首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The human X chromosome contains ~1600 genes, about 15% of which have been associated with a specific genetic condition, mainly affecting males. Blue cone monochromacy (BCM) is an X‐linked condition caused by a loss‐of‐function of both the OPN1LW and OPN1MW opsin genes. The cone opsin gene cluster is composed of 2–9 paralogs with 99.8% sequence homology and is susceptible to deletions, duplications, and mutations. Current diagnostic tests employ polymerase chain reaction (PCR)‐based technologies; however, alterations remain undetermined in 10% of patients. Furthermore, carrier testing in females is limited or unavailable. High‐resolution X chromosome‐targeted CGH microarray was applied to test for rearrangements in males with BCM and female carriers from three unrelated families. Pathogenic alterations were revealed in all probands, characterized by sequencing of the breakpoint junctions and quantitative real‐time PCR. In two families, we identified a novel founder mutation that consisted of a complex 3‐kb deletion that embraced the cis‐regulatory locus control region and insertion of an additional aberrant OPN1MW gene. The application of high‐resolution X‐chromosome microarray in clinical diagnosis brings significant advantages in detection of small aberrations that are beyond the resolution of clinically available aCGH analysis and which can improve molecular diagnosis of the known conditions and unravel previously unrecognized X‐linked diseases.  相似文献   

2.
Variants in the PROM1 gene are associated with cone (?rod) dystrophy, macular dystrophy, and other phenotypes. We describe the clinical and genetic characteristics of 10 patients from eight Japanese families with PROM1‐associated retinal disorder (PROM1‐RD) in a nationwide cohort. A literature review of PROM1‐RD in the Japanese population was also performed. The median age at onset/examination of 10 patients was 31.0 (range, 10–45)/44.5 (22–73) years. All 10 patients showed atrophic macular changes. Seven patients (70.0%) had spared fovea to various degrees, approximately half of whom had maintained visual acuity. Generalized cone (?rod) dysfunction was demonstrated in all nine subjects with available electrophysiological data. Three PROM1 variants were identified in this study: one recurrent disease‐causing variant (p.Arg373Cys), one novel putative disease‐causing variant (p.Cys112Arg), and one novel variant of uncertain significance (VUS; p.Gly53Asp). Characteristic features of macular atrophy with generalized cone‐dominated retinal dysfunction were shared among all 10 subjects with PROM1‐RD, and the presence of foveal sparing was crucial in maintaining visual acuity. Together with the three previously reported variants [p.R373C, c.1551+1G>A (pathogenic), p.Asn580His (likely benign)] in the literature of Japanese patients, one prevalent missense variant (p.Arg373Cys, 6/9 families, 66.7%) detected in multiple studies was determined in the Japanese population, which was also frequently detected in the European population.  相似文献   

3.
We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber''s congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles.  相似文献   

4.
Jalili syndrome is a rare multisystem disorder with the most prominent features consisting of cone‐rod dystrophy and amelogenesis imperfecta. Few cases have been reported in the Americas. Here we describe a case series of patients with Jalili syndrome examined at the National Eye Institute's Ophthalmic Genetics clinic between 2016 and 2018. Three unrelated sporadic cases were systematically evaluated for ocular phenotype and determined to have cone‐rod dystrophy with bull's eye maculopathy, photophobia, and nystagmus. All patients had amelogenesis imperfecta. Two of these patients had Guatemalan ancestry and the same novel homozygous CNNM4 variant (p.Arg236Trp c.706C > T) without evidence of consanguinity. This variant met likely pathogenic criteria by the American College of Medical Genetics guidelines. An additional patient had a homozygous deleterious variant in CNNM4 (c.279delC p.Phe93Leufs*31), which resulted from paternal uniparental isodisomy for chromosome 2p22‐2q37. This individual had additional syndromic features including developmental delay and spastic diplegia, likely related to mutations at other loci. Our work highlights the genotypic variability of Jalili syndrome and expands the genotypic spectrum of this condition by describing the first series of patients seen in the United States.  相似文献   

5.
6.
Ectonucleotide pyrophosphatase/phosphodiesterase family member 1 (E‐NPP1), encoded by ENPP1, is a plasma membrane protein that generates inorganic pyrophosphate (PPi), a physiologic inhibitor of hydroxyapatite formation. In humans, variants in ENPP1 are associated with generalized arterial calcification of infancy, an autosomal‐recessive condition causing premature onset of arterial calcification and intimal proliferation resulting in stenoses. ENPP1 variants also cause pseudoxanthoma elasticum characterized by ectopic calcification of soft connective tissues. To determine the functional impact of ENPP1 missense variants, we analyzed 13 putative pathogenic variants in vitro regarding their functional properties, that is, activity, localization, and PPi generation. Transfection of eight of the 13 variants led to complete loss of NPP activity, whereas four mutants (c.1412A > G, p.Tyr471Cys; c.1510A > C, p.Ser504Arg; c.1976A > G, p.Tyr659Cys; c.2330A > G, p.His777Arg) showed residual activity compared with wild‐type E‐NPP1. One putative pathologic variant (c.2462 G > A, p.Arg821His) showed normal activity. The five mutants with normal or residual E‐NPP1 enzyme activity were still able to generate PPi and localized in the plasma membrane. In this study, we identified a functional ENPP1 polymorphism, which was expected to be pathogenic till now. Furthermore, we identified four mutants (p.Tyr471Cys, p.Ser504Arg, p.Tyr659Cys, p.His777Arg) with residual E‐NPP1 function, which would be potential therapeutical targets for conformational‐stabilizing agents.  相似文献   

7.
Acetylcholinesterase (AChE) at the neuromuscular junction (NMJ) is mostly composed of an asymmetric form in which three tetramers of catalytic AChE subunits are linked to a triple helical collagen Q (ColQ). Mutations in COLQ cause endplate AChE deficiency. We report three patients with endplate AChE deficiency with five recessive COLQ mutations. Sedimentation profiles showed that p.Val322Asp and p.Arg227X, but not p.Cys444Tyr, p.Asp447His, or p.Arg452Cys, inhibit formation of triple helical ColQ. In vitro overlay of mutant ColQ‐tailed AChE on muscle sections of Colq?/? mice revealed that p.Cys444Tyr, p.Asp447His, and p.Arg452Cys in the C‐terminal domain (CTD) abrogate anchoring ColQ‐tailed AChE to the NMJ. In vitro plate‐binding assay similarly demonstrated that the three mutants inhibit binding of ColQ‐tailed AChE to MuSK. We also confirmed the pathogenicity of p.Asp447His by treating Colq?/? mice with adeno‐associated virus serotype 8 carrying mutant COLQ‐p.Asp447His. The treated mice showed no improvement in motor functions and no anchoring of ColQ‐tailed AChE at the NMJ. Electroporation of mutant COLQ harboring p.Cys444Tyr, p.Asp447His, and p.Arg452Cys into anterior tibial muscles of Colq?/? mice similarly failed to anchor ColQ‐tailed AChE at the NMJ. We proved that the missense mutations in ColQ–CTD cause endplate AChE deficiency by compromising ColQ–MuSK interaction at the NMJ.  相似文献   

8.
9.
We summarize 18 mutations in the human CRX gene that have been associated with Leber congenital amaurosis (congenital retinal blindness), cone‐rod degeneration, or retinitis pigmentosa. Except for one obviously null allele not definitely associated with a phenotype (a frameshift in codon 9), all CRX mutations appear to be completely penetrant and cause disease in heterozygotes. These dominant alleles fall into two categories. In one group are missense mutations and short, in‐frame deletions; in the second group are frameshift mutations, all of which are in the last exon. All of these dominant mutations are likely to produce stable mRNA that is translated. Mutations in the missense group preferentially affect the conserved homeobox (codons 39–98), and all frameshift mutations leave the homeodomain intact but alter the OTX motif encoded by codons 284–295 at the carboxy terminus. We could not uncover any correlation between type of disease (congenital amaurosis vs. cone‐rod degeneration or retinitis pigmentosa) and the type of mutation (missense vs. frameshift). Four of the 18 mutations (~20%) were de novo mutations, and all of these were found in isolate cases of Leber congenital amaurosis. Dominant CRX mutations have not been associated with mental retardation or developmental delay that has sometimes been found in Leber congenital amaurosis caused by other genes. Implications regarding potential future therapies are discussed. Hum Mutat 18:488–498, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

10.
Schuurs‐Hoeijmakers syndrome (SHMS), or Autosomal Dominant Mental Retardation Syndrome type 17 (MRD17) is a rare form of intellectual disability with distinct facial features. A recurrent de novo heterozygous c.607C>T, p.Arg203Trp mutation in the PACS1 gene accounts for all reported cases except for one patient with a de novo heterozygous c.608G>A, p.Arg203Trp mutation. Ethnic background is known to affect the clinical manifestation of dysmorphic syndromes. Here we describe the first Indian patient with Schuurs‐Hoeijmakers syndrome (SHMS) with a de novo heterozygous NM_018026.3 (PACS1):c.607C>T (p.Arg203Trp) variant. He is the only child with SHMS with a cleft lip. Thus our report expands the phenotypic spectrum of SHMS and establishes its occurrence across populations.  相似文献   

11.
Defects in the motor domain of kinesin family member 1A (KIF1A), a neuron‐specific ATP‐dependent anterograde axonal transporter of synaptic cargo, are well‐recognized to cause a spectrum of neurological conditions, commonly known as KIF1A‐associated neurological disorders (KAND). Here, we report one mutation‐negative female with classic Rett syndrome (RTT) harboring a de novo heterozygous novel variant [NP_001230937.1:p.(Asp248Glu)] in the highly conserved motor domain of KIF1A. In addition, three individuals with severe neurodevelopmental disorder along with clinical features overlapping with KAND are also reported carrying de novo heterozygous novel [NP_001230937.1:p.(Cys92Arg) and p.(Pro305Leu)] or previously reported [NP_001230937.1:p.(Thr99Met)] variants in KIF1A. In silico tools predicted these variants to be likely pathogenic, and 3D molecular modeling predicted defective ATP hydrolysis and/or microtubule binding. Using the neurite tip accumulation assay, we demonstrated that all novel KIF1A variants significantly reduced the ability of the motor domain of KIF1A to accumulate along the neurite lengths of differentiated SH‐SY5Y cells. In vitro microtubule gliding assays showed significantly reduced velocities for the variant p.(Asp248Glu) and reduced microtubule binding for the p.(Cys92Arg) and p.(Pro305Leu) variants, suggesting a decreased ability of KIF1A to move along microtubules. Thus, this study further expanded the phenotypic characteristics of KAND individuals with pathogenic variants in the KIF1A motor domain to include clinical features commonly seen in RTT individuals.  相似文献   

12.
Achromatopsia (ACHM) is a hereditary cone photoreceptor disorder characterized by the inability to discriminate colors, nystagmus, photophobia, and low‐visual acuity. Six genes have been associated with this rare autosomal recessively inherited disease, including the GNAT2 gene encoding the catalytic α‐subunit of the G‐protein transducin which is expressed in the cone photoreceptor outer segment. Out of a cohort of 1,116 independent families diagnosed with a primary clinical diagnosis of ACHM, we identified 23 patients with ACHM from 19 independent families with likely causative mutations in GNAT2, representing 1.7% of our large ACHM cohort. In total 22 different potentially disease‐causing variants, of which 12 are novel, were identified. The mutation spectrum also includes a novel copy number variation, a heterozygous duplication of exon 4, of which the breakpoint matches exactly that of the previously reported exon 4 deletion. Two patients carry just a single heterozygous variant. In addition to our previous study on GNAT2‐ACHM, we also present detailed clinical data of these patients.  相似文献   

13.
14.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Here, we show the identification and functional characterization of one AF‐associated mutation p.Arg399Cys in lamin A/C. Co‐immunoprecipitation and GST pull‐down assays demonstrate that lamin A/C interacts with NUP155, which is a nucleoporin and causes AF when mutated. Lamin A/C mutation p.Arg399Cys impairs the interaction between lamin A/C and NUP155, and increases extractability of NUP155 from the nuclear envelope (NE). Mutation p.Arg399Cys leads to aggregation of lamin A/C in the nucleus, although it does not impair the integrity of NE upon cellular stress. Mutation p.Arg399Cys inhibits the export of HSP70 mRNA and the nuclear import of HSP70 protein. Electrophysiological studies show that mutation p.Arg399Cys decreases the peak cardiac sodium current by decreasing the cell surface expression level of cardiac sodium channel Nav1.5, but does not affect IKr potassium current. In conclusion, our results indicate that lamin A/C mutation p.Arg399Cys weakens the interaction between nuclear lamina (lamin A/C) and the nuclear pore complex (NUP155), leading to the development of AF. The findings provide a novel molecular mechanism for the pathogenesis of AF.  相似文献   

15.
Vicente Rubio 《Human mutation》2018,39(7):1002-1013
Vitamin B6‐dependent genetic epilepsy was recently associated to mutations in PLPBP (previously PROSC), the human version of the widespread COG0325 gene that encodes TIM‐barrel‐like pyridoxal phosphate (PLP)‐containing proteins of unclear function. We produced recombinantly, purified and characterized human PROSC (called now PLPHP) and its six missense mutants reported in epileptic patients. Normal PLPHP is largely a monomer with PLP bound through a Schiff‐base linkage. The PLP‐targeting antibiotic d ‐cycloserine decreased the PLP‐bound peak as expected for pseudo‐first‐order reaction. The p.Leu175Pro mutation grossly misfolded PLPHP. Mutations p.Arg241Gln and p.Pro87Leu decreased protein solubility and yield of pure PLPHP, but their pure forms were well folded, similarly to pure p.Pro40Leu, p.Tyr69Cys, and p.Arg205Gln mutants (judged from CD spectra). PLPHP stability was decreased in p.Arg241Gln, p.Pro40Leu, and p.Arg205Gln mutants (thermofluor assays). The p.Arg241Gln and p.Tyr69Cys mutants respectively lacked PLP or had a decreased amount of this cofactor. With p.Tyr69Cys there was extensive protein dimerization due to disulfide bridge formation, and PLP accessibility was decreased (judged from d ‐cycloserine reaction). A 3‐D model of human PLPHP allowed rationalizing the effects of most mutations. Overall, the six missense mutations caused ill effects and five of them impaired folding or decreased stability, suggesting the potential of pharmacochaperone‐based therapeutic approaches.  相似文献   

16.
Hyperserotonemia in autism is one of the longest‐standing biochemical findings in a psychiatric disorder. This well‐replicated finding and subsequent studies of platelet serotonin receptors in autism indicate that the serotonin 2A receptor gene (HTR2A) on chromosome 13q is a primary candidate gene in autism. Converging data from recent genome screens also implicates the genomic region containing HTR2A. Based on these lines of evidence, the transmission/disequilibrium test (TDT) was used to assess transmission disequilibrium between autism and haplotypes of three polymorphisms, including the promoter ‐1438 G/A single nucleotide polymorphism (SNP) in perfect linkage disequilibrium with the 102 T/C SNP in previous studies, a newly identified SNP in intron 1 near exon 2, and the SNP responsible for the His452Tyr amino acid change in exon 3. Because expression studies have shown HTR2A to be polymorphically imprinted in the brain, secondary analyses were split into maternal and paternal transmissions. No evidence was found for unequal transmission of haplotypes; however, power analysis reveals low power to detect a parent‐of‐origin effect in this sample size. © 2002 Wiley‐Liss, Inc.  相似文献   

17.
Pathogenic variants in the gene HGSNAT (heparan‐α‐glucosaminide N‐acetyltransferase) have been reported to underlie two distinct recessive conditions, depending on the specific genotype, mucopolysaccharidosis type IIIC (MPSIIIC)—a severe childhood‐onset lysosomal storage disorder, and adult‐onset nonsyndromic retinitis pigmentosa (RP). Here we describe the largest cohort to‐date of HGSNAT‐associated nonsyndromic RP patients, and describe their retinal phenotype, leukocyte enzymatic activity, and likely pathogenic genotypes. We identified biallelic HGSNAT variants in 17 individuals (15 families) as the likely cause of their RP. None showed any other symptoms of MPSIIIC. All had a mild but significant reduction of HGSNAT enzyme activity in leukocytes. The retinal condition was generally of late‐onset, showing progressive degeneration of a concentric area of paramacular retina, with preservation but reduced electroretinogram responses. Symptoms, electrophysiology, and imaging suggest the rod photoreceptor to be the cell initially compromised. HGSNAT enzymatic testing was useful in resolving diagnostic dilemmas in compatible patients. We identified seven novel sequence variants [p.(Arg239Cys); p.(Ser296Leu); p.(Phe428Cys); p.(Gly248Ala); p.(Gly418Arg), c.1543‐2A>C; c.1708delA], three of which were considered to be retina‐disease‐specific alleles. The most prevalent retina‐disease‐specific allele p.(Ala615Thr) was observed heterozygously or homozygously in 8 and 5 individuals respectively (7 and 4 families). Two siblings in one family, while identical for the HGSNAT locus, but discordant for retinal disease, suggest the influence of trans‐acting genetic or environmental modifying factors.  相似文献   

18.
19.
To identify mutations in the retinoschisin (RS1) gene in families with X-linked retinoschisis (XLRS). Twenty families with XLRS were enrolled in this study. All six coding exons and adjacent intronic regions of RS1 were amplified by polymerase chain reaction (PCR). The nucleotide sequences of the amplicons were determined by Sanger sequencing. Ten hemizygous mutations in RS1 were detected in patients from 14 of the 20 families. Four of the ten mutations were novel, including c:176G>A (p:Cys59Tyr) in exon?3, c:531T>G (p:Tyr177X), c:607C>G (p:Pro203Ala) and c:668G>A (p:Cys223Tyr) in exon?6. These four novel mutations were not present in 176 normal individuals. The remaining six were recurrent mutations, including c:214G>A (p:Glu72Lys), c:304C>T (p:Arg102Trp), c:436G>A (p:Glu146Lys), c:544C>T (p:Arg182Cys), c:599G>A (p:Arg200His) and c:644A>T (p:Glu215Val). Our study expanded the mutation spectrum of RS1 and enriches our understanding of the molecular basis of XLRS.  相似文献   

20.
Deletion of 3p13 has been reported from about 20% of prostate cancers. The clinical significance of this alteration and the tumour suppressor gene(s) driving the deletion remain to be identified. We have mapped the 3p13 deletion locus using SNP array analysis and performed fluorescence in situ hybridization (FISH) analysis to search for associations between 3p13 deletion, prostate cancer phenotype and patient prognosis in a tissue microarray containing more than 3200 prostate cancers. SNP array analysis of 72 prostate cancers revealed a small deletion at 3p13 in 14 (19%) of the tumours, including the putative tumour suppressors FOXP1, RYBP and SHQ1. FISH analysis using FOXP1‐specific probes revealed deletions in 16.5% and translocations in 1.2% of 1828 interpretable cancers. 3p13 deletions were linked to adverse features of prostate cancer, including advanced stage (p < 0.0001), high Gleason grade (p = 0.0125), and early PSA recurrence (p = 0.0015). In addition, 3p13 deletions were linked to ERG+ cancers and to PTEN deletions (p < 0.0001 each). A subset analysis of ERG+ tumours revealed that 3p13 deletions occurred independently from PTEN deletions (p = 0.3126), identifying tumours with 3p13 deletion as a distinct molecular subset of ERG+ cancers. mRNA expression analysis confirmed that all 3p13 genes were down regulated by the deletion. Ectopic over‐expression of FOXP1, RYBP and SHQ1 resulted in decreased colony‐formation capabilities, corroborating a tumour suppressor function for all three genes. In summary, our data show that deletion of 3p13 defines a distinct and aggressive molecular subset of ERG+ prostate cancers, which is possibly driven by inactivation of multiple tumour suppressors. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号