首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hereditary hearing loss is extremely heterogeneous. Over 70 genes have been identified to date, and with the advent of massively parallel sequencing, the pace of novel gene discovery has accelerated. In a family segregating progressive autosomal‐dominant nonsyndromic hearing loss (NSHL), we used OtoSCOPE® to exclude mutations in known deafness genes and then performed segregation mapping and whole‐exome sequencing to identify a unique variant, p.Ser178Leu, in TBC1D24 that segregates with the hearing loss phenotype. TBC1D24 encodes a GTPase‐activating protein expressed in the cochlea. Ser178 is highly conserved across vertebrates and its change is predicted to be damaging. Other variants in TBC1D24 have been associated with a panoply of clinical symptoms including autosomal recessive NSHL, syndromic hearing impairment associated with onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS syndrome), and a wide range of epileptic disorders.  相似文献   

2.
Early‐onset epileptic encephalopathies (EOEEs) are a group of rare devastating epileptic syndromes of infancy characterized by severe drug‐resistant seizures and electroencephalographic abnormalities. The current study aims to determine the genetic etiology of a familial form of EOEE fulfilling the diagnosis criteria for malignant migrating partial seizures of infancy (MMPSI). We identified two inherited novel mutations in TBC1D24 in two affected siblings. Mutations severely impaired TBC1D24 expression and function, which is critical for maturation of neuronal circuits. The screening of TBC1D24 in an additional set of eight MMPSI patients was negative. TBC1D24 loss of function has been associated to idiopathic infantile myoclonic epilepsy, as well as to drug‐resistant early‐onset epilepsy with intellectual disability. Here, we describe a familial form of MMPSI due to mutation in TBC1D24, revealing a devastating epileptic phenotype associated with TBC1D24 dysfunction.  相似文献   

3.
Mutations in the GJB2 gene encoding the gap junction protein Connexin 26 have been associated with autosomal recessive as well as dominant nonsyndromic hearing loss. Owing to the involvement of connexins in skin homeostasis, GJB2 mutations have also been associated with syndromic forms of hearing loss showing various skin manifestations. We report an assortatively mating hearing impaired family of south Indian origin with three affected members spread over two generations, having p.R75Q mutation in the GJB2 gene in the heterozygous condition. The inheritance pattern was autosomal dominant with mother and son being affected. Dermatological and histopathologic examinations showed absence of palmoplantar keratoderma. To the best of our knowledge, this is the first report from India on p.R75Q mutation in the GJB2 gene with nonsyndromic hearing loss.  相似文献   

4.
Mutations in DFNA5 lead to autosomal dominant nonsyndromic hereditary hearing loss (NSHHL). To date, four different mutations in DFNA5 have been reported to cause hearing loss. A 3 bp deletion mutation (c.991‐15_991‐13del) was identified in Chinese and Korean families with autosomal dominant NSHHL, which suggested that the 3 bp deletion mutation was derived from a single origin. In the present study, we performed genetic screening of mutations in the interval between intron 6 and exon 9 of DFNA5 in 65 Japanese patients with autosomal dominant NSHHL and identified the c.991‐15_991‐13del mutation in two patients. Furthermore, we compared the DFNA5‐linked haplotypes consisting of intragenic SNPs between the reported Chinese and Korean families and found that the Japanese patients showed a shared region spanning 41,874 bp. This is the first report of DFNA5 mutations in Japanese patients with autosomal dominant NSHHL, supporting the suggestion that the 3 bp deletion mutation occurred in their ancestors.  相似文献   

5.
6.
7.
8.
Hearing loss (HL) is the most common birth defect and the most prevalent sensorineural condition worldwide. It is associated with more than 1,000 mutations in at least 90 genes. Mutations of the gap junction beta‐2 protein (GJB2) gene located in the nonsyndromic hearing loss and deafness (DFNB1) locus (chromosome 13q11‐12) are the main causes of autosomal recessive nonsyndromic hearing loss worldwide, but important differences exist between various populations. In the present article, two common mutations of the GJB2 gene are compared for ethnic‐specific allele frequency, their function, and their contribution to genetic HL in different populations. The results indicated that mutations of the GJB2 gene could have arisen during human migration. Updates on the spectrum of mutations clearly show that frequent mutations in the GJB2 gene are consistent with the founder mutation hypothesis.  相似文献   

9.
Nonsyndromic hearing loss (NSHL), a common sensory disorder, is characterized by high clinical and genetic heterogeneity (i.e., approximately 115 genes and 170 loci so far identified). Nevertheless, almost half of patients submitted for genetic testing fail to receive a conclusive molecular diagnosis. We used next‐generation sequencing to identify causal variants in PLS1 (c.805G>A, p.[E269K]; c.713G>T, p.[L238R], and c.383T>C, p.[F128S]) in three unrelated families of European ancestry with autosomal dominant NSHL. PLS1 encodes Plastin 1 (also called fimbrin), one of the most abundant actin‐bundling proteins of the stereocilia. In silico protein modeling suggests that all variants destabilize the structure of the actin‐binding domain 1, likely reducing the protein's ability to bind F actin. The role of PLS1 gene in hearing function is further supported by the recent demonstration that Pls1?/? mice show a hearing loss phenotype similar to that of our patients. In summary, we report PLS1 as a novel gene for autosomal dominant NSHL, suggesting that this gene is required for normal hearing in humans and mice.  相似文献   

10.
11.
Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.  相似文献   

12.
Autosomal dominant types of nonsyndromic hearing loss (ADNSHL) are typically postlingual in onset and progressive. High genetic heterogeneity, late onset age, and possible confounding due to nongenetic factors hinder the timely molecular diagnoses for most patients. In this study, exome sequencing was applied to investigate a large Chinese family segregating ADNSHL in which we initially failed to find strong evidence of linkage to any locus by whole‐genome linkage analysis. Two affected family members were selected for sequencing. We identified two novel mutations disrupting known ADNSHL genes and shared by the sequenced samples: c.328C>A in COCH (DFNA9) resulting in a p.Q110K substitution and a deletion c. 2814_2815delAA in MYO6 (DFNA22) causing a frameshift alteration p.R939Tfs*2. The pathogenicity of novel coding variants in ADNSHL genes was carefully evaluated by analysis of co‐segregation with phenotype in the pedigree and in light of established genotype–phenotype correlations. The frameshift deletion in MYO6 was confirmed as the causative variant for this pedigree, whereas the missense mutation in COCH had no clinical significance. The results allowed us to retrospectively identify the phenocopy in one patient that contributed to the negative finding in the linkage scan. Our clinical data also supported the emerging genotype–phenotype correlation for DFNA22.  相似文献   

13.
14.
Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio‐exome sequencing of a 55‐year‐old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN‐1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN‐1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal‐dominant connective tissue disorder.  相似文献   

15.
Exome sequencing is a powerful tool in prenatal and postnatal genetics and can help identify novel candidate genes critical to human development. We describe seven unpublished probands with rare likely pathogenic variants or variants of uncertain significance that segregate with recessive disease in TBC1D32, including four fetal probands in three unrelated pedigrees and three pediatric probands in unrelated pedigrees. We also report clinical comparisons with seven previously published patients. Index probands were identified through an ongoing prenatal exome sequencing study and through an online data sharing platform (Gene Matcher™). A literature review was also completed. TBC1D32 is involved in the development and function of cilia and is expressed in the developing hypothalamus and pituitary gland. We provide additional data to expand the phenotype correlated with TBC1D32 variants, including a severe prenatal phenotype associated with life-limiting congenital anomalies.  相似文献   

16.
Optic atrophy (OA) and sensorineural hearing loss (SNHL) are key abnormalities in several syndromes, including the recessively inherited Wolfram syndrome, caused by mutations in WFS1. In contrast, the association of autosomal dominant OA and SNHL without other phenotypic abnormalities is rare, and almost exclusively attributed to mutations in the Optic Atrophy-1 gene (OPA1), most commonly the p.R445H mutation. We present eight probands and their families from the US, Sweden, and UK with OA and SNHL, whom we analyzed for mutations in OPA1 and WFS1. Among these families, we found three heterozygous missense mutations in WFS1 segregating with OA and SNHL: p.A684V (six families), and two novel mutations, p.G780S and p.D797Y, all involving evolutionarily conserved amino acids and absent from 298 control chromosomes. Importantly, none of these families harbored the OPA1 p.R445H mutation. No mitochondrial DNA deletions were detected in muscle from one p.A684V patient analyzed. Finally, wolframin p.A684V mutant ectopically expressed in HEK cells showed reduced protein levels compared to wild-type wolframin, strongly indicating that the mutation is disease-causing. Our data support OA and SNHL as a phenotype caused by dominant mutations in WFS1 in these additional eight families. Importantly, our data provide the first evidence that a single, recurrent mutation in WFS1, p.A684V, may be a common cause of ADOA and SNHL, similar to the role played by the p.R445H mutation in OPA1. Our findings suggest that patients who are heterozygous for WFS1 missense mutations should be carefully clinically examined for OA and other manifestations of Wolfram syndrome.  相似文献   

17.
18.
19.
20.
Mutations in potassium voltage‐gated channel subfamily Q member 4 (KCNQ4) are etiologically linked to nonsyndromic hearing loss (NSHL), deafness nonsyndromic autosomal dominant 2 (DFNA2). To identify causative mutations of hearing loss in 98 Korean families, we performed whole exome sequencing. In four independent families with NSHL, we identified a cosegregating heterozygous missense mutation, c.140T>C (p.Leu47Pro), in KCNQ4. Individuals with the c.140T>C KCNQ4 mutation shared a haplotype flanking the mutated nucleotide, suggesting that this mutation may have arisen from a common ancestor in Korea. The mutant KCNQ4 protein could reach the plasma membrane and interact with wild‐type (WT) KCNQ4, excluding a trafficking defect; however, it exhibited significantly decreased voltage‐gated potassium channel activity and fast deactivation kinetics compared with WT KCNQ4. In addition, when co‐expressed with WT KCNQ4, mutant KCNQ4 protein exerted a dominant‐negative effect. Interestingly, the channel activity of the p.Leu47Pro KCNQ4 protein was rescued by the KCNQ activators MaxiPost and zinc pyrithione. The c.140T>C (p.Leu47Pro) mutation in KCNQ4 causes progressive NSHL; however, the defective channel activity of the mutant protein can be rescued using channel activators. Hence, in individuals with the c.140T>C mutation, NSHL is potentially treatable, or its progression may be delayed by KCNQ activators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号