首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions.  相似文献   

2.
Selenium (Se) is a growing problem of global concern. Se can cause adverse effects on reproductive systems, which have been linked to declines in animal populations. The soil nematode Caenorhabditis elegans (C. elegans) is a ubiquitous soil organism that is increasingly utilized as a model organism in aquatic and soil toxicology. In the present study, the experimental data for individual body length, survival rate, brood size, and hatching rate were used to evaluate the possible effects of selenite [Se(IV)] on C. elegans. A stage-classified matrix model was applied to the experimental data to provide information on the population dynamics of C. elegans and to assess the Se(IV)-affected asymptotic population growth rate. Estimates of the survival probability showed significant decreases in survival at all stages when C. elegans was exposed to Se(IV). The growth probability of C. elegans in the L1 stage showed the most significant decline, from 0.11 h?1 (for the control) to 0.04 h?1 [for exposure to 3 mM Se(IV)]. These results showed that Se(IV) has a profound impact on C. elegans population dynamics. The asymptotic population growth rate (λ) was found to range from 1.00 to 0.64 h?1 for increasing Se(IV) concentrations, implying a potential risk of population decrease for C. elegans exposure to a Se(IV)-contaminated environment. Our study shows how a mechanistic view based on the Se(IV) effects on the soil nematode C. elegans can promote a life cycle toxicity assessment. An important implication of this analysis is that mathematical models can be used to produce a population stage structure, to give clarity to the analysis of the key population-level endpoint (the asymptotic population growth rate) of population dynamics, and to evaluate the influences for the response of other species to environmental Se. These models sequentially provide candidate environmental criteria for the evaluation of the population impact of Se.  相似文献   

3.
The use of pesticides is ubiquitous worldwide, and these chemicals exert adverse effects on both target and nontarget species. Understanding the modes of action of pesticides, as well as quantifying exposure concentration and duration, is an important goal of clinicians and environmental health scientists. Some chemical exposures result in adverse effects on the nervous system. The nematode Caenorhabditis elegans (C. elegans) is a model lab organism well established for studying neurotoxicity, since the components of its nervous system are mapped and known, and most of its neurotransmitters correspond to human homologs. This review encompasses published studies in which C. elegans nematodes were exposed to pesticides with known neurotoxic actions. Endpoints measured include changes in locomotion, feeding behavior, brood size, growth, life span, and cell death. From data presented, evidence indicates that C. elegans can serve a role in assessing the effects of neurotoxic pesticides at the sublethal cellular level, thereby advancing our understanding of the mechanisms underlying toxicity induced by these chemicals. A proposed toxicity testing scheme for water-soluble chemicals is also included.  相似文献   

4.
The rising prevalence of methylmercury (MeHg) in seafood and in the global environment provides an impetus for delineating the mechanism of the toxicity of MeHg. Deleterious effects of MeHg have been widely observed in humans and in other mammals, the most striking of which occur in the nervous system. Here we test the model organism, Caenorhabditis elegans (C. elegans), for MeHg toxicity. The simple, well-defined anatomy of the C. elegans nervous system and its ready visualization with green fluorescent protein (GFP) markers facilitated our study of the effects of methylmercuric chloride (MeHgCl) on neural development. Although MeHgCl was lethal to C. elegans, induced a developmental delay, and decreased pharyngeal pumping, other traits including lifespan, brood size, swimming rate, and nervous system morphology were not obviously perturbed in animals that survived MeHgCl exposure. Despite the limited effects of MeHgCl on C. elegans development and behavior, intracellular mercury (Hg) concentrations (≤ 3 ng Hg/mg protein) in MeHgCl-treated nematodes approached levels that are highly toxic to mammals. If MeHgCl reaches these concentrations throughout the animal, this finding indicates that C. elegans cells, particularly neurons, may be less sensitive to MeHgCl toxicity than mammalian cells. We propose, therefore, that C. elegans should be a useful model for discovering intrinsic mechanisms that confer resistance to MeHgCl exposure.  相似文献   

5.
Pesticides taken up by plants from the soil or interstitial (pore) water can cascade to higher trophic levels, which are expected to be more affected due to cumulative bottom-up effects. Knowledge about the impact of indirect exposure to pesticides on non-target terrestrial trophic chains, however, is still lacking. Therefore, we examined the direct and indirect effects of three concentrations of the herbicide 2,6-dichlorobenzonitrile (DCBN) and an insecticide with a similar molecular structure (1,4-dichlorobenzene, DCB) on the fitness traits of a tritrophic system: the wheat plant Triticum aestivum, the aphid Sitobion avenae and its specialist parasitoid Aphidius rhopalosiphi. To mimic exposure via interstitial water the toxicants were added to the growth medium of the plant. Passive dosing between the medium and a silicon layer was used to achieve constant exposure of the poorly soluble pesticides. Wheat plants exposed to both pesticides grew smaller and had reduced biomasses. Negative effects on the reproductive rate, biomass and the number of aphids were only observable at the highest concentration of DCBN. Overall parasitism rate decreased when exposed to both pesticides and parasitoid attack rates decreased at lower concentrations of DCBN and at the highest DCB concentration. The parasitoid sex ratio was extremely male-biased in the presence of DCBN. Our results demonstrate that pesticides can alter the performance of higher trophic levels by sublethal effects, through a bypass of the second trophic level. In addition, the novel test system used was suitable for detecting such carryover effects on non-target organisms.  相似文献   

6.
2,4,6-trinitrotoluene (TNT) as an energetic compound widely used in military applications has aroused great concerns in recent years due to its large-scale contamination in soil and water; however, its toxicity is still largely unknown. In this study, we investigated the reproductive toxicity and the transgenerational effects of TNT on Caenorhabditis elegans (C. elegans). Our data showed that exposure to TNT at concentrations ranging from 10 to 100 ng/mL resulted in decreasing the lifespan, brood size, number of oocytes and eggs in uterus, while increasing the number of germ cell apoptosis in C. elegans. The apoptotic effects of TNT were blocked in mutants of cep-1 (w40), egl-1 (n487), and hus-1 (op241), indicating conserved genotoxic response genes was involved in mediating TNT-induced germ cell apoptosis. Parental exposure to TNT significantly increased the germ cell apoptosis from P0 to F2 generation, but the toxicity faded away in F3 and F4 generations. Furthermore, TNT was rapidly metabolized in P0, and the accumulation of 4-aminodinitrotoluene (4-ADNT), the main metabolite of TNT in C. elegans, showed a significant decrease from P0 to F1 and a slow decrease in the subsequent generations. Our results demonstrated that ingested TNT can cause severe transgenerational reproductive toxicity and be rapidly converted to 4-ADNT in the nematodes. These data provided basis for future studies on the effects of energetic compounds across generations.  相似文献   

7.
Environmental contamination by heavy metals (HMs) has impelled searching for stabilization strategies, where the use of zero-valent iron nanoparticles (nZVI) is considered a promising option. We have evaluated the combined effect of Cu(II)-Cr(VI) on two Caenorhabditis elegans strains (N2 and RB1072 sod-2 mutant) in aqueous solutions and in a standard soil, prior and after treatment with nZVI (5% w/w). The results showed that HMs aqueous solutions had an intense toxic effect on both strains. Production of reactive oxygen species and enhanced expression of the heat shock protein Hsp-16.2 was observed, indicating increased HM-mediated oxidative stress. Toxic effects of HM-polluted soil on worms were higher for sod-2 mutant than for N2 strain. However, nZVI treatment significantly diminished all these effects. Our findings highlighted C. elegans as a sensitive indicator for HMs pollution and its usefulness to assess the efficiency of the nanoremediation strategy to decrease the toxicity of Cu(II)-Cr(VI) polluted environments.  相似文献   

8.
Research has demonstrated the toxic effects of methylmercury (MeHg), yet molecular mechanisms underlying its toxicity are not completely understood. Caenorhabditis elegans (C. elegans) offers a unique biological model to explore mechanisms of MeHg toxicity given many advantages associated with its ease of use and genetic power. Since our previous work indicated neurotoxic resistance of C. elegans to MeHg, the present study was designed to examine molecular mechanisms associated with this resistance. We hypothesized MeHg would induce expression of gst, hsp or mtl in vivo since glutathione (GSH), heat shock proteins (HSPs), and metallothioneins (MTs) have shown involvement in MeHg toxicity. Our studies demonstrated a modest, but significant increase in fluorescence in gst-4::GFP and mtl-1::GFP strains at an acute, low L1 MeHg exposure, whereas chronic L4 MeHg exposure induced expression of gst-4::GFP and hsp-4::GFP. Knockout gst-4 animals showed no alterations in lethality sensitivity compared to wildtype animals whereas mtl knockouts displayed increased sensitivity to MeHg exposure. GSH levels were increased by acute MeHg treatment and depleted with chronic exposure. We also demonstrate that MeHg induces hormesis, a phenotype whereby a sublethal exposure to MeHg rendered C. elegans resistant to subsequent exposure to the organometal. The involvement of gst-4, hsp-4, mtl-1, and mtl-2 in hormesis was examined. An increase in gst-4::GFP expression after a low-dose acute exposure to MeHg indicated that gst-4 may be involved in this response. Our results implicate GSH, HSPs, and MTs in protecting C. elegans from MeHg toxicity and show a potential role of gst-4 in MeHg-induced hormesis.  相似文献   

9.
Adaptive response to neurotoxicity on locomotion behavior by severe metal exposure was investigated in Caenorhabditis elegans. Exposure to 2.5 μM of metals induced a moderate but significant reduction of locomotion behavior and induction of hsp-16.2::gfp expression. After pre-exposure to 2.5 μM of metals, the reduced locomotion behavior induced by subsequent 50 and 100 μM of metal exposure were significantly prevented, and the induction of hsp-16.2::gfp expression caused by subsequent 50 and 100 μM of metal exposure were significantly suppressed. In contrast, after pre-exposure to 50 μM examined metals, the reduced locomotion behavior induced by subsequent 50 and 100 μM metal exposure were further decreased, and the noticeable induction of hsp-16.2::gfp expression caused by subsequent severe metal exposure were further enhanced. Therefore, pre-treatment with mild metal exposure can activate the adaptive response to neurotoxicity on locomotion behavior induced by subsequent severe metal exposure in nematodes.  相似文献   

10.

Aim:

To develop a C. elegans model of amyotrophic lateral sclerosis (ALS) and to evaluate the role of autophagy in the disease.

Methods:

Stable transgenic worms expressing the G93A mutant form of Cu,Zn-superoxide dismutase (SOD1) in GABAergic motor neurons were generated. Axon guidance and protein aggregation in the motor neurons were observed with fluorescence microscopy. A paralysis assay was performed to evaluate the motor function of the transgenic worms. The expression of autophagic genes in daf-2(e1370) mutants was analyzed using real-time PCR. The reporter GFP::LGG-1 was used to verify whether autophagy was induced in motor neurons.

Results:

Expression of G93A SOD1 in motor neurons caused age-dependent motor defects accompanied by significant SOD1 aggregation and axon guidance failure. After 12 d, over 80% of the G93A worms became paralyzed, whereas less than 10% of the controls showed a paralytic phenotype. In the daf-2(e1370) mutants of C. elegans, the levels of autophagic genes bec-1, atg-7, lgg-1, and atg-18 were upregulated by approximately 1.5-fold, the level of unc-51 increased by approximately fourfold, and autophagosomes in motor neurons was markedly increased. Crossing the daf-2(e1370) mutation into the G93A SOD1 mutant worms significantly ameliorated the motor defects, SOD1 aggregation, and axon guidance failure.

Conclusion:

G93A SOD1 expression in motor neurons of C. elegans results in characteristic alterations of ALS. Increased autophagy protects C. elegans motor neurons against the toxicity of mutant SOD1.  相似文献   

11.
A total of 144 kg of potato tuber samples, representing two different types of farming production [e.g., conventional (C) and organic (O)], were collected from different locations in Giza governorate (Egypt), and subjected to pesticide residue and heavy metal analyses. Residues of some organochlorine pesticides (OCPs), such as HCB and heptachlor as well as some organophosphorus pesticides (OPPs), such as methamidophos, thiometon, profenofos, phorate and pirimiphos-methyl were found in a number of samples at concentration levels exceeding their MRLs. The majority of the analyzed samples contained detectable concentrations of Zn, Cu, Mn, Fe, Cd, Pb, Cr, Ni and Co. Specifically, Pb and Fe were found in a number of samples at concentrations exceeding their MLs. Contamination among the two types of potatoes varied from a season to another and contamination of C potatoes was nearly 2 times that of O potatoes either by pesticides or heavy metals. Estimation of dietary intake of pesticides and heavy metals by potatoes revealed that only phorate residues either in conventional or organic potatoes may pose risks to human health. None of the studied heavy metals showed to cause dietary intake risks to human health. The study shed light to the problem of multi toxicants in potatoes.  相似文献   

12.
River water quality is strongly influenced by their sediments and their associated pollutants. To assess the toxic potential of sediments, sediment toxicity tests require reliable control sediments, potentially including formulated control sediments as one major option. Although some standardization has been carried out, one critical issue still remains the quality of sediment organic matter (SOM). Organic carbon not only binds hydrophobic contaminants, but may be a source of mild toxicity, even if the SOM is essentially uncontaminated. We tested two different sources of organic carbon and the mixture of both (Sphagnum peat (P) and one commercial humic substances preparation–HuminFeed®, HF) in terms of life trait variables and expression profiles of selected life performance and stress genes of the nematode Caenorhabditis elegans. In synchronous cultures, gene expression profiling was done after 6 and 48 h, respectively. The uncontaminated Sphagnum P reduced growth, but increased numbers of offspring, whereas HF did not significantly alter life trait variables. The 6 h expression profile showed most of the studied stress genes repressed, except for slight to strong induction in cyp-35B1 (all exposures), gst-38 (only mixture), and small hsp-16 genes (all exposures). After 48 h, the expression of almost all studied genes increased, particularly genes coding for antioxidative defense, multiple xenobiotic resistance, vitellogenin-like proteins, and genes regulating lifespan. Overall, even essentially uncontaminated SOM may induce several modes of action on the molecular level in C. elegans which may lead to false results if testing synthetic xenobiotics. This contribution is a plea for a strict standardization of the SOM quality in formulated sediments and to check for corresponding effects in other model sediment organisms, especially if using molecular toxicity endpoints.  相似文献   

13.
The occurrence and distribution of highly hydrophobic organochlorine pesticide (OCP) in vegetables cultivated under organic and conventional conditions were evaluated. OCP residues in aerial and subterranean tissues of two varieties of lettuce and chard together with the soil where they grown were GC-ECD analyzed. SigmaDDTs>SigmaChlordane>SigmaHeptachlor>SigmaAldrins was the OCP distribution pattern in all samples. Conventional soils had higher OCP residues than organic one, even though levels were bellow 5 ng/g dry weight, indicative of low polluted agricultural environments. Vegetables accumulated OCP efficiently with residue levels 4x to 45x fold greater than those of soils. OCP tissue-dependent distribution was found to be upon the physicochemical characteristics of the pollutants (Koa and Kow). Lettuce showed a high variability in pesticide uptake regarding varieties and tillage practices. In spite of analyzed pesticides are banned or restricted, edible tissues of vegetables from both farms showed detectable residues of these compounds even though at levels below the allowed by the Codex Alimentarius. Thus, environmental conditions like presence or absence of trees, hedgerows or nearby to conventional farms influence on OCP occurrence and levels in vegetables organically grown.  相似文献   

14.
Obtaining ecotoxicological data on pesticides in tropical regions is imperative for performing more realistic risk analysis, and avoidance tests have been proposed as a useful, fast and cost-effective tool. Therefore, the present study aimed to evaluate the avoidance behavior of Eisenia andrei to a formulated product, Vertimec® 18 EC (a.i abamectin), in tests performed on a reference tropical artificial soil (TAS), to derive ecotoxicological data on tropical conditions, and a natural soil (NS), simulating crop field conditions. In TAS tests an adaptation of the substrate recommended by OECD and ISO protocols was used, with residues of coconut fiber as a source of organic matter. Concentrations of the pesticide on TAS test ranged from 0 to 7 mg abamectin/kg (dry weight—d.w.). In NS tests, earthworms were exposed to samples of soils sprayed in situ with: 0.9 L of Vertimec® 18 EC/ha (RD); twice as much this dosage (2RD); and distilled water (Control), respectively, and to 2RD: control dilutions (12.5, 25, 50, 75%). All tests were performed under 25 ± 2°C, to simulate tropical conditions, and a 12hL:12hD photoperiod. The organisms avoided contaminated TAS for an EC50,48h = 3.918 mg/kg soil d.w., LOEC = 1.75 mg/kg soil d.w. and NOEC = 0.85 mg/kg soil d.w. No significant avoidance response occurred for any NS test. Abamectin concentrations in NS were rather lower than EC50, 48h and LOEC determined in TAS tests. The results obtained contribute to overcome a lack of ecotoxicological data on pesticides under tropical conditions, but more tests with different soil invertebrates are needed to improve pesticides risk analysis.  相似文献   

15.
The use of many psychotropic drugs (PDs) is associated with increased caloric intake, significant weight gain, and metabolic disorders. The nematode Caenorhabditis elegans (C. elegans) has been used to study the effects of PDs on food intake. However, little is known about PDs effects on the body fat of C. elegans. In C. elegans, feeding behavior and fat metabolism are regulated through independent mechanisms. This study aims to evaluate the body fat and food intake of C. elegans in response to treatment olanzapine and fluoxetine. Here we report that, with careful consideration to the dosage used, administration of fluoxetine and olanzapine increases body fat and food intake in C. elegans.  相似文献   

16.
17.
Determining pollutant concentrations in the tissues of experimental test organisms is necessary for understanding uptake and excretion mechanisms of toxicants. Using small organisms can make the determination of organism biomass inaccurate. We here propose the use of selected tissue element contents as a proxy for tissue biomass. Forty different elements were determined in tissues of the two worm species Enchytraeus crypticus and Caenorhabditis elegans derived from cultures exposed to combinations of varying temperatures and sublethal concentrations of Cu and Cd. Three criteria were used to select good biomass indicators: The element concentration must (1) be present in concentrations above the limit of quantification of the analytical method, (2) must be stable and (3) must not be affected by the treatment. If the organisms are believed to have significant amounts of soil in their gut, the element must also be present at higher concentrations in the tissue compared to the soil. The three elements K, Mg and P all lived up to the first three criteria for both worm species, showing correlation coefficients between element content and tissue biomass of 0.97, 0.96 and 0.97 (n = 25) and 0.997, 0.998 and 0.992 (n = 10) for K, Mg and P in the E. crypticus and C. elegans, respectively. Only P would be an appropriate biomass indicator for organisms with a soil gut uptake assuming the tissue concentrations in soil eating organisms are similar to those measured in the present study. Using Mg as a biomass indicator on a verification dataset of Cu and Cd uptake in E. crypticus, compared to giving Cu and Cd content per individual organism, decreased the coefficient of variation from 31 ± 21 to 21 ± 17 % and from 34 ± 22 to 9.3 ± 6.4 % for tissue Cu and Cd, respectively. We therefore conclude that the use of an element as a biomass indicator can reduce tissue concentration variability.  相似文献   

18.
The heavy metal lead‐induced oxidative stress on Caenorhabditis elegans was examined at the level of catalase activity and on innate immunity. Stress‐induced C. elegans was exposed to Pseudomonas aeruginosaPA14::GFP for monitoring the impact at the physiological level. Role of catalase on the innate‐immune responses of C. elegans was examined. PA14::GFP did not colonize lead pretreated C. elegans intestinal cells significantly compared to untreated controls, indicating stress‐mediated upregulation of host‐immunity. Semiquantitative PCR analyses of lead‐exposed and PA14‐infected C. elegans mRNA showed significant upregulation of candidate antimicrobial enzyme gene lys‐7 after 24 h of exposures. Upregulation of metallothionein(mtl‐1) when compared to mtl‐2 in response to the lead suggesting active detoxification of metal by mtl‐1. Exogenously provided Catalase (0.4–3.2 U) induced significant upregulation of lys‐7 compared to controls. lys‐7 upregulation during lead exposure was reconfirmed by real‐time PCR. Confocal microscopy and fluorescence spectrophotometer analyses indicated that the lead pretreated C. elegans was significantly less colonized by PA14::GFP when compared to controls. Relative expression of ctl‐1 and ctl‐2 mRNA was measured using real time PCR and found to be regulated during lead exposures. Over all, the upregulation of antimicrobial gene expression appears to be correlated with the level of catalase during stress emphasizing their key roles in defensive mechanism(s). These results provide a link between the stress and related immune responses which can be explored in higher systems. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2013.  相似文献   

19.
A pedological characterisation of seven sites along a transect from a smelter at Avonmouth, UK, was undertaken. Site locations comprised a mixture of both grassland (5 sites) and oak tree dominated (2 sites) areas. Geographically, sites were either low lying or on adjacent elevated ground. Across the transect, a severe gradient of metal concentrations was found with highest values for organic soil horizons from close to the factory. Comparisons with quality standards indicate that these metal levels are likely to be a major ecological stressor. In addition to the strong metal gradient, a number of other between site differences were also observed. These were firstly water regime, which at the low lying sites close to the smelter showed influence by both, groundwater and stagnant water, while at more distant sites indicated susceptibility to stagnant water only, and secondly soil pH, which showed large between site variations, although no consistent trend along the transect. Humus forms at sites more than 1.5 km from the smelter were characteristic for the soil conditions and land-use present, while those at sites within 1.5 km showed disturbed profiles. Indeed, the humus types present at these locations suggest that the activity of soil invertebrates may be inhibited. This is almost certainly due primarily to the high concentrations of metals that were present in mineral soil and organic horizons at the sites. However, the potential influences of water regime and pH could also be relevant factors influencing the results of any further studies conducted at these study sites.  相似文献   

20.
Hepatic steatosis is recognized as an independent risk factor for the development of cardiovascular disease. While obesity and type 2 diabetes are well‐established risk factors in the development of hepatic steatosis, recent studies have revealed exposure to mixtures of persistent organic pollutants (POPs), which are environmental contaminants in various fatty foods, can promote steatosis. Thus, the present study was designed to determine if exposure to a defined mixture of prevalent polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides or their metabolites promote hepatic steatosis in a genetically induced model of type 2 diabetes, the leptin‐deficient ob/ob mouse. Male C57BL/6J wild type (WT) or ob/ob mice were administered an environmentally relevant mixture of PCBs and OCs for 7 weeks via oral gavage. Exposure to POPs did not significantly alter fasting serum glucose or insulin levels. However, POPs exposure significantly increased hepatic triglyceride content in ob/ob animals, while decreasing serum triglyceride levels. This POPs‐mediated increase in hepatic triglyceride content did not appear to be associated with significantly increased inflammation in either the liver or adipose. Exposure to POPs significantly induced the expression of cytochrome P450 3a11 in WT animals, yet the expression of this cytochrome was significantly downregulated in ob/ob animals regardless of POPs exposure. Taken together, the present data indicate exposure to an environmentally relevant mixture of both PCBs and OC pesticides in ob/ob mice promotes hepatic steatosis while decreasing hypertriglyceridemia, which demonstrates exposure to a defined mixture of POPs alters systemic lipid metabolism in a genetically induced model of obesity and type 2 diabetes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1399–1411, 2017.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号