首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The substantia nigra pars reticulata belongs to the brain regions with the highest density of CB(1) cannabinoid receptors. Since the level of CB(1) receptor messenger RNA is very low in the pars reticulata, most of the receptors are probably localized on terminals of afferent axons. The hypothesis was tested that terminals of glutamatergic afferents of substantia nigra pars reticulata neurons possess CB(1) cannnabinoid receptors, the activation of which presynaptically modulates neurotransmission.Rat midbrain slices were superfused and the electrophysiological properties of substantia nigra pars reticulata neurons were studied with the patch-clamp technique. Focal electrical stimulation in the presence of bicuculline evoked excitatory postsynaptic currents mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors. The excitatory postsynaptic currents were reduced by the metabotropic glutamate receptor agonist (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 10(-4)M). The mixed CB(1)/CB(2) cannabinoid receptor agonists R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2, 3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone (WIN55212-2; 10(-8)-10(-5)M) and (-)-cis-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940; 10(-6)M) also produced inhibition. The maximal inhibition by WIN55212-2 was 54+/-6%. The CB(1) cannabinoid antagonist N-piperidino-5-(4-chlorophenyl)-1-(2, 4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR141716A; 10(-6)M) prevented the effect of WIN55212-2, but had no effect when superfused alone. WIN55212-2 (10(-6)M) increased the amplitude ratio of two excitatory postsynaptic currents evoked with an interstimulus interval of 100ms. Currents evoked by short ejection of glutamate on to the surface of the slices were not changed by WIN55212-2.The results show that activation of CB(1) cannabinoid receptors inhibits glutamatergic synaptic transmission between afferent axons and neurons in the substantia nigra pars reticulata. The lack of effect of the cannabinoids on glutamate-evoked currents and the increase of the paired-pulse ratio indicate that the mechanism of action is presynaptic inhibition of transmitter release.  相似文献   

2.
Retrograde synaptic signaling by endogenous cannabinoids (endocannabinoids) is a recently discovered form of neuromodulation in various brain regions. In hippocampus, it is well known that endocannabinoids suppress presynaptic inhibitory neurotransmitter release in CA1 region. However, endocannabinoid signaling in CA3 region remains to be examined. Here we investigated whether presynaptic inhibition can be caused by activation of postsynaptic group I metabotropic glutamate receptors (mGluRs) and following presynaptic cannabinoid receptor type 1 (CB1 receptor) using mechanically dissociated rat hippocampal CA3 pyramidal neurons with adherent functional synaptic boutons. Application of group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) reversibly suppressed spontaneous inhibitory postsynaptic currents (IPSCs). In the presence of tetrodotoxin (TTX), frequency of miniature IPSCs was significantly reduced by DHPG, while there were no significant changes in minimum quantal size and sensitivity of postsynaptic GABAA receptors to the GABAA receptor agonist muscimol, indicating that this suppression was caused by a decrease in GABA release from presynaptic nerve terminals. Application of CB1 synthetic agonist WIN55212-2 (mesylate(R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholino)methyl]pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl](1-naphthyl)methanone) or endocannabinoid 2-arachidonoylglycerol also suppressed the spontaneous IPSC. The inhibitory effect of DHPG on spontaneous IPSCs was abolished by SR-141716 (5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide), a CB1 receptor antagonist. Furthermore, postsynaptic application of GDP-βS blocked the DHPG-induced inhibition of spontaneous IPSCs, indicating the involvement of endcannabinoid-mediated retrograde synaptic signaling. These results provide solid evidence for retrograde signaling from postsynaptic group I mGluRs to presynaptic CB1 receptors, which induces presynaptic inhibition of GABA release in rat hippocampal CA3 region.  相似文献   

3.
Wallmichrath I  Szabo B 《Neuroscience》2002,113(3):671-682
The substantia nigra pars reticulata (SNR) belongs to the brain regions with the highest density of CB(1) cannabinoid receptors. Anatomical studies indicate that the great majority of CB(1) receptors in the SNR are localized on terminals of GABAergic axons arriving from the caudate-putamen (striatonigral axons). The aim of the present experiments was to clarify the role of CB(1) receptors on terminals of striatonigral axons.Oblique sagittal slices, including the caudate-putamen and the substantia nigra, were prepared from brains of young mice. Electrical stimulation in the caudate-putamen elicited GABAergic inhibitory postsynaptic currents (IPSCs) in the SNR, which were studied by patch-clamp techniques. The long latency of IPSCs (14+/-1 ms) suggests that striatonigral axons were indeed activated within the caudate-putamen. The synthetic CB(1)/CB(2) cannabinoid receptor agonist WIN55212-2 (R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl]-(1-naphthalenyl)methanone mesylate; 10(-5) M) decreased the amplitude of IPSCs by 93+/-1%. CP55940 ((-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol; 10(-5) M), another CB(1)/CB(2) receptor agonist, also reduced IPSC amplitude, by 76+/-4%. The CB(1) cannabinoid receptor antagonist SR141716A (N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide; 10(-6) M) prevented the inhibition produced by WIN55212-2 (10(-5) M). Depolarization of SNR neurons led to suppression of IPSCs; this suppression was prevented by SR141716A (10(-6) M). Three observations indicate that the agonists inhibited neurotransmission presynaptically. (1) CP55940 (10(-5) M) enhanced the ratio of amplitudes of two IPSCs which were elicited by two electrical stimuli 100 ms apart (paired pulses). (2) WIN55212-2 (10(-5) M) did not change the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. (3) WIN55212-2 (10(-5) M) also had no effect on currents elicited in SNR neurons by ejection of the GABA(A) receptor agonist muscimol from a pipet.In summary, we have established a method which allows selective examination of GABAergic neurotransmission between striatonigral axons and SNR neurons. Using this method, the function of CB(1) cannabinoid receptors on terminals of striatonigral axons was unequivocally clarified. Activation of these receptors causes strong presynaptic inhibition of GABAergic neurotransmission between striatonigral axons and SNR neurons. This effect may be one explanation of the catalepsy observed in animals after cannabinoid administration. Endocannabinoids released from SNR neurons can modulate striatonigral neurotransmission by inhibiting GABA release from terminals of striatonigral axons.  相似文献   

4.
Hilar mossy cells represent a unique population of local circuit neurons in the hippocampus and dentate gyrus. Here we use electrophysiological techniques in acute preparations of hippocampal slices to demonstrate that depolarization of a single hilar mossy cell can produce robust inhibition of local GABAergic afferents. This depolarization-induced suppression of inhibition (DSI) can be observed as a transient reduction in frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) or as a transient reduction in amplitude of evoked IPSCs (eIPSCs). We find that DSI of eIPSCs as observed in hilar mossy cells is enhanced by activation of muscarinic acetylcholine receptors, blocked by chelation of postsynaptic calcium, and critically dependent on retrograde activation of presynaptic cannabinoid type 1 (CB1) receptors. We further report that activation of CB1 receptors on GABAergic afferents to hilar mossy cells (by either endogenous or exogenous agonists) preferentially inhibits calcium-dependent exocytosis and that endocannabinoid-dependent retrograde signaling in this system is subject to tight spatial constraints.  相似文献   

5.
Dopamine (DA) receptors are the principal targets of drugs used in the treatment of schizophrenia. Among the five DA receptor subtypes, the D(4) subtype is of particular interest because of the relatively high affinity of the atypical neuropleptic clozapine for D(4) compared with D(2) receptors. GABA-containing neurons in the thalamic reticular nucleus (TRN) and globus pallidus (GP) express D(4) receptors. TRN neurons receive GABAergic afferents from globus pallidus (GP), substantia nigra pars reticulata (SNr), and basal forebrain as well as neighboring TRN neuron collaterals. In addition, TRN receives dopaminergic innervations from substantia nigra pars compacta (SNc); however, the role of D(4) receptors in neuronal signaling at inhibitory synapses is unknown. Using whole cell recordings from in vitro pallido-thalamic slices, we demonstrate that DA selectively suppresses GABA(A) receptor-mediated inhibitory postsynaptic currents (IPSCs) evoked by GP stimulation. The D(2)-like receptor (D(2,3,4)) agonist, quinpirole, and selective D(4) receptor agonist, PD168077, mimicked the actions of DA. The suppressive actions of DA and its agonists were associated with alterations in paired pulse ratio and a decrease in the frequency of miniature IPSCs, suggesting a presynaptic site of action. GABA(A) receptor agonist, muscimol, induced postsynaptic currents in TRN neurons were unaltered by DA or quinpirole, consistent with the presynaptic site of action. Finally, DA agonists did not alter intra-TRN inhibitory signaling. Our data demonstrate that the activation of presynaptic D(4) receptors regulates GABA release from GP efferents but not TRN collaterals. This novel and selective action of D(4) receptor activation on GP-mediated inhibition may provide insight to potential functional significance of atypical antipsychotic agents. These findings suggest a potential heightened TRN neuron activity in certain neurological conditions, such as schizophrenia and attention deficit hyperactive disorders.  相似文献   

6.
Depolarization-induced suppression of inhibition in substantia nigra pars reticulata suggests that burst-like activity but not regular firing suffices to activate presynaptic endocannabinoid CB1 receptors. To more closely determine the type of activity required, we applied gramicidin perforated patch recording under visual control to substantia nigra slices of juvenile mice. We found that evoked inhibitory postsynaptic currents (eIPSCs) were reduced in amplitude by the spontaneous firing of a neuron under study, whereas silencing this neuron enhanced inhibitory responses. Autonomous firing reduced eIPSCs to 78%±2% in a time- but not frequency-dependent manner. The phenomenon which we termed firing-induced suppression of inhibition was cannabinoid receptor subtype 1–dependent, whereas adenosine A1 receptors played only a minor role. Depletion of intracellular Ca2+ stores abolished the firing-induced suppression of inhibition suggesting that Ca2+ release from internal stores is necessary for the production of endocannabinoids during autonomous firing. We suggest that the Ca2+ influx during autonomous activity of pars reticulata neurons suffices to selectively dampen incoming inhibition from striatal neurons because it is amplified by ryanodine receptor-mediated Ca2+ release from intracellular stores.  相似文献   

7.
Using whole cell voltage-clamp recordings we investigated the effects of a synthetic cannabinoid (WIN55,212-2) on inhibitory inputs received by layer 2/3 pyramidal neurons in slices of the mouse auditory cortex. Activation of the type 1 cannabinoid receptor (CB1R) with WIN55,212-2 reliably reduced the amplitude of GABAergic inhibitory postsynaptic currents evoked by extracellular stimulation within layer 2/3. The suppression of this inhibition was blocked and reversed by the highly selective CB1R antagonist AM251, confirming a CB1R-mediated inhibition. Pairing evoked inhibitory postsynaptic currents (IPSCs) at short interstimulus intervals while applying WIN55,212-2 resulted in an increase in paired-pulse facilitation suggesting that the probability of GABA release was reduced. A presynaptic site of cannabinoid action was verified by an observed decrease in the frequency with no change in the amplitude or kinetics of action potential-independent postsynaptic currents (mIPSCs). When Cd(2+) was added or Ca(2+) was omitted from the recording solution, the remaining fraction of Ca(2+)-independent mIPSCs did not respond to WIN55,212-2. These data suggest that cannabinoids are capable of suppressing the inhibition of neocortical pyramidal neurons by depressing Ca(2+)-dependent GABA release from local interneurons.  相似文献   

8.
D1 dopamine receptors are present on terminals of striatal neurons to the pars reticulata of the substantia nigra in the rat. Here we have studied the effect of the activation of these receptors on the synthesis of gamma-aminobutyric acid (GABA) in slices of the pars reticulata of the substantia nigra isolated from 6-hydroxydopamine-lesioned rats. The synthesis was judged by the accumulation of GABA after inhibiting GABA transaminase with aminooxyacetic acid. Both dopamine and SCH 23390, a D1 agonist, stimulated the synthesis. The effect of both compounds was blocked by SCH 23390, a D1 antagonist, but not by sulpiride, a D2 antagonist. In the absence of receptor activation, the synthesis was very slow. The results suggest a trophic influence of dopamine upon the synthesis of GABA via D1 receptors.  相似文献   

9.
Wei J  Zhang M  Zhu Y  Wang JH 《Neuroscience》2004,127(3):637-647
We investigated the role of calcium (Ca(2+))/calmodulin (CaM) signaling pathways in modulating GABA synaptic transmission at CA1 pyramidal neurons in hippocampal slices. Whole-cell pipettes were used to record type A GABA receptor (GABA(A)R)-gated inhibitory postsynaptic currents (IPSCs) and to perfuse intracellularly modulators in the presence of glutamate receptor antagonists. GABA(A)R-gated IPSCs were enhanced by the postsynaptic infusions of adenophostin (1 microM), a potent agonist of inositol-1,4,5-triphosphate receptor (IP(3)R) that induces Ca(2+) release. The enhancement was blocked by co-infusing either 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10 mM) or CaM-binding peptide (100 microM). Moreover, the postsynaptic infusion of Ca(2+)-CaM (40/10 microM) enhanced both evoked and spontaneous GABA(A)R-gated IPSCs. The enhancement was attenuated by co-infusing 100 microM CaM-KII(281-301), an autoinhibitory peptide of CaM-dependent protein kinases. These results indicate that postsynaptic Ca(2+)-CaM signaling pathways essentially enhance GABAergic synaptic transmission. In the investigation of synaptic targets for the enhancement, we found that IP(3)R agonist-enhanced GABA(A)R-gated IPSCs were attenuated by co-infusing colchicine (30 microM), vincristine (3 microM) or cytochalasin D (1 microM) that inhibits tubulin or actin polymerization, implying that actin filament and microtubules are involved. We conclude that postsynaptic Ca(2+)-CaM signaling pathways strengthen the function of GABAergic synapses via a cytoskeleton-mediated mechanism, probably the recruitment of receptors in the postsynaptic membrane.  相似文献   

10.
We have previously provided functional evidence that glycine and GABA are contained in the same synaptic vesicles and coreleased at the same synapses in lamina I of the rat spinal dorsal horn. However, whereas both glycine receptors (GlyRs) and GABA(A) receptors (GABA(A)Rs) are expressed on the postsynaptic target, under certain conditions inhibitory events appeared to be mediated by GlyRs only. We therefore wanted to test whether GABA(B) receptors could be activated in conditions where GABA released was insufficient to activate GABA(A)Rs. Focal stimulation in the vicinity of visually identified lamina I neurons elicited monosynaptic IPSCs in the presence of ionotropic glutamate receptor antagonists. Pairs of stimuli were given at different interstimulus intervals (ISI), ranging from 25 ms to 1 s to study the depression of the second of evoked IPSCs (paired pulse depression; PPD). Maximal PPD of IPSCs was 60 +/- 14% (SE) (of the conditioning pulse amplitude), at ISI between 150 and 200 ms. PPD was observed with IPSCs evoked at stimulus intensities where they had no GABA(A)R component. PPD of small evoked IPSCs was not affected by the GABA(A)R antagonist bicuculline but significantly attenuated by 10-30 microM CGP52432, a specific GABA(B) receptor antagonist. These data indicate that, under conditions where GABA released is insufficient to affect postsynaptic GABA(A)Rs at lamina I inhibitory synapses, significant activation of presynaptic GABA(B) receptors can occur.  相似文献   

11.
Retrograde synaptic signalling has long been recognized as a fundamental feature of neural systems. However, the cellular specificity and functional consequences of fast retrograde communication are not well understood. We have focused our efforts on understanding the role that endocannabinoids play in regulating synaptic inhibition in sensory neocortex. Recent studies have implicated endocannabinoids as the retrograde signalling molecules that underlie depolarization-induced suppression of inhibition, or DSI. This short-term form of presynaptic depression is triggered by postsynaptic depolarization and is likely to play an important role in information processing. In the present study we investigated the cellular and synaptic specificity of endocannabinoid signalling in sensory cortex using whole-cell recordings from layer 2/3 pyramidal neurones (PNs) in acute brain slices. We report that GABAergic interneurones that are depolarized by muscarinic receptor stimulation provided the majority of DSI-susceptible inputs to neocortical PNs. This subclass of interneurones generated large, fast postsynaptic currents in PNs which were transiently suppressed by either postsynaptic depolarization or a brief train of action potentials. Neocortical DSI required activation of the type 1 cannabinoid receptor (CB1R) but not metabotropic glutamate or GABA receptors. Using focal drug application, we found that the DSI-susceptible afferents preferentially synapse on the perisomatic membrane of PNs, and not on the apical dendrites. Together, these results suggest that endocannabinoid-mediated DSI in the cortex can transiently and selectively depress a subclass of PN inputs. Although the physiological implications remain to be explored, this suppression of somatic inhibition may alter the excitability of principal neurones and thereby modulate cortical output.  相似文献   

12.
Exogenous cannabinoids disrupt behavioral learning and impede induction of long-term potentiation (LTP) in the hippocampus, yet endogenous cannabinoids (endocannabinoids) transiently suppress inhibitory post-synaptic currents (IPSCs) by activating cannabinoid CB1 receptors on GABAergic interneurons. We found that release of endocannabinoids by a rat CA1 pyramidal cell during this depolarization-induced suppression of inhibition (DSI) enabled a normally ineffective train of excitatory post-synaptic currents (EPSCs) to induce LTP in that cell, but not in neighboring cells. By showing that endocannabinoids facilitate LTP induction and help target LTP to single cells, these data shed new light on the physiological roles of endocannabinoids and may lead to a greater understanding of their effects on behavior and potential clinical use.  相似文献   

13.
Here we have explored whether dopamine is able to modulate the release of gamma-aminobutyric acid (GABA) from striatal terminals to substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and caudate-putamen. The type of dopamine receptors involved was assessed by the blocking effect of either SCH 23390 (D1 antagonist) or (-)-sulpiride (D2 antagonist) of the dopamine effect. Dopamine stimulated (EC50 3.2 microM) the depolarization-induced release of [3H]GABA from slices isolated from all of the above mentioned nuclei. SCH 23390 dose-dependently blocked the dopamine stimulation, but (-)-sulpiride did not show any blocking effect. The results suggest that dopamine via D1 receptors modulates the release of GABA from striatal GABAergic terminals.  相似文献   

14.
Depolarization-induced suppression of inhibition (DSI) is a form of retrograde signaling at GABAergic synapses that is initiated by the calcium- and depolarization-dependent release of endocannabinoids from postsynaptic neurons. In the neocortex, pyramidal neurons (PNs) appear to use DSI as a mechanism for regulating somatic inhibition from a subpopulation of GABAergic inputs that express the type 1 cannabinoid receptor. Although postsynaptic control of afferent inhibition may directly influence the integrative properties of neocortical PNs, little is known about the patterns of activity that evoke endocannabinoid release and the impact such disinhibition may have on the excitability of PNs. Here we provide the first systematic survey of action potential (AP)-induced DSI in the neocortex. The magnitude and time course of DSI was directly related to the number and frequency of postsynaptic APs with significant suppression induced by a 20-Hz train containing as few as three APs. This AP-induced DSI was mediated by endocannabinoids as it was prevented by the cannabinoid receptor antagonist AM251 and potentiated by the endocannabinoid transport inhibitor AM404. We also explored the effects of endocannabinoid-mediated DSI on PN excitability. We found that single AP trains markedly increased PN responsiveness to excitatory synaptic inputs and promoted AP discharge by suppressing GABAergic inhibition. The time course of this effect paralleled DSI expression and was completely blocked by AM251. Taken together, our data suggest a role for endocannabinoids in regulating the output of cortical PNs.  相似文献   

15.
Halothane-anaesthetized cats implanted with push-pull cannulae were used in this study. Amphetamine was applied in the pars reticulata or pars compacta of the substantia nigra in order to determine the role of dopamine released from distal or proximal dendrites of dopaminergic cells in the control of GABAergic transmission in the nucleus ventralis medialis of the thalamus. When applied for 30 min in either the pars reticulata or the pars compacta, amphetamine (10(-6) M) enhanced to a similar extent the local release of [3H]dopamine synthesized from [3H]tyrosine, these effects being seen mainly during the drug application. The amphetamine-evoked release of dopamine in the pars reticulata produced a long lasting reduction in the release of [3H]GABA synthesized from [3H]glutamine in the nucleus ventralis medialis as well as in the paralamellar zone of the nucleus ventralis lateralis. Opposite effects were observed when amphetamine (10(-6) M) was applied in the pars compacta. In complementary experiments, single unit recordings were made in the intermediate part of the pars reticulata, some of the cells being identified by antidromic activation from the nucleus ventralis medialis. Whether applied in the pars reticulata or pars compacta, amphetamine (10(-6) M, 10 min) evoked a reversible decrease in the firing rate of most recorded cells whether or not they were identified as projecting to the nucleus ventralis medialis. Therefore, the decreased release of [3H]GABA in the nucleus ventralis medialis seen following application of amphetamine in the pars reticulata of the substantia nigra could result from an inhibition of nigrothalamic GABAergic neurons. Since the nucleus ventralis medialis is also innervated by GABAergic neurons originating in the entopeduncular nucleus, single unit recordings were made from cells in this nucleus during the application of amphetamine (10(-6) M, 10 min) into the pars compacta of the substantia nigra, some of which were identified antidromically as projecting to the nucleus ventralis medialis. Most cells identified or not were found to be activated during this treatment. These results suggested that the increased release of [3H]GABA seen in the nucleus ventralis medialis following application of amphetamine in the pars compacta of the substantia nigra might be linked to the enhanced firing rate of entopeduncular-thalamic GABAergic neurons.  相似文献   

16.
Neurotensin modulates pain via its actions within descending analgesic pathways which include brain regions such as the midbrain periaqueductal grey (PAG). The aim of this study was to examine the cellular actions of neurotensin on PAG neurons. Whole cell patch clamp recordings were made from rat midbrain PAG slices in vitro to examine the postsynaptic effects of neurotensin and its effects on GABAA mediated inhibitory postsynaptic currents (IPSCs). Neurotensin (100–300 n m ) produced an inward current in subpopulations of opioid sensitive and insensitive PAG neurons which did not reverse over membrane potentials between –50 and –130 mV. The neurotensin induced current was abolished by the NTS1 and NTS1/2 antagonists SR48692 (300 n m ) and SR142948A (300 n m ). Neurotensin also produced a reduction in the amplitude of evoked IPSCs, but had no effect on the rate and amplitude of TTX-resistant miniature IPSCs. The neurotensin induced inhibition of evoked IPSCs was reduced by the mGluR5 antagonist MPEP (5μ m ) and abolished by the cannabinoid CB1 receptor antagonist AM251 (3μ m ). These results suggest that neurotensin produces direct neuronal depolarisation via NTS1 receptors and inhibits GABAergic synaptic transmission within the PAG. The inhibition of synaptic transmission is mediated by neuronal excitation and action potential dependent release of glutamate, leading to mGluR5 mediated production of endocannabinoids which activate presynaptic CB1 receptors. Thus, neurotensin has cellular actions within the PAG which are consistent with both algesic and analgesic activity, some of which are mediated via the endocannabinoid system.  相似文献   

17.
We investigated the mechanisms of presynaptic inhibition of GABAergic neurotransmission by group III metabotropic glutamate receptors (mGluRs) and GABA(B) receptors, in dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Both the group III mGluRs agonist L-(+)-2-amino-4-phosphonobutyric acid (AP4, 100 microM) and the GABA(B) receptor agonist baclofen (10 microM) reversibly depressed the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) to 48.5 +/- 2.7 and 79.3 +/- 1.6% (means +/- SE) of control, respectively. On the contrary, the frequency of action potential-independent miniature IPSCs (mIPSCs), recorded in tetrodotoxin (TTX, 1 microM) and cadmium (100 microM) were insensitive to AP4 but were reduced by baclofen to 49.7 +/- 8.6% of control. When the contribution of voltage-dependent calcium channels (VDCCs) to synaptic transmission was boosted with external barium (1 mM), AP4 became effective in reducing TTX-resistant mIPSCs to 65.4 +/- 3.9% of control, thus confirming a mechanism of presynaptic inhibition involving modulation of VDCCs. Differently from AP4, baclofen inhibited to 58.5 +/- 6.7% of control the frequency mIPSCs recorded in TTX and the calcium ionophore ionomycin (2 microM), which promotes Ca2+-dependent, but VDCC-independent, transmitter release. Moreover, in the presence of alpha-latrotoxin (0.3 nM), to promote a Ca2+-independent vesicular release of GABA, baclofen reduced mIPSC frequency to 48.1 +/- 3.2% of control, while AP4 was ineffective. These results indicate that group III mGluRs depress GABA release to DA neurons of the SNc through inhibition of presynaptic VDCCs, while presynaptic GABA(B) receptors directly impair transmitter exocytosis.  相似文献   

18.
Nystatin-perforated patch recordings were made from rat parabrachial neurons in an in vitro slice preparation to examine the effect of dopamine on parabrachial cells and on excitatory synaptic transmission in this nucleus. In current clamp mode, dopamine reduced the amplitude of the evoked excitatory postsynaptic potential without significant change in membrane potential. In cells voltage-clamped at -65 mV, dopamine dose dependently and reversibly decreased evoked, pharmacologically isolated, excitatory postsynaptic currents with an EC50 of 31 microM. The reduction in excitatory postsynaptic current was accompanied by an increase in paired pulse ratio (a protocol used to detect presynaptic site of action) with no change in the holding current or in the decay of the evoked excitatory postsynaptic currents. In addition, dopamine altered neither postsynaptic (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate-induced currents, nor steady-state current voltage curves. Miniature excitatory postsynaptic current analysis revealed that dopamine caused a rightward shift of the frequency-distribution curve with no change in the amplitude-distribution curve, which is consistent with a presynaptic mechanism. The dopamine-induced attenuation of the excitatory postsynaptic current was almost completely blocked by the D1-like receptor antagonist SCH23390 (10 microM), although the D2-like antagonist sulpiride (10 microM) also partially blocked it. Combined application of both antagonists blocked all dopamine-induced synaptic effects. The synaptic effect of dopamine was mimicked by the D1-like agonist SKF38393 (50 microM), but the D2-1ike agonist quinpirole (50 microM) also had a small effect. Combined application of both agonists did not produce potentiated responses. Dopamine's effect on the excitatory postsynaptic current was independent of serotonin, GABA and adenosine receptors, but may have some interactions with adrenergic receptors. These results suggest that dopamine directly modulates excitatory synaptic events in the parabrachial nucleus predominantly via presynaptic D1-like receptors.  相似文献   

19.
Using the novel substituted benzamide drug [3H]raclopride in combination with in vitro receptor autoradiography, the distribution of dopamine D-2 receptors was studied in the monkey brain. Highest densities of D-2 receptors are present in dopamine-rich areas and the distribution shows the following rank order: caudatus and putamen greater than nucleus accumbens greater than olfactory tubercle greater than substantia nigra (pars compacta) greater than insular cortex greater than piriform and entorhinal cortex greater than substantia nigra (pars reticulata). In all of these areas [3H]raclopride binding was blocked by dopamine (1 microM) and by D-2 receptor antagonists such as (+)-butaclamol, eticlopride and raclopride, while the D-1 receptor antagonist SCH 23390 (1 microM) reduced [3H]raclopride binding by 15-20% in some restricted parts of the caudatus and putamen exclusively.  相似文献   

20.
The effects of muscarine and nicotine on evoked and spontaneous release of GABA were studied using intracellular and whole-cell patch-clamp recordings from rat midbrain dopamine neurons in an in vitro slice preparation. Muscarine (30 microM) reversibly depressed the pharmacologically isolated inhibitory postsynaptic potential evoked by local electrical stimulation. The maximal inhibition of the inhibitory postsynaptic potential amplitude was 39.6+/-5%. This depressant effect of muscarine was blocked by the M3/M1 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (100 nM), but was slightly affected by the M1/M3 receptor antagonist pirenzepine (1 microM). In addition, muscarine decreased the frequency of the miniature synaptic currents without any effect on their amplitude. Moreover, muscarine did not change the GABA-induced hyperpolarization, indicating that its effect on the inhibitory postsynaptic potential is mediated by presynaptic receptors. On the contrary, the cholinergic agonist nicotine did not change the frequency or the amplitude of the spontaneous glutamatergic and GABAergic synaptic currents.Our data indicate that a prevalent activation of presynaptic M3 muscarinic receptors inhibits the GABA-mediated synaptic events, while the activation of nicotinic receptors does not affect the release of glutamate and GABA on midbrain dopamine neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号