首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of conflicting results in the literature regarding the contribution of cytochrome P-450 to hydrogen peroxide production and formation of hydroxyl radicals in the microsomal electron transport chain, experiments were undertaken to evaluate this problem using reconstituted micellar and membranous systems containing NADPH-cytochrome P-450 reductase and cytochrome P-450 LM2 purified from rabbit liver. It was found that P-450 LM2 increased the rate of NADPH consumption in the vesicular system, reconstituted with microsomal phospholipids, much more than in the micellar system, based on dilauroylphosphatidylcholine (DLPC) under otherwise similar conditions. At small amounts of Fe(III)-EDTA (1-5 microM), the enhanced oxidase activity was manifested in a much higher dependency on P-450 LM2 for the production of hydroxyl radicals, as determined by the oxidation of dimethylsulphoxide (Me2SO) or 2-keto-4-thiomethylbutyric acid (KMBA), in the vesicular than in the micellar system. In the presence of high amounts of Fe(III)-EDTA (10-50 microM), the relative increase due to P-450 LM2 was less pronounced in both types of reconstituted systems, although the increase in absolute terms was about the same as at small Fe(III)-EDTA concentrations. The data indicate that in the presence of no or small amounts of chelated iron in negatively-charged membranous systems, most of the hydrogen peroxide and superoxide anions necessary for generation of hydroxyl radicals, are produced by cytochrome P-450 LM2. This appears to be due to a higher affinity between the reductase and P-450 LM2 in this system. In reconstituted micellar systems or in the presence of high amounts of chelated iron, "uncoupling" at the level of the reductase appears to take place, with a resulting production of hydroxyl radicals and other forms of reactive oxygen species.  相似文献   

2.
The antioxidant properties of Thonningianin A (Th A), an ellagitannin, isolated from the methanolic extract of the African medicinal herb, Thonningia sanguinea were studied using the NADPH and Fe2+/ascorbate-induced lipid peroxidation (LPO), electron spin resonance spectrometer and the deoxyribose assay. Th A at 10 microM inhibited both the NADPH and Fe2+/ascorbate-induced LPO in rat liver microsomes by 60% without inhibitory effects on cytochrome P450 activity. Th A was similar to the synthetic antioxidant, tannic acid, as an inhibitor of both the NADPH and Fe2+/ascorbate-induced LPO but potent than gallic acid, vitamin C and vitamin E. While Th A poorly scavenged the hydroxyl radical generated by the Fenton reaction it dose-dependently scavenged 1,1-diphenyl-2-picrylhydrazyl, superoxide anion and peroxyl radicals with IC50 of 7.5, 10 and 30 microM, respectively. Furthermore, Th A showed inhibitory effects on the activity of xanthine oxidase with an IC50 of 30 microM. In the deoxyribose assay both T. sanguinea and its methanolic component Th A showed only site-specific (Fe3+ + H2O2) but not non-site-specific (Fe3+ + EDTA + H2O2) hydroxyl radical scavenging suggesting chelating ability for iron ions. Spectroscopic studies showed that Th A enhanced absorbance in the visible region in the presence of Fe2+ ions. These results indicate that the antioxidant properties of Th A involve radical scavenging, anti-superoxide formation and metal chelation.  相似文献   

3.
A concentration-dependent increase in the generation of the superoxide anion radical (O-2), was observed during the incubation of benzidine (0.1-5 mM), but not of the structurally related compounds 4-aminobiphenyl, 2-aminobiphenyl or 4-fluoro-4'-aminobiphenyl, with NADPH-supplemented rat liver microsomes. This increase was partially inhibited by carbon monoxide and catalase but unaffected by 4-aminobiphenyl, a substrate of the cytochrome P-450 system. Microsomes from benzo(a)pyrene-treated, but not microsomes from phenobarbitone-pretreated rats, were responsible for a larger benzidine-dependent effect compared to microsomes from control animals. In contrast to the above observations, benzidine decreased the formation of hydrogen peroxide by NADPH-supplemented microsomal preparations from untreated rats. These results indicate that free radicals of oxygen are generated during the metabolism of some arylamines.  相似文献   

4.
The production of hydroxyl radicals in rat myocardial sarcosomes treated with adriamycin was demonstrated by the electron spin resonance technique of spin trapping. Using the spin trapping agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the formation of a hydroxyl radical spin adduct was observed in adriamycin-treated rat heart sarcosomes with NADPH as co-factor. Oxygen, NADPH and sarcosomal protein were absolute requirements for hydroxyl radical production. Hydroxyl radical spin adduct formation was not inhibited by the metal ion chelators diethylenetriaminepenta-acetic acid (DETAPAC) or desferrioxamine, or by addition of superoxide dismutase but could be inhibited by addition of catalase and high concentration of the hydroxyl radical scavengers mannitol and N-acetylcysteine. Hydroxyl radical production in adriamycin-treated rat myocardial sarcosomes appears to arise from the reductive metabolism of adriamycin by an NADPH-dependent quinone reductase--NADPH: cytochrome P450 reductase; the reduced quinone (semiquinone) reduces oxygen to hydrogen peroxide, probably via superoxide, although this was not detected. The hydrogen peroxide appears to react directly with adriamycin semiquinone, although involvement of traces of iron in a Fenton type of reaction cannot be excluded. From the observations it is suggested that adriamycin-induced cardiotoxicity is an oxidative pathology arising from intracellular generation of relatively high levels of hydroxyl radicals.  相似文献   

5.
Antioxidant and pro-oxidant effects of 14 naturally occurring polyphenols (PP) on rat liver microsomal lipid peroxidation (LP) and hydroxyl radical (*OH) production were studied in NADPH-dependent, 50 microM Fe(2+)-500 microM ascorbate (Fe-AA) or 50 microM Fe(2+) system, respectively. LP determined by the thiobarbituric acid method was inhibited in the NADPH system by flavonols and trans-resveratrol that were more effective than other flavonoids and derivatives of benzoic and cinnamic acid and were mostly more efficient than in the Fe-AA system. Inhibition of LP in the Fe system was higher by one order of magnitude than in the Fe-AA system. *OH production in the NADPH system, measured by formaldehyde production, was decreased by myricetin, fisetin and quercetin, but increased by kaempferol, morin and trans-resveratrol, indicating that z.rad;OH played a minor role in LP, which all of these PP inhibited. None of these PP at up to 40 microM concentration quenched *OH in the Fe-AA system. All tested PP, except trans-resveratrol and gentisic acid, spectrally interacted with Fe(2+) or Fe(3+), indicating formation of complexes or oxidation of PP. In contrast to the NADPH system we found no correlation between Fe(2+) chelation and inhibition of Fe-AA- or Fe-dependent LP indicating that iron chelation did not play a significant role in the two latter systems. It is concluded that the inhibition of LP by PP was apparently due to their hydrogen donating properties rather than chelation of iron.  相似文献   

6.
Phosphonoformic acid (foscarnet) is an antiviral agent that is used to treat severe cytomegalovirus infections in AIDS patients. We demonstrate by using the ferrous iron indicator Ferrozine and ascorbic acid (vitamin C) that foscarnet can chelate ferric iron and form a redox-active iron complex. By using the hydroxyl radical indicator coumarin-3-carboxylic acid we found that the foscarnet-Fe3 complex formed can readily catalyze hydroxyl radical (.OH) generation by the Fenton reaction: (Fe2+ + H2O2-4Fe3+ + .OH + -OH) if hydrogen peroxide and ascorbic acid are present. Hydroxylation of coumarin-3-carboxylic acid could be blocked by addition of known hydroxyl radical scavengers such as mannitol, sucrose, glucose and dimethyl sulfoxide. Moreover, by using a DNA nicking assay, we found that foscarnet catalyzed hydroxyl radicals can induce single strand brakes in DNA. The potency of the hydroxyl radicals formed to induce damage could also be demonstrated in a phosphate-free buffer where the hydroxyl radicals formed attacked and liberated phosphate from the foscarnet molecule. Our results indicate that foscarnet catalyzed hydroxyl radical formation might take place during conditions where a peroxide generating system(s), vitamin C and transitions metals are present.  相似文献   

7.
The use of self‐medication, which includes dietary supplements and over‐the‐counter drugs, is still on the rise, while safety issues are not well addressed yet. This especially holds for combinations. For example, iron supplements and magnesium peroxide both produce adverse effects via the formation of reactive oxygen species (ROS). This prompted us to investigate the effect of the combination of three different iron supplements with magnesium peroxide on ROS formation. Hydroxyl radical formation by the three iron supplements either combined with magnesium peroxide or alone was determined by performing a deoxyribose assay. Free iron content of iron supplements was determined using ferrozine assay. To determine hydrogen peroxide formation by magnesium peroxide, a ferrous thiocyanate assay was performed. Finally, electron spin resonance spectroscopy (ESR) was performed to confirm the formation of hydroxyl radicals. Our results show that magnesium peroxide induces the formation of hydrogen peroxide. All three iron supplements induced the formation of the extremely reactive hydroxyl radical, although the amount of radicals formed by the different supplements differed. It was shown that combining iron supplements with magnesium peroxide increases radical formation. The formation of hydroxyl radicals after the combination was confirmed with ESR. All three iron supplements contained labile iron and induced the formation of hydroxyl radicals. Additionally, magnesium peroxide in water yields hydrogen peroxide, which is converted into hydroxyl radicals by iron. Hence, iron supplements and magnesium peroxide is a hazardous combination and exemplifies that more attention should be given to combinations of products used in self‐medication.  相似文献   

8.
In the present study, we examined the effects of treating guinea pigs with -naphthoflavone (BNF) on aflatoxin B1 (AFB1) metabolism by microsomal cytochrome P450 monooxygenase (P450) and prostaglandin H synthase (PHS) in liver, lung and kidney tissues. After BNF treatment, microsomal 7-ethoxyresorufin 0-deethylase activity was induced 13-, 25- and 11-fold in lung, kidney and liver, respectively, confirming that the BNF treatment protocol was effective at inducing monooxygenase activity. Treatment of guinea pigs with BNF did not change [3H]AFB1-DNA binding catalyzed by microsomal PHS or P450 in lung, kidney or liver. In contrast, AFM1 formation by P450 was significantly increased in microsomes from all three organs. The data indicate that BNF-inducible P450 isozymes of the P4501A class are responsible for the biotransformation of AFB1 to non-toxic metabolites. Guinea pig kidney microsomes could also catalyze NADPH-dependent formation of aflatoxicol (AFL), a metabolite usually produced by a cytosolic steroid dehydrogenase. Renal microsomal AFL formation was not altered by prior BNF treatment. The results in the present study suggest that BNF may alter the bioactivation of AFB1 in guinea pig tissues.by inducing P450 activity, leading to the formation of less reactive metabolite.  相似文献   

9.
Sterigmatocystin (Stg), a major secondary metabolite of Aspergillus versicolor and A. nidulans, is the precursor of aflatoxin B1. In this study, male albino rats were treated with Stg-contaminated diet for 30 days, resulting in reduced levels of glutathione, ascorbic acid, and alpha-tocopherol. The activity of catalase in liver was reduced, whereas an increase in the activities of superoxide dismutase and glutathione peroxidase was observed. The levels of cytochrome P450, cytochrome b5, cytochrome b5 reductase, cytochrome c reductase, hydroxyl radical, and hydrogen peroxide formation significantly increased in the Stg- treated rat liver microsomes. Hepatic parenchymal cell injury, necrosis, and Kupffer cells proliferation were noticed in histological sections of liver from animals treated with Stg. Overall results suggest that generation of free radicals imposes depletion of antioxidants. This led to enhanced lipid peroxidation. The observed elevation of hepatic thiobarbituric acid reactive substances appears to originate mainly from the damaged Kupffer cells. As a result, elevated levels of serum marker enzymes were also observed.  相似文献   

10.
韩露  陈真 《安徽医药》2014,(6):997-1001
酒精性肝病(ALD)是一种长期大量饮酒所致的慢性肝脏疾病。乙醇经肝脏代谢产生大量的自由基和活性氧。氧化应激在乙醇引起肝损伤的机制发挥关键作用。在肝脏,细胞色素P450 2E1(CYP2E1)可被乙醇诱导并参与乙醇代谢,CYP2E1是一种有效的活性氧产生酶,产生超氧阴离子自由基和过氧化氢,铁催化剂的存在下,产生羟基自由基。该文主要总结了CYP2E1在ALD发病过程中的作用及机制,为ALD的临床治疗提供思路。  相似文献   

11.
1. The formation of free radicals during enzyme catalysed oxidation of eight 3,5- disubstituted analogues of paracetamol (PAR) has been studied. A simple peroxidase system as well as cytochrome P450-containing systems were used. Radicals were detected by electron spin resonance (ESR) onincubationof PAR and 3,5-diCH-,3,5-diC H-,3,5- di t C H-, 3,5-diOCH-, 3,5-diSCH-, 3,5-diF-, 3,5-diCl- and 3,5-diBr-substituted analogues of PAR with horseradish peroxidase in the presence of hydrogen peroxide (H O). Initial analysis of the observed ESR spectra revealed all radical species to be phenoxy radicals, based on the absence of dominant nitrogen hyperfine splittings. No radicalswere detectedinrat livercytochromeP450-containingmicrosomalorreconstituted systems. 2. To rationalize the observed ESR spectra, hydrogen atom abstraction of PAR and four of the 3,5-disubstituted analogues (3,5-diCH-, 3,5-diOCH-, 3,5-diF- and 3,5-diClPAR) was calculated using ab initio calculations, and a singlet oxygen atom was used as the oxidizing species. The calculations indicated that for all compounds studied an initial hydrogen atomabstraction fromthe phenolic hydroxylgroup is favoured by approximately 125 kJ molover an initial hydrogen atom abstraction from the acetylamino nitrogen atom, and that after hydrogen abstraction from the phenolic hydroxyl group, the unpaired electron remains predominantly localised at the phenoxy oxygen atom (85%). 3. The experimental finding of phenoxy radicals in horseradish peroxidase H O incubations paralleled these theoretical findings. The failure to detect experimentally phenoxy radicals in cytochrome P450-catalysed oxidation of any of the eight 3,5- disubstituted PAR analogues is more likely due to the reducing effects that agents like NADPH and protein thiol groups have on phenoxy radicals rather than on the physical instability of the respective substrate radicals.  相似文献   

12.
The metabolism of procarbazine was studied using spin-trapping techniques. The oxidation of procarbazine, catalyzed by horseradish peroxidase, prostaglandin synthetase [ram seminal vesicle (RSV) microsomes] or rat hepatic microsomal cytochrome P-450, produced carbon-centered free radicals. Cytochrome P-450 also catalyzed this oxidation in the presence of hydrogen peroxide. Horseradish peroxidase activation of procarbazine formed both the methyl radical and the N-isopropylbenzylamide radical [(CH3)2CHNHCO(C6H4)CH2.]. In the presence of RSV or rat hepatic microsomes, mostly the benzyl-type radical was trapped, presumably due to the reactivity of the methyl radical.  相似文献   

13.
The alkaloid boldine, found in the leaves and bark of boldo, was an effective inhibitor of rat liver microsomal lipid peroxidation under a variety of conditions. The following systems all displayed a similar sensitivity to boldine: non-enzymatic peroxidation initiated by ferrous ammonium sulfate; iron-dependent peroxidation produced by ferric-ATP with either NADPH or NADH as cofactor; organic hydroperoxide-catalyzed peroxidation; and carbon tetrachloride plus NADPH-dependent peroxidation. Boldine inhibited the excess oxygen uptake associated with microsomal lipid peroxidation. Thus, boldine was effective in inhibiting iron-dependent and iron-independent microsomal lipid peroxidation, with 50% inhibition occurring at a concentration of about 0.015 mM. Boldine did not appear to react efficiently with superoxide radical or hydrogen peroxide, but was effective in competing for hydroxyl radicals with chemical scavengers. Concentrations of boldine which produced nearly total inhibition of lipid peroxidation had no effect on microsomal mixed-function oxidase activity nor did boldine appear to direct electrons from NADPH-cytochrome P450 reductase away from cytochrome P450. Boldine completely protected microsomal mixed-function oxidase activity against inactivation produced by lipid peroxidation. The effectiveness of boldine as an anti-oxidant under various conditions, and its low toxicity, suggest that this alkaloid may be an attractive agent for further evaluation as a clinically useful anti-oxidant.  相似文献   

14.
Previous papers from our laboratory report that naproxen and salicylic acid induced lipid peroxidation in rat liver microsomes, however, the mechanism is still unclear. In the present paper, ferrous iron release, nicotinamide-adenine dinucleotide phosphate reduced form (NADPH) oxidation and hydrogen peroxide (H2O2) formation have been measured to find out which mechanisms are involved in naproxen- and salicylic acid-induced lipid peroxidation. While the increase of ferrous iron release was observed with high concentrations of naproxen, salicylic acid did not stimulate ferrous iron release. Neither of these drugs stimulated NADPH oxidation and H2O2 formation. However hexobarbital and perfluorohexane, known as uncouplers of cytochrome P450, stimulated microsomal NADPH oxidation, O2 consumption, H2O2 formation and water (H2O) formation involving four-electron oxidase reaction. These results suggest that ferrous iron release contributes to naproxen-induced microsomal lipid peroxidation and that naproxen and salicylic acid are not uncouplers of cytochrome P450. Apparently H2O2 does not play an important role in naproxen- and salicylic acid-induced microsomal lipid peroxidation.  相似文献   

15.
A comparison of the abilities of microsomes from liver, kidney and lung to oxidize ethanol and to generate hydroxyl radicals was conducted to determine if these two variables correlated with one another. The oxidation of 2-keto-4-thiomethylbutyric acid (KTBA) to ethylene, and the production of formaldehyde from dimethylsulfoxide (Mc2SO), served as chemical probes for the detection of the production of hydroxyl radicals by the microsomes. Liver microsomes oxidized ethanol at rates several-fold greater than those found with lung and kidney microsomes. This greater rate of ethanol oxidation by liver microsomes correlated with a greater rate of oxidation of the hydroxyl radical scavengers by the liver microsomes (liver > lung ≈ kidney). In all tissues, the addition of azide, an inhibitor of catalase, augmented the rate of oxidation of Me2SO and KTBA. The addition of iron-EDTA (a OH-potentiating agent) increased the rates of oxidation of ethanol by the microsomes from the three tissues. This increase again correlated with an increase in the oxidation of Me2SO and KTBA. The greater rate of oxidation of ethanol and the hydroxyl radical scavengers by liver microsomes may reflect the relative specific content of cytochrome P-450 (6- to 12-fold greater) and specific activity of NADPH-cytochrome c reductase (4-fold greater) in liver as compared to lung and kidney microsomes. Relative turnover numbers (units per nmole cytochrome P-450) demonstrated equivalent activities for liver and kidney, whereas lung had a higher turnover number for ethanol oxidation and hydroxyl radical generation. These data support the hypothesis that the oxidation of ethanol by microsomes may be mediated by the relative capacity of the microsomes to generate hydroxyl radicals during microsomal electron transport, which in turn may be related to the relative content and/or activities of the components of the electron transport chain.  相似文献   

16.
1. Reconstituted membrane vesicles containing purified preparations of cytochrome P-450 LM2 and NADPH-cytochrome P-450 reductase effectively destroyed 2-deoxy-D-ribose in an NADPH-dependent process.

2. The destruction was mediated by hydroxyl radicals formed in an iron-catalysed Haber-Weiss reaction between superoxide anions and hydrogen peroxide liberated from the haemoprotein.

3. Administration of ethanol or benzene to rabbits, compounds known to be oxygenated by the hydroxyl radical-dependent mechanism, resulted in induction of a species of cytochrome P-450 effective in the radical-dependent metabolism of both chemicals.

4. Benzene treatment of rabbits also resulted in an enhanced hydroxyl radicaldependent metabolism of ethanol and benzene in liver microsomes.

5. It is suggested that, for certain substrates, hydroxyl radical-mediated cytochrome P-450-dependent oxygenation reactions are of importance for the microsomal metabolism of these compounds.

6. It is speculated that radical-producing species of cytochrome P-450 may contribute to hydroxyl radical-mediated cell damage.  相似文献   

17.
Membrane vesicles containing various forms of rabbit liver microsomal cytochromes P-450 and NADPH-cytochrome P-450 reductase were found to degrade plasmid DNA in an NADPH-requiring reaction. When cytochrome P-450 was replaced by cytochrome b5, only a negligible extent of DNA disintegration occurred. The complete inhibition of the process by hydroxyl radical scavengers, superoxide dismutase and catalase, indicated an iron-catalyzed Haber-Weiss reaction for the generation of hydroxyl radicals that subsequently react with the nucleic acid.  相似文献   

18.
The possible role of cytochrome P-450 in one-electron reduction of quinoid compounds as well as in the formation of reduced oxygen species was investigated in hepatic microsomal and reconstituted systems of purified cytochrome P-450 and purified NADPH-cytochrome P-450 reductase using electron spin resonance (ESR) methods. Two compounds were selected as model compounds: N-acetyl-parabenzoquinone imine (NAPQI) and 3,5-dimethyl-N-acetyl-para-benzoquinone imine (3,5-dimethyl-NAPQI). Both compounds could be reduced by oxyhaemoglobin, the semiquinones formed were detectable by ESR and did not reduce molecular oxygen. Both NAPQI and 3,5-dimethyl-NAPQI underwent one-electron reduction in microsomal systems and in fully reconstituted systems of cytochrome P-450 and NADPH-cytochrome P-450 reductase under anaerobic and aerobic conditions. In both incubation systems the semiquinone formation was diminished under aerobic circumstances and concomitant reduction of oxygen occurred, leading to the formation of hydrogen peroxide and hydroxyl free radicals. Both the reduction of the quinone imines and the reduction of oxygen were found to be cytochrome P-450 dependent. Both activities of cytochrome P-450 may also be involved in the bioactivation of other compounds with quinoid structural elements, like many chemotherapeutic agents.  相似文献   

19.
Free radicals resulting from the one-electron reduction and subsequent homolytic cleavage of oxygen-oxygen bonds by heme proteins are likely to be responsible for some aspects of the toxicity of organic hydroperoxides. In the present work, effects of the 4-alkyl substituent of 2,6-di-tert-butyl-4-alkyl-4-hydroperoxycytohexa-2,5-dienones (1,4-peroxyquinols) on radical production were investigated with microsomal cytochrome P-450 from rat liver. Quinoxy radicals from homolysis of the peroxyquinols underwent beta-scission to produce a quinone and an alkyl radical, and this process occurred with increasing frequency as the stability of the alkyl radical increased. The fate of benzyl and 2-phenylethyl radicals generated from the appropriately substituted peroxyquinols was investigated also. The former was converted to benzyl alcohol, benzaldehyde, and toluene and the latter to 2-phenylethanol, phenylacetaldehyde, ethylbenzene, styrene, and benzaldehyde. Oxygen-18 labeling studies demonstrated that 80-85% of the benzyl alcohol incorporated oxygen from the hydroperoxide and the balance from molecular oxygen. This indicates that the predominant reaction pathway involved recombination between the benzyl radical and the iron-bound hydroxyl radical of the P-450 intermediate complex. By contrast, about 50% of 2-phenylethanol from the 2-phenylethyl radical incorporated oxygen from water and the balance from O2. Two alternative mechanisms are proposed to explain the formation of 2-phenylethanol that contained oxygen from water and the concurrent formation of styrene: (a) oxygen exchange of the P-450 intermediate with water, followed by hydrogen abstraction and radical recombination reactions with the P-450 complex, or (b) oxidation of the radical to the 2-phenylethyl cation followed by proton elimination and hydration.  相似文献   

20.
The effect of in vitro exposure of sarcolemmal membrane (SL) vesicles to Gram-negative endotoxin lipopolysaccharides (LPS) was studied. LPS decreased the Na,K-ATPase activity of SL vesicles; this effect was inhibited by hydroxyl radical (.OH) scavengers such as dimethylthiourea and dimethyl sulfoxide, but not by superoxide dismutase, a scavenger of superoxide anion radicals or by the hydrogen peroxide scavenger catalase. ESR spin-trapping with 5,5-dimethyl-1-pyrroline N-oxide verified the generation of .OH from LPS itself under the conditions used; .OH generated from LPS was not affected by deferoxamine, a powerful iron chelator. The Na,K-ATPase activity was reduced by an .OH radical generating system consisting of dihydroxyfumarate and Fe3(+)-ADP. Furthermore, exposure of SL vesicles to LPS caused an increase in malondialdehyde formation. It can be concluded that LPS damages cardiac SL by an oxygen free radical mechanism by the generation of .OH, due to inhibition of Na,K-ATPase activity and peroxidation of lipids, and that the effect of LPS is not dependent on the presence of contaminating iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号