首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study of reading development, children (ages 7-10) and adults (ages 18-32) performed overt single-word reading and aural repetition tasks on high-frequency word stimuli during functional magnetic resonance imaging. Most regions showed similar activity across age groups. These widespread regions of similarity indicate that children and adults use largely overlapping mechanisms when processing high-frequency words. Significant task-related differences included greater activity in occipital cortex for the read task, and greater activity in temporal cortex for the repeat task; activity levels in these regions were similar for adults and children. However, age group differences were found in several posterior regions, including a set of regions implicated in adult reading: the left supramarginal gyrus, the left angular gyrus, and bilateral anterior extrastriate cortex. The angular and supramarginal gyrus regions, hypothesized to play a role in phonology, showed decreased activity in adults relative to children for high-frequency words. The extrastriate regions had significant activity for both the visual read task and auditory repeat task in children, but just for the read task in adults, showing significant task and age interactions. These results are consistent with decreasing reliance on phonological processing, and increasing tuning of visual mechanisms, with age.  相似文献   

2.
Sentence comprehension (SC) studies in typical and impaired readers suggest that reading for meaning involves more extensive brain activation than reading isolated words. Thus far, no reading disability/dyslexia (RD) studies have directly controlled for the word recognition (WR) components of SC tasks, which is central for understanding comprehension processes beyond WR. This experiment compared SC to WR in 29, 9-14 year olds (15 typical and 14 impaired readers). The SC-WR contrast for each group showed activation in left inferior frontal and extrastriate regions, but the RD group showed significantly more activation than Controls in areas associated with linguistic processing (left middle/superior temporal gyri), and attention and response selection (bilateral insula, right cingulate gyrus, right superior frontal gyrus, and right parietal lobe). Further analyses revealed this overactivation was driven by the RD group's response to incongruous sentences. Correlations with out-of-scanner measures showed that better word- and text-level reading fluency was associated with greater left occipitotemporal activation, whereas worse performance on WR, fluency, and comprehension (reading and oral) were associated with greater right hemisphere activation in a variety of areas, including supramarginal and superior temporal gyri. Results provide initial foundations for understanding the neurobiological correlates of higher-level processes associated with reading comprehension.  相似文献   

3.
Real-life moving objects are often detected by multisensory cues. We investigated the cortical activity associated with coherent visual motion perception in the presence of a stationary or moving auditory noise source using functional magnetic resonance imaging. Twelve subjects judged episodes of 5-s random-dot motion containing either no (0%) or abundant (16%) coherent direction information. Auditory noise was presented with the displayed visual motion that was moving in phase, was moving out-of-phase, or was stationary. Subjects judged whether visual coherent motion was present, and if so, whether the auditory noise source was moving in phase, was moving out-of-phase, or was not moving. Performance was greatest for a moving sound source that was in phase with the visual coherent dot motion compared with when it was in antiphase. A random-effects analysis revealed that auditory motion activated extended regions in both cerebral hemispheres in the superior temporal gyrus (STG), with a right-hemispheric preponderance. Combined audiovisual motion led to activation clusters in the STG, the supramarginal gyrus, the superior parietal lobule, and the cerebellum. The size of the activated regions was substantially larger than that evoked by either visual or auditory motion alone. The congruent audiovisual motion evoked the most extensive activation pattern, exhibiting several exclusively activated subregions.  相似文献   

4.
目的采用静息态fMRI基于分数低频振荡幅度(fALFF)方法评估急性酒精暴露后恒河猴脑功能改变。方法分别对7只健康雄性恒河猴于静脉注射酒精前及注射后10、28、46min进行BOLD fMRI序列及3D结构像扫描,采用fALFF算法获得并比较4个时间点fALFF差异的脑区。结果 4个时间点fALFF总体差异显著的脑区为右侧中央后回、右侧岛叶、右侧小脑、左侧海马旁回、双侧额下回、小脑蚓部、右枕叶、楔前叶、左侧缘上回(P均0.05);静脉注射酒精后fALFF值减低的脑区为双侧额上回、右侧额下回、右侧梭状回、右侧角回、双侧颞上回、右枕叶、左侧外侧沟、左侧中央后回、左侧楔状叶、左侧丘脑、左侧岛叶、前扣带回(P均0.05);静脉注射酒精后fALFF值增高的脑区为右侧额下回、右侧颞中回(P均0.05)。结论酒精暴露急性期脑代谢活动发生显著变化,主要涉及默认网络、奖赏及情绪加工系统、视听皮层等。  相似文献   

5.
The computation of speech codes (i.e. phonology) is an important aspect of word reading. Understanding the neural systems and mech- anisms underlying phonological processes provides a foundation for the investigation of language in the brain. We used high-resolution three-dimensional positron emission tomography (PET) to investigate neural systems essential for phonological processes. The burden of neural activities on the computation of speech codes was maximized by three rhyming tasks (rhyming words, pseudowords and words printed in mixed letter cases). Brain activation patterns associated with these tasks were compared with those of two baseline tasks involving visual feature detection. Results suggest strong left lateralized epicenters of neural activity in rhyming irrespective of gender. Word rhyming activated the same brain regions engaged in pseudoword rhyming, suggesting conjoint neural networks for phonological processing of words and pseudowords. However, pseudoword rhyming induced the largest change in cerebral blood flow and activated more voxels in the left posterior prefrontal regions and the left inferior occipital-temporal junction. In addition, pseudoword rhyming activated the left supramarginal gyrus, which was not apparent in word rhyming. These results suggest that rhyming pseudowords requires active participation of extended neural systems and networks not observed for rhyming words. The implications of the results on theories and models of visual word reading and on selective reading dysfunctions after brain lesions are discussed.  相似文献   

6.
Three regions of the macaque inferior parietal lobule and adjacent lateral intraparietal sulcus (IPS) are distinguished by the relative strengths of their connections with the superior colliculus, parahippocampal gyrus, and ventral premotor cortex. It was hypothesized that connectivity information could therefore be used to identify similar areas in the human parietal cortex using diffusion-weighted imaging and probabilistic tractography. Unusually, the subcortical routes of the 3 projections have been reported in the macaque, so it was possible to compare not only the terminations of connections but also their course. The medial IPS had the highest probability of connection with the superior colliculus. The projection pathway resembled that connecting parietal cortex and superior colliculus in the macaque. The posterior angular gyrus and the adjacent superior occipital gyrus had a high probability of connection with the parahippocampal gyrus. The projection pathway resembled the macaque inferior longitudinal fascicle, which connects these areas. The ventral premotor cortex had a high probability of connection with the supramarginal gyrus and anterior IPS. The connection was mediated by the third branch of the superior longitudinal fascicle, which interconnects similar regions in the macaque. Human parietal areas have anatomical connections resembling those of functionally related macaque parietal areas.  相似文献   

7.
Auditory hallucinations are a frequent symptom in schizophrenia. While functional imaging studies have suggested the association of certain patterns of brain activity with sub-syndromes or single symptoms (e.g. positive symptoms such as hallucinations), there has been only limited evidence from structural imaging or post-mortem studies. In this study, we investigated the relation of local brain structural deficits to severity of auditory hallucinations, particularly in perisylvian areas previously reported to be involved in auditory hallucinations. In order to overcome certain limitations of conventional volumetric methods, we used deformation-based morphometry (DBM), a novel automated whole-brain morphometric technique, to assess local gray and white matter deficits in structural magnetic resonance images of 85 schizophrenia patients. We found severity of auditory hallucinations to be significantly correlated (P < 0.001) with volume loss in the left transverse temporal gyrus of Heschl (primary auditory cortex) and left (inferior) supramarginal gyrus, as well as middle/inferior right prefrontal gyri. This demonstrates a pattern of distributed structural abnormalities specific for auditory hallucinations and suggests hallucination-specific alterations in areas of a frontotemporal network for processing auditory information and language.  相似文献   

8.
Thirty volunteers randomly received either mild or deep propofol sedation, to assess its effect on explicit and implicit memory. Blood oxygen level‐dependent functional magnetic resonance during sedation examined brain activation by auditory word stimulus and a process dissociation procedure was performed 4 h after scanning. Explicit memory formation did not occur in either group. Implicit memories were formed during mild but not deep sedation (p = 0.04). Mild propofol sedation inhibited superior temporal gyrus activation (Z value 4.37, voxel 167). Deep propofol sedation inhibited superior temporal gyrus (Z value 4.25, voxel 351), middle temporal gyrus (Z value 4.39, voxel 351) and inferior parietal lobule (Z value 5.06, voxel 239) activation. Propofol only abolishes implicit memory during deep sedation. The superior temporal gyrus is associated with explicit memory processing, while the formation of both implicit and explicit memories is associated with superior and middle temporal gyri and inferior parietal lobule activation.  相似文献   

9.
On the basis of neuropsychological and functional imaging evidence, meaning and grammatical class (particularly the verb-noun distinction) have been proposed as organizational principles of linguistic knowledge in the brain. However, previous studies investigating verb and noun processing have been confounded by the presence of systematic correlations between word meaning and grammatical class. In this positron emission tomography study, we investigated implicit word processing using stimuli that allowed the effects of semantic and grammatical properties to be examined independently, without grammatical-semantic confounds. We found that left hemisphere cortical activation during single-word processing was modulated by word meaning, but not by grammatical class. Motor word processing produced significant activation in left precentral gyrus, whereas sensory word processing produced significant activation in left inferior temporal and inferior frontal regions. In contrast to previous studies, there were no effects of grammatical class in left inferior frontal gyrus (IFG). Instead, we found semantic-based differences within left IFG: anterior, but not posterior, left IFG regions responded preferentially to sensory words. These findings demonstrate that the neural substrates of implicit word processing are determined by semantic rather than grammatical properties and suggest that word comprehension involves the activation of modality-specific representations linked to word meaning.  相似文献   

10.
BACKGROUND: Functional magnetic resonance imaging offers a compelling, new perspective on altered brain function but is sparsely used in studies of anesthetic effect. To examine effects on verbal memory encoding, the authors imaged human brain response to auditory word stimulation using functional magnetic resonance imaging at different concentrations of an agent not previously studied, and tested memory after recovery. METHODS: Six male volunteers were studied breathing 0.0, 2.0, and 1.0% end-tidal sevoflurane (awake, deep, and light states, respectively) via laryngeal mask. In each condition, they heard 15 two-syllable English nouns via closed headphones. Each word was repeated 15 times (1/s), followed by 15 s of rest. Blood oxygenation level-dependent brain activations during blocks of stimulation versus rest were assessed with a 3-T Siemens Trio scanner and a 20-voxel spatial extent threshold. Memory was tested approximately 1.5 h after recovery with an auditory recognition task (chance performance = 33% correct). RESULTS: Scans showed widespread activations (P < 0.005, uncorrected) in the awake state, including bilateral superior temporal, frontal, and parietal cortex, right occipital cortex, bilateral thalamus, striatum, hippocampus, and cerebellum; more limited activations in the light state (bilateral superior temporal gyrus, right thalamus, bilateral parietal cortex, left frontal cortex, and right occipital cortex); and no significant auditory-related activation in the deep state. During recognition testing, subjects correctly selected 77 +/- 12% of words presented while they were awake as "old," versus 32 +/- 15 and 42 +/- 8% (P < 0.01) correct for the light and deep stages, respectively. CONCLUSIONS: Sevoflurane induces dose-dependent suppression of auditory blood oxygenation level-dependent signals, which likely limits the ability of words to be processed during anesthesia and compromises memory.  相似文献   

11.
The processing of single words that varied in their semantic (concrete/abstract word) and syntactic (content/function word) status was investigated under different task demands (semantic/ syntactic task) in an event-related functional magnetic resonance imaging experiment. Task demands to a large degree determined which subparts of the neuronal network supporting word processing were activated. Semantic task demands selectively activated the left pars triangularis of the inferior frontal gyrus (BA 45) and the posterior part of the left middle/superior temporal gyrus (BA 21/22/37). In contrast, syntactic processing requirements led to an increased activation in the inferior tip of the left frontal operculum (BA 44) and the cortex lining the junction of the inferior frontal and inferior precentral sulcus (BA 44/6). Moreover, for these latter areas a word class by concreteness interaction was observed when a syntactic judgement was required. This interaction can be interpreted as a prototypicality effect: non-prototypical members of a word class, i.e. concrete function words and abstract content words, showed a larger activation than prototypical members, i.e. abstract function words and concrete content words. The combined data suggest that the activation pattern underlying word processing is predicted neither by syntactic class nor semantic concreteness but, rather, by task demands focusing either on semantic or syntactic aspects. Thus, our findings that semantic and syntactic aspects of processing are both functionally distinct and involve different subparts of the neuronal network underlying word processing support a domain-specific organization of the language system.  相似文献   

12.
We evaluated the neural substrates of cross-modal binding and divided attention during audio-visual speech integration using functional magnetic resonance imaging. The subjects (n = 17) were exposed to phonemically concordant or discordant auditory and visual speech stimuli. Three different matching tasks were performed: auditory-auditory (AA), visual-visual (VV) and auditory-visual (AV). Subjects were asked whether the prompted pair were congruent or not. We defined the neural substrates for the within-modal matching tasks by VV-AA and AA-VV. We defined the cross-modal area as the intersection of the loci defined by AV-AA and AV-VV. The auditory task activated the bilateral anterior superior temporal gyrus and superior temporal sulcus, the left planum temporale and left lingual gyrus. The visual task activated the bilateral middle and inferior frontal gyrus, right occipito-temporal junction, intraparietal sulcus and left cerebellum. The bilateral dorsal premotor cortex, posterior parietal cortex (including the bilateral superior parietal lobule and the left intraparietal sulcus) and right cerebellum showed more prominent activation during AV compared with AA and VV. Within these areas, the posterior parietal cortex showed more activation during concordant than discordant stimuli, and hence was related to cross-modal binding. Our results indicate a close relationship between cross-modal attentional control and cross-modal binding during speech reading.  相似文献   

13.
Using functional magnetic resonance imaging, we found that when bilinguals named pictures or read words aloud, in their native or nonnative language, activation was higher relative to monolinguals in 5 left hemisphere regions: dorsal precentral gyrus, pars triangularis, pars opercularis, superior temporal gyrus, and planum temporale. We further demonstrate that these areas are sensitive to increasing demands on speech production in monolinguals. This suggests that the advantage of being bilingual comes at the expense of increased work in brain areas that support monolingual word processing. By comparing the effect of bilingualism across a range of tasks, we argue that activation is higher in bilinguals compared with monolinguals because word retrieval is more demanding; articulation of each word is less rehearsed; and speech output needs careful monitoring to avoid errors when competition for word selection occurs between, as well as within, language.  相似文献   

14.
Behavioral studies show that bilinguals are slower and less accurate when performing mental calculation in their nondominant (second; L2) language than in their dominant (first; L1) language. However, little is known about the neural correlates associated with the performance differences observed between bilinguals' 2 languages during arithmetic processing. To address the cortical activation differences between languages, the current study examined task-related and performance-related brain activation during mental addition when problems were presented auditorily in participants' L1 and L2. Eleven Chinese-English bilinguals heard 2-digit addition problems that required exact or approximate calculations. Functional magnetic resonance imaging results showed that auditorily presented multidigit addition in bilinguals activates bilateral inferior parietal and inferior frontal regions in both L1 and L2. Language differences were observed in the form of greater activation for L2 exact addition in the left inferior frontal area. A negative correlation between brain activation and behavioral performance during mental addition in L2 was observed in the left inferior parietal area. Current results provide further evidence for the effects of language-specific experience on arithmetic processing in bilinguals at the cortical level.  相似文献   

15.
Brain mechanisms for reading words and pseudowords: an integrated approach   总被引:5,自引:1,他引:4  
The present study tested two predictions of dual-process models of reading: (i) that the brain structures involved in sublexical phonological analysis and those involved in whole-word phonological access during reading are different; and (ii) that reading of meaningful items, by means of the addressed phonology process, is mediated by different brain structures than reading of meaningless letter strings. We obtained brain activation profiles using Magnetic Source Imaging and, in addition, pronunciation latencies during reading of: (i) exception words (primarily involving addressed phonology and having meaning), (ii) pseudohomophones (requiring assembled phonology and having meaning), and (iii) pseudowords (requiring assembled phonology but having no meaning). Reading of meaningful items entailed a high degree of activation of the left posterior middle temporal gyrus (MTGp) and mesial temporal lobe areas, whereas reading the meaningless pseudowords was associated with much reduced activation of these two regions. Reading of all three types of print resulted in activation of the posterior superior temporal gyrus (STGp), inferior parietal and basal temporal areas. In addition, pronunciation speed of exception words correlated significantly with the onset of activity in MTGp but not STGp, whereas the opposite was true for pseudohomophones and pseudowords. These findings are consistent with the existence of two different brain mechanisms that support phonological processing in word reading: one mechanism that subserves assembled phonology and depends on the posterior part of STGp, and a second mechanism that is responsible for pronouncing words with rare print-to-sound correspondences and does not necessarily involve this region but instead appears to depend on MTGp.  相似文献   

16.
Background: Functional magnetic resonance imaging offers a compelling, new perspective on altered brain function but is sparsely used in studies of anesthetic effect. To examine effects on verbal memory encoding, the authors imaged human brain response to auditory word stimulation using functional magnetic resonance imaging at different concentrations of an agent not previously studied, and tested memory after recovery.

Methods: Six male volunteers were studied breathing 0.0, 2.0, and 1.0% end-tidal sevoflurane (awake, deep, and light states, respectively) via laryngeal mask. In each condition, they heard 15 two-syllable English nouns via closed headphones. Each word was repeated 15 times (1/s), followed by 15 s of rest. Blood oxygenation level-dependent brain activations during blocks of stimulation versus rest were assessed with a 3-T Siemens Trio scanner and a 20-voxel spatial extent threshold. Memory was tested approximately 1.5 h after recovery with an auditory recognition task (chance performance = 33% correct).

Results: Scans showed widespread activations (P < 0.005, uncorrected) in the awake state, including bilateral superior temporal, frontal, and parietal cortex, right occipital cortex, bilateral thalamus, striatum, hippocampus, and cerebellum; more limited activations in the light state (bilateral superior temporal gyrus, right thalamus, bilateral parietal cortex, left frontal cortex, and right occipital cortex); and no significant auditory-related activation in the deep state. During recognition testing, subjects correctly selected 77 +/- 12% of words presented while they were awake as "old," versus 32 +/- 15 and 42 +/- 8% (P < 0.01) correct for the light and deep stages, respectively.  相似文献   


17.
Cranially conjoined twins are rare and pose unique challenges in the preoperative evaluation of cerebral language function. The authors report on their experience in the functional magnetic resonance (fMR) imaging evaluation of adult craniopagus (temporoparietooccipital fusion) to evaluate hemispheric language dominance and the eloquent language areas in the preoperative planning stages. Conventional clinical imaging hardware originally designed for individuals was adapted and tailored for use in the twins. They were assigned a selection of language tasks while undergoing fMR imaging. Significant blood oxygen level-dependent activations were detected in the main language regions in each twin, that is, the inferior frontal gyrus (around the Broca area), the middle and superior temporal lobes (around the Wernicke area) together with the inferior parietal lobe, and the middle and superior frontal gyri. Overall, the right-handed twin was strongly left lateralized for language, whereas the left-handed twin showed more bilateral activation during language tasks. Noninvasive language mapping with the aid of fMR imaging has been demonstrated for the first time in total craniopagus.  相似文献   

18.
BACKGROUND: The extent to which complex auditory stimuli are processed and differentiated during general anesthesia is unknown. The authors used blood oxygenation level-dependent functional magnetic resonance imaging to examine the processing words (10 per period; compared with scrambled words) and nonspeech human vocal sounds (10 per period; compared with environmental sounds) during propofol anesthesia. METHODS: Seven healthy subjects were tested. Propofol was given by a computer-controlled pump to obtain stable plasma concentrations. Data were acquired during awake baseline, sedation (propofol concentration in arterial plasma: 0.64 +/- 0.13 microg/ml; mean +/- SD), general anesthesia (4.62 +/- 0.57 microg/ml), and recovery. Subjects were asked to memorize the words. RESULTS: During all periods including anesthesia, the sounds conditions combined elicited significantly greater activations than silence bilaterally in primary auditory cortices (Heschl gyrus) and adjacent regions within the planum temporale. During sedation and anesthesia, however, the magnitude of the activations was reduced by 40-50% (P < 0.05). Furthermore, anesthesia abolished voice-specific activations seen bilaterally in the superior temporal sulcus during the other periods as well as word-specific activations bilaterally in the Heschl gyrus, planum temporale, and superior temporal gyrus. However, scrambled words paradoxically elicited significantly more activation than normal words bilaterally in planum temporale during anesthesia. Recognition the next day occurred only for words presented during baseline plus recovery and was correlated (P < 0.01) with activity in right and left planum temporale. CONCLUSIONS: The authors conclude that during anesthesia, the primary and association auditory cortices remain responsive to complex auditory stimuli, but in a nonspecific way such that the ability for higher-level analysis is lost.  相似文献   

19.
We hypothesized that areas in the temporal lobe that have been implicated in the phonological processing of spoken words would also be activated during the generation and phonological processing of imagined speech. We tested this hypothesis using functional magnetic resonance imaging during a behaviorally controlled task of metrical stress evaluation. Subjects were presented with bisyllabic words and had to determine the alternation of strong and weak syllables. Thus, they were required to discriminate between weak-initial words and strong-initial words. In one condition, the stimuli were presented auditorily to the subjects (by headphones). In the other condition the stimuli were presented visually on a screen and subjects were asked to imagine hearing the word. Results showed activation of the supplementary motor area, inferior frontal gyrus (Broca's area) and insula in both conditions. In the superior temporal gyrus (STG) and in the superior temporal sulcus (STS) strong activation was observed during the auditory (perceptual) condition. However, a region located in the posterior part of the STS/STG also responded during the imagery condition. No activation of this same region of the STS was observed during a control condition which also involved processing of visually presented words, but which required a semantic decision from the subject. We suggest that processing of metrical stress, with or without auditory input, relies in part on cortical interface systems located in the posterior part of STS/STG. These results corroborate behavioral evidence regarding phonological loop involvement in auditory-verbal imagery.  相似文献   

20.
Determining the relationship between mechanisms involved in action planning and/or execution is critical to understanding the neural bases of skilled behaviors, including tool use. Here we report findings from two fMRI studies of healthy, right-handed adults in which an event-related design was used to distinguish regions involved in planning (i.e. identifying, retrieving and preparing actions associated with a familiar tools' uses) versus executing tool use gestures with the dominant right (experiment 1) and non-dominant left (experiment 2) hands. For either limb, planning tool use actions activates a distributed network in the left cerebral hemisphere consisting of: (i) posterior superior temporal sulcus, along with proximal regions of the middle and superior temporal gyri; (ii) inferior frontal and ventral premotor cortices; (iii) two distinct parietal areas, one located in the anterior supramarginal gyrus (SMG) and another in posterior SMG and angular gyrus; and (iv) dorsolateral prefrontal cortex (DLFPC). With the exception of left DLFPC, adjacent and partially overlapping sub-regions of left parietal, frontal and temporal cortex are also engaged during action execution. We suggest that this left lateralized network constitutes a neural substrate for the interaction of semantic and motoric representations upon which meaningful skills depend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号