首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. Whole-cell patch-clamp recordings in adult mouse hippocampal slices were used to test the mechanism by which the volatile anesthetic halothane inhibits glutamate receptor-mediated synaptic transmission. Non-N-methyl-D-aspartate (nonNMDA) and NMDA receptor-mediated currents in CA1 pyramidal cells were pharmacologically isolated by bath application of D,L-2-amino-5-phosphonovaleric acid (APV; 100 μM) or 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX; 5 μM), respectively.
  2. Halothane blocked both nonNMDA and NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) to a similar extent (IC50 values of 0.66 and 0.57 mM, respectively).
  3. Partial blockade of the EPSCs by lowering the extracellular concentration of calcium ([Ca2+]o), but not by application of CNQX (1 μM), was accompanied by an increase in paired-pulse facilitation (PPF). Halothane-induced blockade of the EPSCs also was associated with an increase in PPF.
  4. The effects of halothane on α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptor-mediated currents induced by agonist iontophoresis, were compared. AMPA-induced currents were blocked with an IC50 of 1.7 mM. NMDA-induced currents were significantly less sensitive to halothane (IC50 of 5.9 mM).
  5. The effect of halothane on iontophoretic AMPA dose-response curves was tested. Halothane suppressed the maximal response to AMPA without affecting its EC50, suggesting a noncompetitive mechanism of inhibition.
  6. All effects of halothane were reversible upon termination of the exposure to the drug.
  7. These data suggest that halothane blocks central glutamatergic synaptic transmission by presynaptically inhibiting glutamate release and postsynaptically blocking the AMPA subtype of glutamate receptors.
  相似文献   

2.
To identify the enzymes involved in the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) at CA1 synapses of two-week-old rats we have tested various kinase inhibitors. Surprisingly, given the large body of evidence supporting a role for calcium/calmodulin-dependent protein kinase II (CaMKII) in LTP, inhibition of this enzyme did not affect the induction of LTP at this age. Similarly inhibition of protein kinase A (PKA) or protein kinase C (PKC) was also without effect. However, inhibition of CaMKII together with inhibition of either PKA or PKC fully blocked the induction of LTP. These experiments reveal, unexpectedly, the existence of two parallel kinase pathways, one involving CaMKII and the other PKA and PKC, either of which can fully support the induction of LTP, at this stage of development.  相似文献   

3.
The cAMP/protein kinase A (PKA) signaling cascade is crucial for synaptic plasticity in a wide variety of species. PKA regulates Ca2+ permeation through NMDA receptors (NMDARs) and induction of NMDAR-dependent synaptic plasticity at the Schaffer collateral to CA1 pyramidal cell synapse. Whereas the role of PKA in induction of NMDAR-dependent LTP at CA1 synapses is established, the identity of PKA isoforms involved in this phenomenon is less clear. Here we report that protein synthesis-independent NMDAR-dependent LTP at the Schaffer collateral-CA1 synapse in the hippocampus is deficient, but NMDAR-dependent LTD is normal, in young (postnatal day 10 (P10)-P14) mice lacking PKA RIIβ, the PKA regulatory protein that links PKA to NMDARs at synaptic sites. In contrast, in young adult (P21-P28) mice lacking PKA RIIβ, LTP is normal and LTD is abolished. These findings indicate that distinct PKA isoforms may subserve distinct forms of synaptic plasticity and are consistent with a developmental switch in the signaling cascades required for LTP induction.  相似文献   

4.
In addition to their role in physiological activities, ionotropic glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) play an important role in neuronal death, especially that following ischemic insults. In this study, we examined the effect of single (SI) and twice repeated (RI)-4-vessel occlusion-ischemia on rat performance in the 8-armed radial maze test. Moreover, the effects of SI and RI on the AMPARs subunits glutamate receptor (GluR) 1 and GluR2 flip and flop variants composition in the CA1 subregion of the hippocampus were investigated using RT-PCR, normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and expressed as their ratios to the latter. The results showed that SI and RI impaired the maze performance by decreasing correct choices and increasing the error choices, but RI increased error choices to a greater extent than the SI. The SI reduced only GluR1 flip/GAPDH on day 1. The SI did not alter ratios of GluR2 variants to those of GluR1. On the other hand, the RI decreased GluR2 flip and flop variants after 1 and 3 days, respectively, whereas after 7 days, it increased the flip variant of both GluR1 and GluR2. Moreover, the RI reduced ratios of GluR2 variants to those of GluR1. These results reveal the differential effects of the SI and RI on memory and expression of the AMPARs subunits GluR1 and GluR2 and their flip and flop variants in the CA1.  相似文献   

5.
Dopamine and glutamate interactions in the nucleus accumbens (NAcc) play a crucial role in both the development of a motor response suitable for the environment and in the mechanisms underlying the motor-activating properties of psychostimulant drugs such as amphetamine. We investigated the effects of the infusion in the NAcc of NMDA and non-NMDA receptor agonists and antagonists on the locomotor responses induced by the selective D(1)-like receptor agonist SKF 38393, the selective D(2)-like receptor agonist quinpirole, alone or in combination, and D-amphetamine. Infusion of either the NMDA receptor agonist NMDA, the NMDA receptor antagonist D-AP5, the non-NMDA receptor antagonist CNQX, or the non-NMDA receptor agonist AMPA resulted in an increase in basal motor activity. Conversely, all of these ionotropic glutamate (iGlu) receptor ligands reduced the increase in locomotor activity induced by focal infusion of D-amphetamine. Interactions with dopamine receptor activation were not so clear: (i). infusion of NMDA and D-AP5 respectively enhanced and reduced the increase in locomotor activity induced by the infusion of the D(1)-like receptor agonist of SKF 38393, while AMPA or CNQX decreased it; (ii). infusion of NMDA, D-AP5, and CNQX reduced the increase in locomotor activity induced by co-injection of SKF 38393+quinpirole--a pharmacological condition thought to activate both D(1)-like and D(2)-like presynaptic and postsynaptic receptors, while infusion of AMPA potentiated it; (iii). infusion of either NMDA, D-AP5 or CNQX, but not of AMPA, potentiated the decrease in motor activity induced by the D(2)-like receptor agonist quinpirole, a compound believed to act only at presynaptic D(2)-like receptors when injected by itself. Our results show that NMDA receptors have an agonist action with D(1)-like receptors and an antagonist action with D(2)-like receptors, while non-NMDA receptors have the opposite action. This is discussed from a anatamo-functional point of view.  相似文献   

6.
The contribution of the cytosolic calcium binding protein calbindin D(28K) (CaBP) to the synaptic plasticity was investigated in hippocampal CA1 area of wild-type and antisense transgenic CaBP-deficient mice. We showed that long-term potentiation (LTP) induced by tetanic stimulation in CaBP-deficient mice was impaired. The fundamental biophysical properties of NMDA receptors and their number were not modified in CaBP-deficient mice. We also demonstrated that the physiological properties of calcium channels were identical between genotypes. An insufficient Ca(2+) entry through NMDA receptors or calcium channels, or a decrease in NMDA receptor density are unlikely to explain this impairment of LTP. Interestingly, we showed that the loss of LTP was not prevented by glycine but was restored in the presence of a low concentration of the NMDA receptor antagonist D-APV (5 microM) and of the calcium chelator BAPTA-AM (5 microM). Moreover, we observed a loss of LTP in the wild-type mice when the postsynaptic tetanic-induced [Ca(2+)](i) rise is excessively increased. Conversely, a weaker tetanus stimulation allowed LTP induction and maintenance in CaBP-deficient mice. These results suggest that a higher cytosol [Ca(2+)](i), due to the decrease of CaBP expression may impair LTP induction and maintenance mechanisms without affecting the mechanisms of calcium entry. Thus, CaBP plays a critical role in long term synaptic plasticity by limiting the elevation of calcium rise in the cytosol to some appropriate spatio-temporal pattern.  相似文献   

7.
Gobbi G  Janiri L 《Psychopharmacology》2006,185(2):255-262
Rationale Valproic acid (VPA) is a psychoactive drug currently used for the treatment of epilepsy. Recently it has been introduced in psychiatry for the treatment of bipolar disorders, aggression, impulsivity, and resistant schizophrenia, although the mechanism by which VPA acts on these psychiatric diseases remains still unknown. Objectives The aim of this study was to analyze the distinct effects of sodium-(Na-) and magnesium-valproate (Mg-VPA) in pyramidal neurons of the medial prefrontal cortex (mPFC) and their interactions with gamma-aminobutyric acid (GABA) and excitatory amino acid responses. Materials and methods In vivo electrophysiology and microiontophoresis techniques were used to attend these goals. Results Both VPA salts decreased spontaneous neuronal firing activity in greater than 60% of recorded pyramidal neurons as well as potentiated GABA inhibitions. When injected at equal concentrations and currents, Mg-VPA blocked the excitatory responses induced by N-methyl-d-aspartate (NMDA) more frequently than Na-VPA. Both VPA salts equally blocked the excitatory responses of quisqualate and kainate. Conclusions These data suggest that VPA salts significantly modulate the activity of excitatory amino acid at mPFC pyramidal neurons and this mechanism should explain the therapeutic effects of valproate in psychiatric diseases involving NMDA, AMPA, and kainate receptors at the mPFC level.  相似文献   

8.
An increasing body of evidence suggests that native kainate receptors form ion channels from homomeric and heteromeric combinations of five receptor subunits: GluR5, GluR6, GluR7, KA1 and KA2. We have examined the activity of agonists and antagonists at recombinant human kainate receptors expressed in HEK293 cells, using both whole-cell electrophysiological recording and 96-well plate fluo-3 based calcium microfluorimetry (FLIPR). Both homomeric (GluR5 and GluR6) and heteromeric (GluR5/6, GluR5/KA2 and GluR6/KA2) receptors were examined. Heteromeric receptor assemblies showed electrophysiological and pharmacological profiles which were distinct from homomeric channels. Several agonists, including AMPA, ATPA and (S)-5-iodowillardiine, and antagonists, including gamma-D-glutamylaminomethylsulphonic acid (GAMS) and the decahydroisoquinoline compounds LY293558, LY377770 and LY382884, were found to act at GluR5-containing channels while having no effect at GluR6 homomers. AMPA, ATPA and (S)-5-iodowillardiine did activate GluR6/KA2 heteromers, but only as partial agonists. Additionally, ATPA was shown to act as an antagonist at homomeric GluR6 receptors at high concentrations (IC50 approximately 2 mM). Kynurenic acid was also found to differentiate between GluR6 and GluR6/KA2 receptors, antagonizing glutamate at GluR6 (IC50 = 0.4 mM), while having no effect at GluR6/KA2 channels. The results of the current study provide a broad pharmacological characterization of both homomeric and heteromeric recombinant human kainate receptors, and identify which compounds are likely to be useful tools for studying these various receptor subtypes.  相似文献   

9.
1. Synapse plasticity, defined as an activity dependent change in the strength of synapses, was first described in 1973 and, since those seminal experiments were reported, the field of synapse plasticity has expanded into one of the most widely studied areas in neuroscience. 2. Significant effort has been focused on determining the expression mechanisms of the changes in synapse strength. The present review will focus on the changes in the post-synaptic expression of glutamate receptors that have been shown to occur during the expression of synapse plasticity. 3. Biochemical studies of excitatory synapses in the central nervous system have revealed a high density of proteins concentrated at dendritic spines. These proteins appear to play critical roles in synaptic structure, plasticity and in trafficking receptors to synapses. 4. There is growing evidence that synapse plasticity could be the cellular basis of certain forms of learning and memory. Determining the behavioural correlates of this fundamental synaptic process will continue to be addressed in current and future research.  相似文献   

10.
Kainate type of glutamate receptors (KARs) modulate synaptic transmission in a developmentally regulated manner at several synapses in the brain. Previous studies have shown that KARs depress glutamatergic transmission at CA3-CA1 synapses in the hippocampus and these receptors are tonically active during early postnatal development. Here we use the GluR5 subunit specific agonist ATPA to further characterize the role of KARs in the modulation of synaptic transmission and plasticity in area CA1 during the first two weeks of life. We find that the depressant effect of ATPA on evoked fEPSPs/EPSCs is smaller in the neonate (P3-P6) than in the juvenile (P14-P18) rat CA1, due to endogenous activity of KAR in the neonate. Further, in the neonate but not juvenile CA1, ATPA downregulates action-potential independent transmission (mEPSCs) and its effects are dependent on protein kinase C activity. ATPA-induced depression of fEPSPs in the neonate occludes the presynaptic component of long-term depression (LTD). In contrast, at P14-P18, ATPA prevents LTD indirectly via GABAergic mechanisms. These data show that GluR5 signaling mechanisms are developmentally regulated and suggest distinct functional role for KARs in the modulation of synaptic transmission and plasticity at different stages of development.  相似文献   

11.
NMDA-type glutamate receptors (NMDARs) mediate many forms of synaptic plasticity. These tetrameric receptors consist of two obligatory NR1 subunits and two regulatory subunits, usually a combination of NR2A and NR2B. In the neonatal neocortex NR2B-containing NMDARs predominate, and sensory experience facilitates a developmental switch in which NR2A levels increase relative to NR2B. In this review, we clarify the roles of NR2 subunits in synaptic plasticity, and argue that a primary role of this shift is to control the threshold, rather than determining the direction, for modifying synaptic strength. We also discuss recent studies that illuminate the mechanisms regulating NR2 subunits, and suggest that the NR2A/NR2B ratio is regulated by multiple means, which may control the ratio both locally at individual synapses and globally in a cell-wide manner. Finally, we use the visual cortex as a model system to illustrate how activity-dependent modifications in the NR2A/NR2B ratio may contribute to the development of cortical functions.  相似文献   

12.
目的:观察给予氯氮平前后齿状回反应及细胞外多巴胺(DA)和5-羟色胺(5-HT)水平的变化规律。方法:15只成年家兔,将刺激用微电极置于海马穿通纤维处,记录用微电极和收集神经递质的引导插管置于同侧齿状回处,经10d康复后随机分为对照组(C组)、强直刺激组(T组)和无强直刺激组(N组),每组各5只。整个实验180min,分3阶段(60min/阶段)。全程给予齿状回单极方脉冲电刺激,60min时分别腹腔注射20mg/kg氯氮平溶液(T组和N组)或空白溶剂(C组),120min时给予强直刺激(C组和T组)。实验中,每隔2min记录一次齿状回反应,每隔5min检测一次齿状回细胞外DA和5-HT的水平。结果:齿状回反应:C组1、2阶段无改变(P〉0.05),3阶段较1、2阶段增强(P=0.02),产生长时程增强(LTP);T组2阶段较1阶段增强(氯氮平增强)(P=0.004),3阶段较2阶段进一步增强(P=0.02),产生LTP;N组2阶段较1阶段增强(氯氮平增强)(P=0.004),3阶段同2阶段(P〉0.05)。细胞外DA和5-HT的水平:C组的DA水平在3个阶段均无改变(P〉0.05);T组2、3阶段DA水平较1阶段明显升高(P〈0.01),但3阶段的DA水平却没有因LTP的产生而出现相应的改变;N组2、3阶段DA水平较1阶段明显升高(P〈0.01);3组在全部实验中的5-HT水平均无改变(P〉0.05)。结论:氯氮平可在齿状回同步产生氯氮平增强和细胞外DA水平的增加。  相似文献   

13.
Previous evidences showed that, besides noradrenaline (NA) and 5-hydroxytryptamine (5-HT), glutamate transmission is involved in the mechanism of action of antidepressants (ADs), although the relations between aminergic and glutamatergic systems are poorly understood. The aims of this investigation were to evaluate changes in the function of glutamate AMPA and NMDA receptors produced by acute and chronic administration of the two ADs reboxetine and fluoxetine, selective inhibitors of NA and 5-HT uptake, respectively. Rats were treated acutely (intraperitoneal injection) or chronically (osmotic minipump infusion) with reboxetine or fluoxetine. Isolated hippocampal nerve endings (synaptosomes) prepared following acute/chronic treatments were labelled with [(3)H]NA or [(3)H]5-HT and [(3)H]amine release was monitored during exposure in superfusion to NMDA/glycine, AMPA or K(+)-depolarization. Acute and chronic reboxetine reduced the release of [(3)H]NA evoked by NMDA/glycine or by AMPA. The NMDA/glycine-evoked release of [(3)H]NA was also down-regulated by chronic fluoxetine. Only acute, but not chronic, fluoxetine inhibited the AMPA-evoked release of [(3)H]5-HT. The release of [(3)H]NA and [(3)H]5-HT elicited by K(+)-depolarization was almost abolished by acute reboxetine or fluoxetine, respectively, but recovered during chronic ADs administration. ADs reduced NMDA receptor-mediated releasing effects in noradrenergic terminals after acute and chronic administration, although by different mechanisms. Chronic treatments markedly reduced the expression level of NR1 subunit in synaptic membranes. The noradrenergic and serotonergic release systems seem to be partly functionally interconnected and interact with glutamatergic transmission to down-regulate its function. The results obtained support the view that glutamate plays a major role in AD activity.  相似文献   

14.
The effects of the major schizophrenia susceptibility gene disease DTNBP1 on disease risk are likely to be mediated through changes in expression level of the gene product, dysbindin-1. How such changes might influence pathogenesis is, however, unclear. One possible mechanism is suggested by recent work establishing a link between altered dysbindin-1 expression and changes in surface levels of N-methyl-d-aspartate receptors (NMDAR), although neither the precise nature of this relationship, nor the mechanism underlying it, are understood. Using organotypic slices of rat hippocampus, we show that increased expression of dysbindin-1A in pyramidal neurons causes a severe and selective hypofunction of NMDARs and blocks induction of LTP. Cell surface, but not cytoplasmic, expression of the NR1 subunit of the NMDAR is decreased, suggesting dysregulation of NMDAR trafficking and, consistent with this, pharmacological inhibition of clathrin-dependent endocytosis is sufficient to reverse the deficit in NMDAR signaling. These results support the idea that the level of the NMDAR at the plasma membrane is modulated by changes in dysbindin-1 expression and offer further insight into the role of dysbindin-1 at an important cellular pathway implicated in schizophrenia.  相似文献   

15.
Spatial learning in rats has been shown to be dependent on the intact hippocampus and lesioning this region impairs learning performance. Long-term potentiation (LTP) and depotentiation (DP) of synaptic transmission have been suggested to model memory formation at the neuronal level. Recently it was shown that LTP in the dentate gyrus or area CA3 of the hippocampus is not essential for the ability to learn a spatial water maze task. Here we show that the metabotropic glutamate receptor agonist (1S,3S)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3S-ACPD), which acts predominantly at presynaptic sites, only marginally impaired spatial learning in a water maze or radial arm maze (three out of eight arms baited) when injected ICV (5 μl of a 20 mM solution). There also were small impairments in non-spatial and visual discrimination tasks, indicating that the small learning impairments were due to nonselective effects of the drug. The same dose depressed field EPSPs and completely blocked LTP induced by high-frequency stimulation (HFS, 200 Hz) in the CA1 region of the rat hippocampus in vivo. A lower (5 μl of a 10 mM solution) dose did not depress baseline but still blocked LTP. Injecting the same dose after induction of LTP blocked DP induced by low-frequency stimulation (LFS, 10 Hz). These results indicate that neither HFS-induced LTP nor LFS-induced DP in area CA1 are good models for the induction of synaptic changes that might underlie spatial learning in the rat. Received: 28 July 1996/Final version: 17 September 1996  相似文献   

16.
N-methyl-d-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.  相似文献   

17.
18.
The role of NMDA receptors in the induction of long-term potentiation (LTP) and long-term depression (LTD) is well established but which particular NR2 subunits are involved in these plasticity processes is still a matter of controversy. We have studied the effects of subtype selective NMDA receptor antagonists on LTP induced by high frequency stimulation (100 Hz for 1s) and LTD induced by low frequency stimulation (1 Hz for 15 min) in the CA1 region of hippocampal slices from 14 day old Wistar rats. Against recombinant receptors in HEK293 cells NVP-AAM077 (NVP) was approximately 14-fold selective for NR2A vs NR2B receptors, whilst Ro 25-6981 (Ro) was highly selective for NR2B receptors. On NMDA receptor-mediated EPSCs from Schaffer collaterals in CA1 neurones, NVP and Ro both reduced the amplitude but differentially affected the time constant of decay. The data are compatible with the selective effect of NVP (0.1 microM) and Ro (4 microM) on native NR2A and NBR2B receptors, respectively. NVP reduced both LTP and LTD whereas Ro reduced only LTP. Thus, LTP was reduced by 63% at 0.1 microM NVP and almost completely at 0.4 microM whereas 5 microM Ro reduced LTP by 45%. These data are consistent with a role for both NR2A and NR2B in the induction of LTP, under our experimental conditions. In comparison, LTD was unaffected by Ro (5 microM) even in the presence of a glutamate uptake inhibitor threo-beta-benzylaspartic acid (TBOA) to increase the concentration of glutamate at NR2B containing receptors. NVP (0.2-0.4 microM), however, produced a concentration dependent inhibition of LTD which was complete at 0.4 microM. The lack of effect of 0.1 microM NVP on LTD contrasts with its marked effect on LTP and raises the possibility that different NVP-sensitive NR2 subunit-containing NMDA receptors are required for LTP and LTD in this preparation.  相似文献   

19.
Previously, we have found that activation of mGlu receptors using a group I-specific mGlu receptor agonist, (RS)-3,5-DHPG, can induce long-term depression (LTD) in the CA1 region of the hippocampus and that, once established, this synaptic depression can be reversed by application of the mGlu receptor antagonist, (S)-MCPG [Palmer et al., 1997. Neuropharmacology 36, 1517-1532]. We have started to investigate the signal transduction mechanisms involved in these effects. Group I mGlu receptors couple to phospholipase C and therefore can activate protein kinase C and mobilise Ca2+ from intracellular stores. However, neither protein kinase C inhibitors (chelerythrine or Ro 31-8220) nor agents which deplete intracellular Ca2+ stores (thapsigargin or cyclopiazonic acid) were able to prevent DHPG-induced LTD. Furthermore, the ability of MCPG to reverse DHPG-induced LTD was not prevented by these compounds. These results suggest that it is unlikely that DHPG-induced LTD, or its reversal by MCPG, is produced via activation of either protein kinase C or by release of Ca2+ from intracellular stores.  相似文献   

20.
Long-term potentiation (LTP) is extensively studied as a cellular mechanism of information storage in the brain. The induction and early expression mechanisms of LTP depend on activation and rapid modulation of ionotropic glutamate receptors. However, the mechanisms that underlie maintenance of LTP over the course of days or longer are poorly understood. Here, we have investigated the overall expression of AMPA- and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively), as well as their levels at the synaptic surface membrane and in the postsynaptic density (PSD), in the dentate gyrus at 48 h following the induction of LTP at perforant path synapses in awake rats. We found a high-frequency stimulation-dependent increase in the overall levels of AMPAR subunits GluA1 and GluA2, but not GluA3 in the dentate gyrus. The increases in GluA1 and GluA2 levels were partially NMDAR-dependent, but were not found in biochemically isolated synaptic surface membrane or PSD fractions. In contrast, we found that the core NMDAR subunit, GluN1, increased in the synaptic surface-membrane fraction but it also was not targeted to the PSD. The GluA1 and GluA2 expression and the surface localisation of GluN1 returned to baseline levels by 2 weeks post-LTP induction. These data suggest that the late-phase LTP is not mediated by an overt increase in the AMPAR content of perforant path synapses. The increase in surface expression NMDARs may influence thresholds for future plasticity events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号