk each by healthy male and postmenopausal female subjects (n = 15/group) in a double-blind, parallel-group design. RESULTS: Dietary SDA increased EPA and docosapentaenoic acid concentrations but not DHA concentrations in erythrocyte and in plasma phospholipids. The relative effectiveness of the tested dietary fatty acids in increasing tissue EPA was 1:0.3:0.07 for EPA:SDA:ALA. CONCLUSIONS: Vegetable oils containing SDA could be a dietary source of n-3 fatty acids that would be more effective in increasing tissue EPA concentrations than are current ALA-containing vegetable oils. The use of SDA-containing oils in food manufacture could provide a wide range of dietary alternatives for increasing tissue EPA concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号