首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
B.E. Reese  A. Cowey 《Neuroscience》1987,20(3):951-959
The crossed projection from the temporal crescent in the rat's retina was studied by producing a discrete retinal lesion in one eye and examining the dorsal lateral geniculate nucleus and superior colliculus contralateral to the lesion for anterograde degeneration products. The position of this crossed degeneration was described in relation to the uncrossed retinal termination in the same structures by injecting the opposite eye with [3H]proline and processing the tissue for autoradiography. The location of the retinal lesion in relation to the temporal cresent was identified by injecting the dorsal lateral geniculate nucleus ipsilateral to the lesioned eye with a fluorescent tracer, to retrogradely label the ipsilaterally projecting retinal ganglion cells in the lesioned eye.

Retinal lesions that were histologically verified to be restricted to the temporal crescent produced crossed degeneration in the superior colliculus at its rostral border, in accord with this projection's published visual topography. These same lesions consistently yielded a very circumscribed and sparse amount of degeneration in the contralateral dorsal lateral geniculate nucleus at its dorsomedial border, abutting the optic tract dorsally and the lateroposterior nucleus medially. The degeneration bore no consistent relationship to the position of the uncrossed retinal terminal field, which is situated further 9ventrally in the dorsal lateral geniculate nucleus; rather, this crossed temporal projection terminated in the outer shell of the nucleus along its medial border.

This crossed temporal retinogeniculate projection, together with the crossed projection from nasal retina, forms a continuous map of the complete contralateral retina in the outer shell of the dorsal lateral geniculate nucleus, likely to arise from a population of retinal ganglion cells possessing small soma sizes. This dorsomedial part of the rat's dorsal lateral geniculate nucleus, receiving a crossed projection from the temporal retina, may by similar to the cat's lamina 3 in the medial interlaminar nucleus of its retinogeniculate pathway. This result clarifies the homologous subdivisions of the dorsal lateral geniculate nucleus in the rodent and feline thalamus.  相似文献   


2.
The dystrophic retina of the cinnamon mouse homozygous for the gene for microphthalmia (mi/mi) has a population of large ganglion cells. Unilateral enucleation and examination of the dorsal lateral geniculate nucleus using the Fink-Heimer technique showed that, while there was continuing degeneration argyrophilia in the dorsal lateral geniculate nucleus secondary to the retinopathy, there was additional degeneration attributable to enucleation. In addition, the pattern of degeneration indicated that the axon terminals were less mature than those of the cinnamon and heterozygous (mi/+) mice. Quantitative study of the dorsal lateral geniculate nucleus in the homozygous (mi/mi) mouse showed that the nucleus is small with fewer neurons and that the markers for protein metabolism, namely volume of nucleoli and cytoplasmic RNA, are reduced when compared to the cinnamon and heterozygous (mi/+) mice. It is concluded that the portion of the retino-geniculate pathway represented by the large ganglion cells in the retina, develops in the absence of patterned visual stimuli, but is less mature and has a more limited functional activity than controls.  相似文献   

3.
The dystrophic retina of the cinnamon mouse homozygous for the gene for microphthalmia (mi/mi) has a population of large ganglion cells. Unilateral enucleation and examination of the dorsal lateral geniculate nucleus using the Fink-Heimer technique showed that, while there was continuing degeneration argyrophilia in the dorsal lateral geniculate nucleus secondary to the retinopathy, there was additional degeneration attributable to enucleation. In addition, the pattern of degeneration indicated that the axon terminals were less mature than those of the cinnamon and heterozygous (mi/+) mice. Quantitative study of the dorsal lateral geniculate nucleus in the homozygous (mi/mi) mouse showed that the nucleus is small with fewer neurons and that the markers for protein metabolism, namely volume of nucleoli and cytoplasmic RNA, are reduced when compared to the cinnamon and heterozygous (mi/+) mice. It is concluded that the portion of the retino-geniculate pathway represented by the large ganglion cells in the retina, develops in the absence of patterned visual stimuli, but is less mature and has a more limited functional activity than controls.  相似文献   

4.
V.M. Montero  G.L. Scott 《Neuroscience》1981,6(12):2561-2577
(3H)-proline was injected in the caudodorsal part (visual segment) of the thalamic reticular nucleus to study its projection to the dorsal lateral geniculate nucleus. This was done by autoradiographic tracing of anterograde axonal transport of tritium at the light- and electron microscopic level. The results of the light-microscope autoradiography show that connections of the thalamic reticular nucleus are distributed along lines of projections in the dorsal lateral geniculate nucleus, indicating a retinotopic arrangement of this projection. The results of the electron microscope autoradiography provide direct evidence that axons of cells in the thalamic reticular nucleus terminate in the dorsal lateral geniculate nucleus as synaptic boutons that contain flattened synaptic vesicles, dark mitochondria and establish symmetrical synapses with perikarya and with proximal, intermediate and distal dendrites. They do not take part in intraglomerular synapses (as boutons with pleomorphic synaptic vesicles do) and are not postsynaptic to other vesicle-containing boutons in the dorsal lateral geniculate nucleus.The present results, taken in conjunction with physiological studies that have shown postsynaptic inhibitory effects of the thalamic reticular nucleus on dorsal lateral geniculate nucleus relay cells in the rat, establish a correlation of an inhibitory synapse with the presence of flattened synaptic vesicles in the corresponding synaptic boutons. Also, the observation that thalamic reticular nucleus terminals in the dorsal lateral geniculate nucleus avoid forming synapses with boutons containing pleomorphic vesicles, believed to be synaptic processes of interneurons, is indicative that the inhibitory effects are exerted monosynaptically on geniculate relay cells.  相似文献   

5.
Iontophoretic injections of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L), were placed in different portions of the rat lateral geniculate nucleus, and the tracer was localized by immunohistochemistry. The efferent projections of the lateral geniculate to limbic areas were analysed with special reference to projections of the lateral hypothalamic area. Only in animals, in which neurons in the intergeniculate leaflet were labeled were PHA-L-immunoreactive axons in the lateral hypothalamic area observed. The nerve fibers were mostly located in the ventral and anterior parts of the lateral hypothalamic area. This tracing study suggests that the optic system probably mediating information about the photoperiod influences not only the suprachiasmatic nucleus, but also the lateral hypothalamic area.  相似文献   

6.
B.E. Reese  A. Cowey 《Neuroscience》1983,10(4):1233-1247
The organization of the hooded rat's dorsal lateral geniculate nucleus was studied with anatomical techniques, with particular regard to the representation of temporal retina and the binocular field. The ipsilateral and contralateral retinal terminal fields were examined in three stereotaxic planes following injections of horseradish peroxidase into the eye. Projections arising from the temporal crescent of the retina were studied with silver staining techniques for anterograde degeneration products. Following discrete retinal lesions there was clear evidence that the temporal retina projects in a topographic fashion both ipsilaterally and contralaterally. The orientation of the lines of projection in the dorsal lateral geniculate nucleus was assessed by retrograde labelling of cells after cortical implants of horseradish peroxidase. Although both the lines of projection and the ipsilateral terminal field extend rostro-caudally in the dorsal lateral geniculate nucleus, their paths are oblique rather than parallel. Their intersection appears to correspond to the representation in this nucleus of conjugate retinal points. This was confirmed by administering horseradish peroxidase by iontophoresis in either the binocular or monocular representation of the primary visual cortex, while one eye received an injection of [3H]proline. Only those cortical injections in the binocular region gave rise to labelled projection lines passing through the autoradiographically-labelled ipsilateral terminal field.

The rat's dorsal lateral geniculate nucleus displays none of the cytoarchitectural lamination which is so prominent in the primate and cat. Even after labelling the input to the nucleus from one eye, there is still no obvious laminar relationship between the terminal fields from the two eyes. Despite the absence of lamination, the current results suggest that the principle of apposing the representation of conjugate retinal points in the dorsal lateral geniculate nucleus is the same in the rat as in cat and monkey.  相似文献   


7.
In order to understand better the organisation of the ventral lateral geniculate nucleus of the ventral thalamus, this paper has examined the patterns of connections that this nucleus has with various nuclei of the dorsal thalamus in rats. Injections of biotinylated dextran or cholera toxin subunit B were made into the parafascicular, central lateral, posterior thalamic, medial dorsal, lateral dorsal, lateral posterior, dorsal lateral geniculate, anterior, ventral lateral, ventrobasal and medial geniculate nuclei of Sprague-Dawley rats and their brains were processed using standard tracer detection methods. Three general patterns of ventral lateral geniculate connectivity were seen. First, the parafascicular, central lateral, medial dorsal, posterior thalamic and lateral dorsal nuclei had heavy connections with the parvocellular (internal) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown previously to receive heavy inputs from many functionally diverse brainstem nuclei. Second, the visually related dorsal lateral geniculate and lateral posterior nuclei had heavy connections with the magnocellular (external) lamina of the ventral lateral geniculate nucleus. This geniculate lamina has been shown by previous studies to receive heavy inputs from the visual cortex and the retina. Finally, the anterior, ventral lateral, ventrobasal and medial geniculate nuclei had very sparse, if any, connections with the ventral lateral geniculate nucleus. Overall, our results strengthen the notion that one can package the ventral lateral geniculate nucleus into distinct visual (magnocellular) and non-visual (parvocellular) components.  相似文献   

8.
Summary Horseradish peroxidase was injected in the right visual cortex and a large electrolytic lesion made in the left lateral geniculate nucleus of an adult cat. Neurons of origin of the callosal projection to the injected cortex were identified by retrograde labelling and selected for electron microscopic study. Degenerating thalamo-cortical axon terminals were found to contact a labelled stellate cell in layer IV and a labelled pyramidal cell in layer III at the border region of areas 17 and 18. We conclude that there is a monosynaptic pathway from lateral geniculate nucleus to the cells of origin of callosal axons to the contralateral visual cortex.Supported by the Swiss National Science Foundation (3.0950.77)  相似文献   

9.
We have examined the cellular and subcellular distribution and the patterns of expression of brain-derived neurotrophic factor (BDNF), and of its high affinity receptor, tyrosine kinase B (TrkB), in retinorecipient regions of the brain, including the superior colliculus, the lateral geniculate nucleus and the olivary pretectal nucleus. In the retinorecipient layers of the superior colliculus, BDNF protein and mRNA were present in the cell bodies of a subpopulation of neurons, and BDNF protein was present in the neuropil as punctate or fiber-like structures. In the lateral geniculate nucleus, however, BDNF mRNA was not detected, and BDNF protein was restricted to punctate and fiber-like structures in the neuropil, especially in the most superficial part of the dorsal lateral geniculate nucleus, just below the optic tract. At the ultrastructural level, BDNF protein was localized predominantly to axon terminals containing round synaptic vesicles and pale mitochondria with irregular cristae, which made asymmetric (Gray type I) synaptic specializations (R-boutons). Enucleation of one eye was followed by loss of BDNF immunoreactivity and disappearance of BDNF-positive R-boutons in the contralateral visual centers, confirming the retinal origin of at least most of these terminals. TrkB was present in postsynaptic densities apposed to immunoreactive R-boutons in the superior colliculus and lateral geniculate nucleus, and was also associated with axonal and dendritic microtubules. These findings suggest that BDNF is synthesized by a subpopulation of retinal ganglion cells and axonally transported to visual centers where this neurotrophin is assumed to play important roles in visual system maintenance and/or in modulating the excitatory retinal input to neurons in these centers.  相似文献   

10.
Summary Direct projections from the pretectum in the cat were investigated by means of the Nauta-Gygax and the Fink-Heimer method in an attempt to identify the morphological substrates subserving possible neural mechanisms involved in visual behaviour and reflexes.Degeneration in the diencephalon was found ipsilaterally in the nucleus limitans, lateral pulvinar nucleus, lateral posterior nucleus, lateral dorsal nucleus, dorsal and ventral lateral geniculate nuclei, centre medianparafascicular complex, central medial nucleus, paracentral nucleus, central lateral nucleus, ventroanterior and ventrolateral nuclear complex, zona incerta, H field of Forel and the reticular nucleus. The pretectal fibers projecting to the ventral lateral geniculate nucleus appeared to be topically organized.In the midbrain, the pretectal fibers were observed to terminate ipsilaterally within the superior colliculus, nucleus of Darkschewitsch, dorsolateral portion of the red nucleus, lateral terminal nucleus of the accessory optic tract and the reticular formation, and bilaterally within the central gray, interstitial nucleus of Cajal and the rostral portion of the nucleus of Edinger-Westphal. Degeneration in the superior colliculus was marked in laminae II, III and IV. The fibers arising from more anterior part of the pretectum appeared to be distributed more medially in laminae II and III.The pretectopontine fibers terminated ipsilaterally in the paramedial and the dorsolateral pontine nuclei as well as the reticular formation. In the inferior olivary complex, degeneration was found in caudal levels of the dorsal cap and -nucleus, and additionally in the rostral portion of the dorsal accessory olive.  相似文献   

11.
The cytological responses of thalamic interneurons to selective degeneration of thalamocortical projection neurons after cortical damage in the adult brain are poorly understood. We used a unilateral neocortical lesion model (occipital cortex ablation) in the adult rat to test the hypothesis that interneurons and projection neurons in the lateral geniculate nucleus undergo distinct forms of degeneration. In situ nuclear DNA fragmentation in neurons in the lateral geniculate occurs maximally at 7 days postlesion. Geniculocortical projection neurons that are identified by the retrograde tracer Fluorogold die primarily with a morphology of endstage apoptosis prominent at 7 days postlesion. In contrast, interneurons, identified by their particular nuclear ultrastructure and by glutamic acid decarboxylase immunoreactivity, undergo an atrophic vacuolar pathology starting early during the period of projection neuron death and peaking after the projection neuron death is complete. This degeneration of interneurons is transient, because these neurons exhibit structural recovery and their numbers are not changed significantly postlesion. A rare subset of interneurons (less than one in 100 interneurons and less than one in 100 apoptotic cells) undergoes apoptosis concurrently with the projection neurons.We conclude that different types of neurons within the same thalamic nucleus respond differently to focal cortical target deprivation. Unlike the apoptosis-prone projection neurons, most interneurons undergo transient transsynaptic atrophy and recovery rather than cell death. Nevertheless, a small subset of lateral geniculate interneurons undergoes transsynaptic apoptosis in response to projection neuron apoptosis. The pathological responses of thalamic neurons to cortical trauma vary depending on cell type.  相似文献   

12.
Summary Subcortical connections of the superior colliculus were investigated in albino and pigmented rats using retrograde and anterograde tracing with horseradish peroxidase (HRP), following unilateral injection of HRP into the superior colliculus. Afferents project bilaterally from the parabigeminal nuclei, the nucleus of the optic tract, the posterior pretectal region, the dorsal part of the lateral posterior-pulvinar complex and the ventral nucleus of the lateral lemniscus; and ipsilaterally from the substantia nigra pars reticulata, the pars lateralis of the ventral lateral geniculate nucleus, the intergeniculate leaflet, the zona incerta, the olivary pretectal nucleus, the nucleus of the posterior commissure, the lateral thalamus, Forel's field H2, and the ventromedial hypothalamus. Collicular efferents terminate ipsilaterally in the anterior, posterior and olivary pretectal nuclei, the nuclei of the optic tract and posterior commissure, the ventrolateral part of the dorsal lateral geniculate nucleus, the pars lateralis of the ventral lateral geniculate nucleus, the intergeniculate leaflet, and the zona incerta; and bilaterally in the parabigeminal nuclei and lateral posterior-pulvinar complex (chiefly its dorsal part). The general topographical patterns of some of the afferent and efferent projections were also determined: the caudal and rostral parts of the parabigeminal nucleus project to the caudal and rostral regions, respectively, of the superior colliculus; caudal superior colliculus projects to the most lateral, and lateral superior colliculus to the most caudal part of the terminal field in the dorsal lateral geniculate nucleus; caudolateral superior colliculus projects to the caudal ventrolateral part of the ventral lateral geniculate nucleus, while rostromedial parts of the colliculus project more rostrally and dorsomedially. Following comparable injections in pigmented and albino animals, fewer retrogradely labelled cells were found in subcortical structures in the albino than in the pigmented rats. The difference was most marked in nuclei contralateral to the injected colliculus. Thus, the effects of albinism on the nervous system may be more widespread than previously thought.M. R. C. Scholar  相似文献   

13.
The lateral geniculate nuclei of the rat are known to receive an innervation from catecholamine-containing neurons. In the present study the origin, axonal projections and terminal distribution of this innervation was studied. The lateral geniculate nuclei contain a356 ± 20 ng norepinephrine/g and64 ± 7 ng dopamine/g tissue; the latter is within the range expected for dopamine as a precursor in a region innervated by a norepinephrine-containing terminal system. When separate norepinephrine-containing cell groups located at various brain stem levels are ablated or their axonal projections destroyed, only lesions in the locus coeruleus produce a significant decrease in the norepinephrine content of the lateral geniculate nuclei. Injections of horseradish peroxidase into the lateral geniculate nuclei result in retrograde transport of horseradish peroxidase only to the noradrenergic neurons of the locus coeruleus. The labelled neurons are pretent throughout the rostrocaudal and dorsoventral axes of both the ipsilateral (60%) and contralateral (40%) nucleus. Autoradiographic and fluorescence histo-chemical experiments indicate that axons that ascend from the locus coeruleus reach the lateral geniculate nuclei via the dorsal tegmental catecholamine-containing bundle and the medial forebrain bundle. These fibers enter the ventral lateral geniculate nucleus from the zona incerta and the dorsal lateral geniculate nucleus from the superior thalamic radiation, thalamic reticular nucleus, and lateral posterior nucleus. Contralateral fibers from the locus coeruleus cross in the posterior commissure, supraoptic and pontine decussations and join the ipsilateral projections to the lateral geniculate nuclei. The bilateral locus coeruleus innervation of the nuclei is comprised of a highly branched network of varicose axons. Neither the ipsilateral nor the contralateral projections appear to be topographically organized; instead, a single fiber may have collateral axons that branch throughout large areas of the nuclei. This innervation is moderately dense in the ventral, and very dense in the dorsal, lateral geniculate nucleus.The study indicates that both the dorsal and ventral lateral geniculate nuclei receive a diffuse catecholamine-containing innervation which arises solely from the norepinephrine-containing neurons of the locus coeruleus. The innervation of each lateral geniculate nucleus is bilateral, with noradrenergic neurons located throughout both the ipsilateral and the contralateral locus coeruleus contributing to ascending pathways that terminate as a diffuse, plexiform innervation interspersed among other afferents to the lateral geniculate nuclei. It is speculated that such a diffuse noradrenergic innervation might depress the spontaneous activity of neurons in the lateral geniculate nuclei, while preserving or enhancing their responsiveness to afferent optic stimulation.  相似文献   

14.
A small anomalous group of uncrossed retinogeniculate axons has been found terminating in one or two small pericellular terminal nests in the lateral, monocular segment of lamina A of the cat's dorsal lateral geniculate nucleus. Such anomalous islands, demonstrable by fibre degeneration and by autoradiographic methods, have been found in 6 out of 13 normally pigmented cats, and in 2 out of 7 Siamese cats.Thus, in apparently normal cats, the highly ordered geniculate map of the visual field can be interrupted by small islands that do not fit into the overall order.  相似文献   

15.
The slow (<1 Hz) rhythm is an electroencephalogram hallmark of resting sleep. In thalamocortical neurons this rhythm correlates with a slow (<1 Hz) oscillation comprising recurring UP and DOWN membrane potential states. Recently, we showed that metabotropic glutamate receptor activation brings about an intrinsic slow oscillation in thalamocortical neurons of the cat dorsal lateral geniculate nucleus in vitro which is identical to that observed in vivo. The aim of this study was to further assess the properties of this oscillation and compare them with those observed in thalamocortical neurons of three other thalamic nuclei in the cat (ventrobasal complex, medial geniculate body; ventral lateral nucleus) and two thalamic nuclei in rats and mice (lateral geniculate nucleus and ventrobasal complex). Slow oscillations were evident in all of these additional structures and shared several basic properties including, i) the stereotypical, rhythmic alternation between distinct UP and DOWN states with the UP state always commencing with a low-threshold Ca2+ potential, and ii) an inverse relationship between frequency and injected current so that slow oscillations always increase in frequency with hyperpolarization, often culminating in delta (delta) activity at approximately 1-4 Hz. However, beyond these common properties there were important differences in expression between different nuclei. Most notably, 44% of slow oscillations in the cat lateral geniculate nucleus possessed UP states that comprised sustained tonic firing and/or high-threshold bursting. In contrast, slow oscillations in cat ventrobasal complex, medial geniculate body and ventral lateral nucleus thalamocortical neurons exhibited such UP states in only 16%, 11% and 10% of cases, respectively, whereas slow oscillations in the lateral geniculate nucleus and ventrobasal complex of rats and mice did so in <12% of cases. Thus, the slow oscillation is a common feature of thalamocortical neurons that displays clear species- and nuclei-related differences. The potential functional significance of these results is discussed.  相似文献   

16.
In the present study the terminals of retinal fibres and those of internal layer cells in ventral geniculate nucleus of chicks were labelled with the anterograde tracer biotinylated dextran amine. The tracer showed the connections from the internal cell layers of ventral geniculate nucleus to the medial part of the dorsal lateral geniculate nucleus. The labelled retinal terminals were located exactly in the lateral part of nucleus. The labelled terminals in the two parts of the nucleus were analysed with the electron microscope and showed a different synaptic organisation in the two parts of the dorsal lateral geniculate nucleus. In the lateral part, two kinds of synaptic glomeruli were found mostly in the vicinity of large dendrites, which are proximal dendrites of projection neurons. One type is a simple glomerulus containing a large dendrite, a large optic terminal and a large and/or series of asymmetrical synapses surrounded by glial processes. The other type is a complex synaptic unit with several pre- and postsynaptic components, among them synapses of GABA-positive axon terminals and/or dendraxons. No glomeruli were found in the medial part of the nucleus. In the medial part of the lateral geniculate nucleus, the terminals of internal layer cell axons established asymmetrical synapses with dendrites. Often, a large terminals and large dendritic profiles established serial asymmetrical synapses. GABA-positive myelinated fibres entered and ramified in both parts of the dorsal lateral geniculate nucleus, and GABA-positive terminals were seen to form synapses on the same dendrite near to the asymmetrical contacts. To our knowledge, this is the first report of the connection from ventral geniculate internal layer cells to the dorsal lateral geniculate nucleus in the chick.  相似文献   

17.
Feedback inhibition is generally believed to be a ubiquitous feature of brain circuitry, but few specific instances have been documented. An example in cats is the supposed feedback circuit involving relay cells of the lateral geniculate nucleus and cells of the perigeniculate nucleus (a part of the thalamic reticular nucleus): geniculate relay cells innervate the perigeniculate nucleus, which, in turn, provides an inhibitory, GABAergic projection back to the lateral geniculate nucleus. However, feedback inhibition at the single-cell level requires that a given perigeniculate cell project back onto the same geniculate relay cell that innervates it. We probed for this in an in vitro slice preparation of the cat's lateral geniculate nucleus. We evoked a single action potential in a geniculate cell via a brief, depolarizing pulse delivered through an intracellular recording electrode and looked for any evoked hyperpolarizations. For 6 of the 36 geniculate cells tested, we observed a long-lasting hyperpolarization after the action potential, and much of this was eliminated by application of bicuculline, suggesting synaptically activated inhibitory postsynaptic potentials. We interpreted this to be clear evidence that a given neuron may inhibit itself via circuitry mediating feedback inhibition in the cat's lateral geniculate nucleus.Shanghai Brain Research Institute, Shanghai, People's Republic of China 200031  相似文献   

18.
The corticothalamic feedback pathway provides excitatory synaptic input to both the thalamic reticular nucleus and the lateral geniculate nucleus. We studied excitatory postsynaptic currents elicited from corticothalamic stimulation in the visual sector of the thalamic reticular nucleus and the lateral geniculate nucleus to compare the response of these neurons to stimulation of their common input pathway. Using whole cell patch clamp recordings in ferret thalamic slices, we compared single excitatory postsynaptic current decay kinetics, presynaptic glutamate release dynamics through paired pulse facilitation and responses to corticothalamic train stimulation. We found that single thalamic reticular nucleus excitatory postsynaptic currents were significantly sharper than lateral geniculate nucleus responses. The mean thalamic reticular nucleus excitatory postsynaptic current decay constant (tau) was 4.9+/-0.5 ms, while the mean lateral geniculate nucleus excitatory postsynaptic current tau value was 11.8+/-0.8 ms. Presynaptic release dynamics as measured by responses to paired stimuli were conserved between the thalamic reticular nucleus and lateral geniculate nucleus. However, facilitating responses to train stimulation were markedly different between nuclei. Lateral geniculate nucleus responses showed proportionately larger facilitation (reaching 842.9 +/- 76.4% of excitatory postsynaptic current 1 amplitude) than thalamic reticular nucleus responses (reaching 223.1 +/- 44.0% of excitatory postsynaptic current 1 amplitude). These data indicate that while the corticothalamic pathway produces excitatory postsynaptic currents in both the thalamic reticular nucleus and lateral geniculate nucleus, other factors uniquely affect the functional integration of the inputs in each nucleus.  相似文献   

19.
The precise stimulus specificity of striate cortical neurons is strongly influenced by processes involving gamma-aminobutyric acid (GABA). In the visual cortex of the monkey most afferents from the lateral geniculate nucleus terminate in layer IVC. We identified a type of smooth dendritic neuron (clutch cell) that was immunoreactive for GABA, and whose Golgi-impregnated dendrites and axon were largely restricted to layer IVC beta. The slightly ovoid somata were 8-12 micron by 12-15 micron and the dendritic field was often elongated, extending 80-200 micron in one dimension. The axonal field was 100-150 micron in diameter and densely packed with large bulbous boutons. Although mainly located in IVC beta both the dendritic and axonal processes entered IVC alpha. Fine structural features of GABA-immunoreactive and-impregnated clutch cells and impregnated spiny stellate cells were compared. Clutch cells had more cytoplasm, more densely packed mitochondria and endoplasmic reticulum, and made type II as opposed to type I synapses. A random sample of 159 elements postsynaptic to three clutch cells showed that they mainly terminated on dendritic shafts (43.8-58.5%) and spines (20.8-46.3%), rather than somata (10-17%). The majority of the postsynaptic targets were characteristic of spiny stellate cells. This was directly demonstrated by studying synaptic contacts between an identified GABA positive clutch cell and the dendrites and soma of an identified spiny stellate cell. The termination of clutch cells mainly on dendrites and spines of spiny stellate cells suggests that they interact with other inputs to the same cells. Following an electrolytic lesion in the ipsilateral lateral geniculate nucleus we examined the distribution of degenerating terminals on three identified spiny stellate neurons in layer IVC beta. Out of eight synapses from the lateral geniculate nucleus one was on a dendritic shaft, the rest on spines. Only a small fraction of all synapses on the cells were from degenerating boutons. A clutch cell within the area of dense terminal degeneration was not contacted by terminals from the lateral geniculate nucleus. The results show that layer IVC in the monkey has a specialized GABAergic neuron that terminates on spiny stellate cells monosynaptically innervated from the lateral geniculate nucleus. Possible functions of clutch cells may include inhibitory gating of geniculate input to cortex; maintenance of the antagonistic subregions in the receptive fields; and the creation from single opponent of double colour opponent receptive fields.  相似文献   

20.
1. We studied the morphology of individual, physiologically identified retinogeniculate axons in normal adult cats. The axons were recorded in the lateral geniculate nucleus or in the subjacent optic tract, characterized as X or Y by physiological criteria, penetrated, and injected with horseradish peroxidase. With subsequent application of appropriate histochemistry, the enzyme provides a complete label of the terminal arbors and parent trunks for morphological analysis. We have recovered for such analysis 26 X- and 25 Y-axons; of these, 14 X- and 12 Y-axons were studied in detail. 2. Within the optic tract, the parent trunk of every X-axon is located closer to the lateral geniculate nucleus and thus further from the pial surface than that of every Y-axon. This probably reflects the earlier development of X- than of Y-axons. Furthermore, the parent axon trunks of the X-axons are noticeably thinner than are those of the Y-axons. Every retinogeniculate X- and Y-axon in our sample branches within the optic tract. One of these branches heads dorsally to innervate the lateral geniculate nucleus and one heads medially and rostrally toward the midbrain, although none of these labeled axons were traced to a terminal arbor beyond the lateral geniculate nucleus. For Y-axons, all branches are of comparable diameter, but for X-axons, the branch heading toward the lateral geniculate nucleus is always noticeably thicker than is the branch directed toward the midbrain. 3. Every retinogeniculate X- and Y-axon produces the greatest portion of its terminal arbor in lamina A (if from the contralateral retina) or A1 (if from the ipsilateral retina). These arbors typically extend across most of the lamina along a projection line. Not a single terminal bouton from any axon was found in the inappropriate lamina A or A1 (i.e., in lamina A for ipsilaterally projecting axons or in lamina A1 for contralaterally projecting ones). Occasionally, an X-axon also innervates the medial interlaminar nucleus, and even more rarely does an X-axon innervate the C-laminae. In contrast, nearly all Y-axons from the contralateral retina branch to innervate part of the C-laminae (probably lamina C), and most from either retina also innervate the medial interlaminar nucleus. Although these details imply considerable variation in the overall pattern of retinogeniculate innervation for both X- and Y-axons, we found no physiological properties to correlate with this variation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号