首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copy number variation (CNV) is a common form of structural variation detected in human genomes, occurring as both constitutional and somatic events. Cytogenetic techniques like chromosomal microarray (CMA) are widely used in analyzing CNVs. However, CMA techniques cannot resolve the full nature of these structural variations (i.e. the orientation and location of associated breakpoint junctions) and must be combined with other cytogenetic techniques, such as karyotyping or FISH, to do so. This makes the development of a next‐generation sequencing (NGS) approach capable of resolving both CNVs and breakpoint junctions desirable. Mate‐pair sequencing (MPseq) is a NGS technology designed to find large structural rearrangements across the entire genome. Here we present an algorithm capable of performing copy number analysis from mate‐pair sequencing data. The algorithm uses a step‐wise procedure involving normalization, segmentation, and classification of the sequencing data. The segmentation technique combines both read depth and discordant mate‐pair reads to increase the sensitivity and resolution of CNV calls. The method is particularly suited to MPseq, which is designed to detect breakpoint junctions at high resolution. This allows for the classification step to accurately calculate copy number levels at the relatively low read depth of MPseq. Here we compare results for a series of hematological cancer samples that were tested with CMA and MPseq. We demonstrate comparable sensitivity to the state‐of‐the‐art CMA technology, with the benefit of improved breakpoint resolution. The algorithm provides a powerful analytical tool for the analysis of MPseq results in cancer.  相似文献   

2.
3.
Individuals carrying balanced translocations have a high risk of birth defects, recurrent spontaneous abortions and infertility. Thus, the detection and characterization of balanced translocations is important to reveal the genetic background of the carriers and to provide proper genetic counseling. Next‐generation sequencing (NGS), which has great advantages over other methods such as karyotyping and fluorescence in situ hybridization (FISH), has been used to detect disease‐associated breakpoints. Herein, to evaluate the application of this technology to detect balanced translocations in the clinic, we performed a parental study for prenatal cases with unbalanced translocations. Eight candidate families with potential balanced translocations were investigated using two strategies in parallel, low‐coverage whole‐genome sequencing (WGS) followed‐up by Sanger sequencing and G‐banding karyotype coupled with FISH. G‐banding analysis revealed three balanced translocations, and FISH detected two cryptic submicroscopic balanced translocations. Consistently, WGS detected five balanced translocations and mapped all the breakpoints by Sanger sequencing. Analysis of the breakpoints revealed that six genes were disrupted in the four apparently healthy carriers. In summary, our result suggested low‐coverage WGS can detect balanced translocations reliably and can map breakpoints precisely compared with conventional procedures. WGS may replace cytogenetic methods in the diagnosis of balanced translocation carriers in the clinic.  相似文献   

4.
Our ability to analyze adaptive immunity and engineer its activity has long been constrained by our limited ability to identify native pairs of heavy–light antibody chains and alpha–beta T‐cell receptor (TCR) chains — both of which comprise coupled “halves of a key”, collectively capable of recognizing specific antigens. Here, we report a cell‐based emulsion RT‐PCR approach that allows the selective fusion of the native pairs of amplified TCR alpha and beta chain genes for complex samples. A new type of PCR suppression technique was developed that makes it possible to amplify the fused library with minimal noise for subsequent analysis by high‐throughput paired‐end Illumina sequencing. With this technique, single analysis of a complex blood sample allows identification of multiple native TCR chain pairs. This approach may be extended to identify native antibody chain pairs and, more generally, pairs of mRNA molecules that are coexpressed in the same living cells.  相似文献   

5.
Next‐generation sequencing has aided characterization of genomic variation. While whole‐genome sequencing may capture all possible mutations, whole‐exome sequencing remains cost‐effective and captures most phenotype‐altering mutations. Initial strategies for exome enrichment utilized a hybridization‐based capture approach. Recently, amplicon‐based methods were designed to simplify preparation and utilize smaller DNA inputs. We evaluated two hybridization capture‐based and two amplicon‐based whole‐exome sequencing approaches, utilizing both Illumina and Ion Torrent sequencers, comparing on‐target alignment, uniformity, and variant calling. While the amplicon methods had higher on‐target rates, the hybridization capture‐based approaches demonstrated better uniformity. All methods identified many of the same single‐nucleotide variants, but each amplicon‐based method missed variants detected by the other three methods and reported additional variants discordant with all three other technologies. Many of these potential false positives or negatives appear to result from limited coverage, low variant frequency, vicinity to read starts/ends, or the need for platform‐specific variant calling algorithms. All methods demonstrated effective copy‐number variant calling when evaluated against a single‐nucleotide polymorphism array. This study illustrates some differences between whole‐exome sequencing approaches, highlights the need for selecting appropriate variant calling based on capture method, and will aid laboratories in selecting their preferred approach.  相似文献   

6.
Accurate genotyping is important for genetic testing. Sanger sequencing‐based typing is the gold standard for genotyping, but it has been underused, due to its high cost and low throughput. In contrast, short‐read sequencing provides inexpensive and high‐throughput sequencing, holding great promise for reaching the goal of cost‐effective and high‐throughput genotyping. However, the short‐read length and the paucity of appropriate genotyping methods, pose a major challenge. Here, we present RCHSBT—reliable, cost‐effective and high‐throughput sequence based typing pipeline—which takes short sequence reads as input, but uses a unique variant calling, haploid sequence assembling algorithm, can accurately genotype with greater effective length per amplicon than even Sanger sequencing reads. The RCHSBT method was tested for the human MHC loci HLA‐A, HLA‐B, HLA‐C, HLA‐DQB1, and HLA‐DRB1, upon 96 samples using Illumina PE 150 reads. Amplicons as long as 950 bp were readily genotyped, achieving 100% typing concordance between RCHSBT‐called genotypes and genotypes previously called by Sanger sequence. Genotyping throughput was increased over 10 times, and cost was reduced over five times, for RCHSBT as compared with Sanger sequence genotyping. We thus demonstrate RCHSBT to be a genotyping method comparable to Sanger sequencing‐based typing in quality, while being more cost‐effective, and higher throughput.  相似文献   

7.
High‐density oligonucleotide arrays have widely been used to detect pathogenic chromosomal deletions. In addition to high‐density oligonucleotide arrays, programs using whole‐exome sequencing have become available for estimating copy‐number variations using depth of coverage. Here, we propose a new statistical method, HDR‐del, to prioritize pathogenic chromosomal deletions based on Hamming distance in exome sequencing. In vcf (variant call format) files generated from exome sequencing, hemizygous chromosomal deletion regions lack heterozygous variants and lead to apparent long runs of homozygosity (ROH). In our Hamming distance ratio (HDR)‐del approach, we calculate the “difference” in heterozygous status between an affected individual and control individuals using the HDR over all candidate chromosomal deletion regions defined as ROH longer than 1Mbp. Using a suitable test statistic, which is expected to be large for a true pathogenic deletion region, we prioritize candidate chromosomal deletion regions based on this statistic. In our approach, we were able to considerably narrow down true pathogenic chromosomal deletion regions, which were confirmed by high‐density oligonucleotide arrays in four mitochondrial disease patients. Our HDR‐del approach represents an easy method for detecting chromosomal deletions.  相似文献   

8.
The mechanisms underlying de novo insertion/deletion (indel) genesis, such as polymerase slippage, have been hypothesized but not well characterized in the human genome. We implemented two methodological improvements, which were leveraged to dissect indel mutagenesis. We assigned de novo variants to parent‐of‐origin (i.e., phasing) with low‐coverage long‐read whole‐genome sequencing, achieving better phasing compared to short‐read sequencing (medians of 84% and 23%, respectively). We then wrote an application programming interface to classify indels into three subtypes according to sequence context. Across three cohorts with different phasing methods (Ntrios = 540, all cohorts), we observed that one de novo indel subtype, change in copy count (CCC), was significantly correlated with father's (p = 7.1 × 10?4) but not mother's (p = .45) age at conception. We replicated this effect in three cohorts without de novo phasing (ppaternal = 1.9 × 10?9, pmaternal = .61; Ntrios = 3,391, all cohorts). Although this is consistent with polymerase slippage during spermatogenesis, the percentage of variance explained by paternal age was low, and we did not observe an association with replication timing. These results suggest that spermatogenesis‐specific events have a minor role in CCC indel mutagenesis, one not observed for other indel subtypes nor for maternal age in general. These results have implications for indel modeling in evolution and disease.  相似文献   

9.
A genetic diagnosis of autosomal‐dominant polycystic kidney disease (ADPKD) is challenging due to allelic heterogeneity, high GC content, and homology of the PKD1 gene with six pseudogenes. Short‐read next‐generation sequencing approaches, such as whole‐genome sequencing and whole‐exome sequencing, often fail at reliably characterizing complex regions such as PKD1. However, long‐read single‐molecule sequencing has been shown to be an alternative strategy that could overcome PKD1 complexities and discriminate between homologous regions of PKD1 and its pseudogenes. In this study, we present the increased power of resolution for complex regions using long‐read sequencing to characterize a cohort of 19 patients with ADPKD. Our approach provided high sensitivity in identifying PKD1 pathogenic variants, diagnosing 94.7% of the patients. We show that reliable screening of ADPKD patients in a single test without interference of PKD1 homologous sequences, commonly introduced by residual amplification of PKD1 pseudogenes, by direct long‐read sequencing is now possible. This strategy can be implemented in diagnostics and is highly suitable to sequence and resolve complex genomic regions that are of clinical relevance.  相似文献   

10.
Robertsonian translocation (RT) is a common cause for male infertility, recurrent pregnancy loss, and birth defects. Studying meiotic recombination in RT‐carrier patients helps decipher the mechanism and improve the clinical management of infertility and birth defects caused by RT. Here we present a new method to study spermatogenesis on a single‐gamete basis from two RT carriers. By using a combined single‐cell whole‐genome amplification and sequencing protocol, we comprehensively profiled the chromosomal copy number of 88 single sperms from two RT‐carrier patients. With the profiled information, chromosomal aberrations were identified on a whole‐genome, per‐sperm basis. We found that the previously reported interchromosomal effect might not exist with RT carriers. It is suggested that single‐cell genome sequencing enables comprehensive chromosomal aneuploidy screening and provides a powerful tool for studying gamete generation from patients carrying chromosomal diseases.  相似文献   

11.
12.
Although the benefits of next‐generation sequencing (NGS) for the diagnosis of heterogeneous diseases such as intellectual disability (ID) are undisputed, there is little consensus on the relative merits of targeted enrichment, whole‐exome sequencing (WES) or whole‐genome sequencing (WGS). To answer this question, WES and WGS data from the same nine samples were compared, and WES was shown not to miss any variants identified by WGS in a gene panel including ~500 genes linked to ID (500GP). Additionally, deeply sequenced WES data were shown to adequately cover ~99% of the 500GP; thus, little additional benefit was to be expected from a targeted enrichment approach. To reduce costs, minimal sequencing criteria were determined by investigating the relation between sequenced reads and outcome parameters such as coverage and variant yield. Our analysis indicated that 60 million reads yielded a mean coverage of ~60×: ~97% of the 500GP sequences were sufficiently covered to exclude variants, whereas variant yield was ~99.5% and false‐positive and false‐negative rates were controlled. Our findings indicate that WES is currently the optimal approach to ID diagnostics. This result depends on the capture kit and sequencing strategy used. The developed framework however is amenable to other sequencing approaches.  相似文献   

13.
Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy‐number variation (CNV). However, intragenic deletions or duplications—those including genomic intervals of a size smaller than a gene—have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy‐number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom‐designed, exon‐targeted oligonucleotide array to detect intragenic copy‐number changes in patients with various clinical phenotypes. Hum Mutat 31:1–17, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Whole genome sequencing (WGS) has the potential to report on all types of genetic abnormality, thus converging diagnostic testing on a single methodology. Although WGS at sufficient depth for robust detection of point mutations is still some way from being affordable for diagnostic purposes, low‐coverage WGS is already an excellent method for detecting copy number variants (“CNVseq”). We report on a family in which individuals presented with a presumed autosomal recessive syndrome of severe intellectual disability and epilepsy. Array comparative genomic hybridization (CGH) analysis had revealed a homozygous deletion apparently lying within intron 3 of CNTNAP2. Since this was too small for confirmation by FISH, CNVseq was used, refining the extent of this mutation to approximately 76.8 kb, encompassing CNTNAP2 exon 3 (an out‐of‐frame deletion). To characterize the precise breakpoints and provide a rapid molecular diagnostic test, we resequenced the CNVseq library at medium coverage and performed split read mapping. This yielded information for a multiplex polymerase chain reaction (PCR) assay, used for cascade screening and/or prenatal diagnosis in this family. This example demonstrates a rapid, low‐cost approach to converting molecular cytogenetic findings into robust PCR‐based tests. © 2014 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc.  相似文献   

15.
New sequencing technologies can address diverse biomedical questions but are limited by a minimum required DNA input of typically 1 μg. We describe how sequencing libraries can be reproducibly created from 20 pg of input DNA using a modified transpososome-mediated fragmentation technique. Resulting libraries incorporate in-line bar-coding, which facilitates sample multiplexes that can be sequenced using Illumina platforms with the manufacturer's sequencing primer. We demonstrate this technique by providing deep coverage sequence of the Escherichia coli K-12 genome that shows equivalent target coverage to a 1-μg input library prepared using standard Illumina methods. Reducing template quantity does, however, increase the proportion of duplicate reads and enriches coverage in low-GC regions. This finding was confirmed with exhaustive resequencing of a mouse library constructed from 20 pg of gDNA input (about seven haploid genomes) resulting in ~0.4-fold statistical coverage of uniquely mapped fragments. This implies that a near-complete coverage of the mouse genome is obtainable with this approach using 20 genomes as input. Application of this new method now allows genomic studies from low mass samples and routine preparation of sequencing libraries from enrichment procedures.  相似文献   

16.
Conventional next‐generation sequencing methods, used in most gene panels, cannot separate maternally and paternally derived sequence information of distant variants. In recessive diseases, two or more equally plausible causative variants with unsolved phase information prevent accurate molecular diagnosis. In reality, close relatives might be unavailable for segregation analysis. Here, we utilized whole genome linked‐read sequencing to assign variants to haplotypes in two patients with inherited retinal dystrophies. Patient 1 with macular dystrophy had variants c.3442T>C, p.(Cys1148Arg), c.4209G>T, p.(Glu1403Asp), and c.1182C>T, p.(Cys394=) in CRB1, and Patient 2 with nonsyndromic retinitis pigmentosa had c.1328T>A, p.(Val443Asp) and c.3032C>G, p.(Ser1011*) in AHI1. The relatives were not available for genotyping. Using whole genome linked‐read sequencing we phased the variants to haplotypes providing genetic background for the retinal dystrophies. In future, when the price of sequencing methods that provides long‐read data decreases and their read‐depth and accuracy increases, they are probably considered the primary or adjunctive sequencing methods in genetic testing, allowing the immediate collection of phase information and thus obviating the need for the carrier testing and segregation analysis.  相似文献   

17.
Current methods for resolving genetically distinct subclones in tumor samples require somatic mutations to be clustered by allelic frequencies, which are determined by applying a variant calling program to next‐generation sequencing data. Such programs were developed to accurately distinguish true polymorphisms and somatic mutations from the artifactual nonreference alleles introduced during library preparation and sequencing. However, numerous variant callers exist with no clear indication of the best performer for subclonal analysis, in which the accuracy of the assigned variant frequency is as important as correctly indicating whether the variant is present or not. Furthermore, sequencing depth (the number of times that a genomic position is sequenced) affects the ability to detect low‐allelic fraction variants and accurately assign their allele frequencies. We created two synthetic sequencing datasets, and sequenced real KRAS amplicons, with variants spiked in at specific ratios, to assess which caller performs best in terms of both variant detection and assignment of allelic frequencies. We also assessed the sequencing depths required to detect low‐allelic fraction variants. We found that VarScan2 performed best overall with sequencing depths of 100×, 250×, 500×, and 1,000× required to accurately identify variants present at 10%, 5%, 2.5%, and 1%, respectively.  相似文献   

18.
Whole‐genome sequencing (WGS) studies are uncovering disease‐associated variants in both rare and nonrare diseases. Utilizing the next‐generation sequencing for WGS requires a series of computational methods for alignment, variant detection, and annotation, and the accuracy and reproducibility of annotation results are essential for clinical implementation. However, annotating WGS with up to date genomic information is still challenging for biomedical researchers. Here, we present one of the fastest and highly scalable annotation, filtering, and analysis pipeline—gNOME—to prioritize phenotype‐associated variants while minimizing false‐positive findings. Intuitive graphical user interface of gNOME facilitates the selection of phenotype‐associated variants, and the result summaries are provided at variant, gene, and genome levels. Moreover, the enrichment results of specific variants, genes, and gene sets between two groups or compared with population scale WGS datasets that is already integrated in the pipeline can help the interpretation. We found a small number of discordant results between annotation software tools in part due to different reporting strategies for the variants with complex impacts. Using two published whole‐exome datasets of uveal melanoma and bladder cancer, we demonstrated gNOME's accuracy of variant annotation and the enrichment of loss‐of‐function variants in known cancer pathways. gNOME Web server and source codes are freely available to the academic community ( http://gnome.tchlab.org ).  相似文献   

19.
For next‐generation sequencing technologies, sufficient base‐pair coverage is the foremost requirement for the reliable detection of genomic variants. We investigated whether whole‐genome sequencing (WGS) platforms offer improved coverage of coding regions compared with whole‐exome sequencing (WES) platforms, and compared single‐base coverage for a large set of exome and genome samples. We find that WES platforms have improved considerably in the last years, but at comparable sequencing depth, WGS outperforms WES in terms of covered coding regions. At higher sequencing depth (95x–160x), WES successfully captures 95% of the coding regions with a minimal coverage of 20x, compared with 98% for WGS at 87‐fold coverage. Three different assessments of sequence coverage bias showed consistent biases for WES but not for WGS. We found no clear differences for the technologies concerning their ability to achieve complete coverage of 2,759 clinically relevant genes. We show that WES performs comparable to WGS in terms of covered bases if sequenced at two to three times higher coverage. This does, however, go at the cost of substantially more sequencing biases in WES approaches. Our findings will guide laboratories to make an informed decision on which sequencing platform and coverage to choose.  相似文献   

20.
High throughput sequencing approaches, including the analysis of exomes or gene panels, are widely used and established to detect tumor‐specific sequence variants such as point mutations or small insertions/deletions. Beyond single nucleotide resolution, sequencing data also contain information on changes in sequence coverage between samples and thus allow the detection of somatic copy number alterations (CNAs) representing gain or loss of genomic material in tumor cells arising from aneuploidy, amplifications, or deletions. To test the feasibility of CNA detection in sequencing data we analyzed the exomes of 25 paired leukemia/remission samples from acute myeloid leukemia (AML) patients with well‐defined chromosomal aberrations, detected by conventional chromosomal analysis and/or molecular cytogenetics assays. Thereby, we were able to confirm chromosomal aberrations including trisomies, monosomies, and partial chromosomal deletions in 20 out of 25 samples. Comparison of CNA detection using exome, custom gene panel, and SNP array analysis showed equivalent results in five patients with variable clone size. Gene panel analysis of AML samples without matched germline control samples resulted in confirmation of cytogenetic findings in 18 out of 22 cases. In all cases with discordant findings, small clone size (<33%) was limiting for CNA detection. We detected CNAs consistent with cytogenetics in 83% of AML samples including highly correlated clone size estimation (R = 0.85), while six out of 65 cytogenetically normal AML samples exhibited CNAs apparently missed by routine cytogenetics. Overall, our results show that high throughput targeted sequencing data can be reliably used to detect copy number changes in the dominant AML clone. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号