首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In this paper, we report on measurements performed on a new prototype implantable radiation detector that uses metal-oxide semiconductor field effect transistors (MOSFETs) designed for in vivo dosimetry. The dosimeters, which are encapsulated in hermetically sealed glass cylinders, are used in an unbiased mode during irradiation, unlike other MOSFET detectors previously used in radiotherapy applications. They are powered by radio frequency telemetry for dose measurements, obviating the need for a power supply within each capsule. We have studied the dosimetric characteristics of these MOSFET detectors in vitro under irradiation from a 60Co source. The detectors show a dose reproducibility generally within 5% or better, with the main sources of error being temperature fluctuations occurring between the pre- and post-irradiation measurements as well as detector orientation. A better temperature-controlled environment leads to a reproducibility within 2%. Our preliminary in vitro results show clearly that true non-invasive in vivo dosimetry measurements are feasible and can be performed remotely using telemetric technology.  相似文献   

2.
This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 degrees C up to 40 degrees C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established.  相似文献   

3.
A commercial optically stimulated luminescence (OSL) system developed for radiation protection dosimetry by Landauer, Inc., the InLight microStar reader, was tested for dosimetry procedures in radiotherapy. The system uses carbon-doped aluminum oxide, Al2O3:C, as a radiation detector material. Using this OSL system, a percent depth dose curve for 60Co gamma radiation was measured in solid water. Field size and SSD dependences of the detector response were also evaluated. The dose response relationship was investigated between 25 and 400 cGy. The decay of the response with time following irradiation and the energy dependence of the Al2O3:C OSL detectors were also measured. The results obtained using OSL dosimeters show good agreement with ionization chamber and diode measurements carried out under the same conditions. Reproducibility studies show that the response of the OSL system to repeated exposures is 2.5% (1sd), indicating a real possibility of applying the Landauer OSL commercial system for radiotherapy dosimetric procedures.  相似文献   

4.
Chuang CF  Verhey LJ  Xia P 《Medical physics》2002,29(6):1109-1115
(Received 22 October 2001; accepted for publication 26 March 2002; published 22 May 2002) With advanced conformal radiotherapy using intensity modulated beams, it is important to have radiation dose verification measurements prior to treatment. Metal oxide semiconductor field effect transistors (MOSFET) have the advantage of a faster and simpler reading procedure compared to thermoluminescent dosimeters (TLD), and with the commercial MOSFET system, multiple detectors can be used simultaneously. In addition, the small size of the detector could be advantageous, especially for point dose measurements in small homogeneous dose regions. To evaluate the feasibility of MOSFET for routine IMRT dosimetry, a comprehensive set of experiments has been conducted, to investigate the stability, linearity, energy, and angular dependence. For a period of two weeks, under a standard measurement setup, the measured dose standard deviation using the MOSFETs was +/- 0.015 Gy with the mean dose being 1.00 Gy. For a measured dose range of 0.3 Gy to 4.2 Gy, the MOSFETs present a linear response, with a linearity coefficient of 0.998. Under a 10 x 10 cm2 square field, the dose variations measured by the MOSFETs for every 10 degrees from 0 to 180 degrees is +/- 2.5%. The percent depth dose (PDD) measurements were used to verify the energy dependence. The measured PDD using the MOSFETs from 0.5 cm to 34 cm depth agreed to within +/- 3% when compared to that of the ionization chamber. For IMRT dose verification, two special phantoms were designed. One is a solid water slab with 81 possible MOSFET placement holes, and another is a cylindrical phantom with 48 placement holes. For each IMRT phantom verification, an ionization chamber and 3 to 5 MOSFETs were used to measure multiple point doses at different locations. Preliminary results show that the agreement between dose measured by MOSFET and that calculated by Corvus is within 5% error, while the agreement between ionization chamber measurement and the calculation is within 3% error. In conclusion, MOSFET detectors are suitable for routine IMRT dose verification.  相似文献   

5.
Vial P  Greer PB  Oliver L  Baldock C 《Medical physics》2008,35(10):4362-4374
Electronic portal imaging devices (EPIDs) integrated with medical linear accelerators utilize an indirect-detection EPID configuration (ID-EPID). Amorphous silicon ID-EPIDs provide high quality low dose images for verification of radiotherapy treatments but they have limitations as dosimeters. The standard ID-EPID configuration includes a high atomic number phosphor scintillator screen, a 1 mm copper layer, and other nonwater equivalent materials covering the detector. This configuration leads to marked differences in the response of an ID-EPID compared to standard radiotherapy dosimeters such as ion chambers in water. In this study the phosphor and copper were removed from a standard commercial EPID to modify the configuration to a direct-detection EPID (DD-EPID). Using solid water as the buildup and backscatter for the detector, dosimetric measurements were performed on the DD-EPID and compared to standard dose-in-water data for 6 and 18 MV photons. The sensitivity of the DD-EPID was approximately eight times less than the ID-EPID but the signal was sufficient to produce accurate and reproducible beam profile measurements for open beams and an intensity-modulated beam. Due to the lower signal levels it was found necessary to ensure that the dark field correction (no radiation) DD-EPID signal was stable or updated frequently. The linearity of dose response was comparable to the ID-EPID but with a greater under-response at low doses. DD-EPID measurements of field size output factors and beam profiles at the depth of maximum dose (dmax), and tissue-maximum ratios between the depths of 0.5 and 10 cm, were in close agreement with dose in water measurements. At depths beyond dmax the DD-EPID showed a greater change in response to field size than ionisation chamber measurements and the beam penumbrae were broader compared to diode scans. The modified DD-EPID configuration studied here has the potential to improve the performance of EPIDs for dose verification of radiotherapy treatments.  相似文献   

6.
Water-equivalent dosimeter array for small-field external beam radiotherapy   总被引:1,自引:0,他引:1  
With the increasing complexity of dose patterns external beam radiotherapy, there is a great need for new types of dosimeters. We studied the first prototype of a new dosimeter array consisting of water-equivalent plastic scintillating fibers for dose measurement in external beam radiotherapy. We found that this array allows precise, rapid dose evaluation of small photon fields. Starting with a dosimeter system constructed with a single scintillating fiber coupled to a clear optical fiber and read using a charge coupled device camera, we looked at the dosimeter's spatial resolution under small radiation fields and angular dependence. Afterward, we analyzed the camera's light collection to determine the maximum array size that could be built. Finally, we developed a prototype made of ten scintillating fiber detectors to study the behavior and precision of this system in simple dosimetric situations. The scintillation detector showed no measurable angular dependence. Comparison of the scintillation detector and a small-volume ion chamber showed agreement except for 1 x 1 and 0.5 x 5.0 cm (2) fields where the output factor measured by the scintillator was higher. The actual field of view of the camera could accept more than 4000 scintillating fiber detectors simultaneously. Evaluation of the dose profile and depth dose curve using a prototype with ten scintillating fiber detectors showed precise, rapid dose evaluation even with placement of more than 75 optical fibers in the field to simulate what would happen in a larger array. We concluded that this scintillating fiber dosimeter array is a valuable tool for dose measurement in external beam radiotherapy. It possesses the qualities necessary to evaluate small and irregular fields with various incident angles such as those encountered in intensity-modulated radiotherapy, radiosurgery, and tomotherapy.  相似文献   

7.
Practical contemporary radiotherapy dosimetry systems used for dose measurement and verification are ionization chambers (which typically have at least a 0.1 cm3 air cavity volume), thermoluminescent dosimeters (TLDs) and silicon diodes. However, during the last decade, there has been an increased interest in scintillation dosimetry using small water-equivalent plastic scintillators, due to their favourable characteristics when compared with other more commonly used detector systems. Although plastic scintillators have been shown to have many desirable dosimetric properties, as yet there is no successful commercial detector system of this type available for routine clinical use in radiation oncology. The objectives of this study are to identify the factors preventing this new technology from realizing its full potential in commercial applications. A definition of signal to noise ratio (S/N) will be proposed for this category of detectors. In doing so the S/N ratio for an early prototype design has been calculated and/or measured. Criteria to optimize the response and sensitivity of this category of detectors are presented.  相似文献   

8.
The output signal of an organic scintillator probe consists of a scintillation signal and Cerenkov and fluorescence radiation (CFR) signal when the probe is exposed to a mega-voltage photon or electron beam. The CFR signal is usually unwanted because it comes from both the scintillator and light guide and so it is not proportional to the absorbed dose in the scintillator. A new organic scintillator detector system has been constructed for absorbed dose measurement in pulsed mega-voltage electron and photon beams that are commonly used in radiotherapy treatment, eliminating most of the CFR signal. The new detector system uses a long decay constant BC-444G (Bicron, Newbury, OH, USA) scintillator which gives a signal that can be time resolved from the prompt CFR signal so that the measured contribution of prompt signal is negligible. The response of the new scintillator detector system was compared with the measurements from a plastic scintillator detector that were corrected for the signal contribution from the CFR, and to appropriately corrected ion chamber measurements showing agreement in the 16 MeV electron beam used.  相似文献   

9.
A minimally perturbing plastic scintillation detector has been developed for the dosimetry of high-energy beams in radiotherapy. The detector system consists of two identical parallel sets of radiation-resistant optical fibre bundles, each connected to independent photomultiplier tubes (PMTs). One fibre bundle is connected to a miniature water equivalent plastic scintillator and so scintillation as well as Cerenkov light generated in the fibres is detected at its PMT. The other 'background' bundle is not connected to the scintillator and so only Cerenkov light is detected by its PMT. The background signal is subtracted to yield only the signal from the scintillator. The water-equivalence of plastic scintillation detectors is studied for photon and electron beams in the radiotherapy range. Application of Burlin cavity theory shows that the energy dependence of such detectors is expected to be better than the commonly used systems (ionization chambers, LiF thermoluminescent dosimeters, film and Si diodes). It is also shown that they are not affected by temperature variations and exhibit much less radiation damage than either photon or electron diode detectors.  相似文献   

10.
The purpose of this study was to investigate the dosimetric characteristics (energy dependence, linearity, fading, reproducibility, etc) of MOSFET detectors for in vivo dosimetry in the kV x-ray range. The experience of MOSFET in vivo dosimetry in a pre-clinical study using the Alderson phantom and in clinical practice is also reported. All measurements were performed with a Gulmay D3300 kV unit and TN-502RDI MOSFET detectors. For the determination of correction factors different solid phantoms and a calibrated Farmer-type chamber were used. The MOSFET signal was linear with applied dose in the range from 0.2 to 2 Gy for all energies. Due to fading it is recommended to read the MOSFET signal during the first 15 min after irradiation. For long time intervals between irradiation and readout the fading can vary largely with the detector. The temperature dependence of the detector signal was small (0.3% degrees C(-1)) in the temperature range between 22 and 40 degrees C. The variation of the measuring signal with beam incidence amounts to +/-5% and should be considered in clinical applications. Finally, for entrance dose measurements energy-dependent calibration factors, correction factors for field size and irradiated cable length were applied. The overall accuracy, for all measurements, was dominated by reproducibility as a function of applied dose. During the pre-clinical in vivo study, the agreement between MOSFET and TLD measurements was well within 3%. The results of MOSFET measurements, to determine the dosimetric characteristics as well as clinical applications, showed that MOSFET detectors are suitable for in vivo dosimetry in the kV range. However, some energy-dependent dosimetry effects need to be considered and corrected for. Due to reproducibility effects at low dose levels accurate in vivo measurements are only possible if the applied dose is equal to or larger than 2 Gy.  相似文献   

11.
The objective of the present study was to explore the use of the TN-1002RD metal-oxide-semiconductor field effect transistor (MOSFET) dosimeter for measuring tissue depth dose at diagnostic photon energies in both homogeneous and heterogeneous tissue-equivalent materials. Three cylindrical phantoms were constructed and utilized as a prelude to more complex measurements within tomographic physical phantoms of pediatric patients. Each cylindrical phantom was constructed as a stack of seven 5-cm-diameter and 1-cm-thick discs of materials radiographically representative of either soft tissue (S), bone (B), or lung tissue (L) at diagnostic photon energies. In addition to a homogeneous phantom of soft tissue (SSSSSSS), two heterogeneous phantoms were constructed: SSBBSSS and SBLLBSS. MOSFET dosimeters were then positioned at the interface of each disc, and the phantoms were then irradiated at 66 kVp and 200 mAs. Measured values of absorbed dose at depth were then compared to predicated values of point tissue dose as determined via Monte Carlo radiation transport modeling. At depths exceeding 2 cm, experimental results matched the computed values of dose with high accuracy regardless of the dosimeter orientation (epoxy bubble facing toward or away from the x-ray beam). Discrepancies were noted, however, between measured and calculated point doses near the surface of the phantom (surface to 2 cm depth) when the dosimeters were oriented with the epoxy bubble facing the x-ray beam. These discrepancies were largely eliminated when the dosimeters were placed with the flat side facing the x-ray beam. It is therefore recommended that the MOSFET dosimeters be oriented with their flat sides facing the beam when they are used at shallow depths or on the surface of either phantoms or patients.  相似文献   

12.
A new method for the evaluation of radiotherapy 3D polymer gel dosimeters has been developed using ultrasound to assess the significant structural changes that occur following irradiation of the dosimeters. The ultrasonic parameters of acoustic speed of propagation, attenuation and transmitted signal intensity were measured as a function of absorbed radiation dose. The dose sensitivities for each parameter were determined as 1.8 x 10(-4) s m(-1) Gy(-1), 3.9 dB m(-1) Gy(-1) and 3.2 V(-1) Gy(-1) respectively. All parameters displayed a strong variation with absorbed dose that continued beyond absorbed doses of 15 Gy. The ultrasonic measurements demonstrated a significantly larger dynamic range in dose response curves than that achieved with previously published magnetic resonance imaging (MRI) dose response data. It is concluded that ultrasound shows great potential as a technique for the evaluation of polymer gel dosimeters.  相似文献   

13.
The large dose gradients in brachytherapy necessitate a detector with a small active volume for accurate dosimetry. The dosimetric performance of a novel scintillation detector (BrachyFOD) is evaluated and compared to three commercially available detectors, a diamond detector, a MOSFET, and LiF TLDs. An 192Ir HDR brachytherapy source is used to measure the depth dependence, angular dependence, and temperature dependence of the detectors. Of the commercially available detectors, the diamond detector was found to be the most accurate, but has a large physical size. The TLDs cannot provide real time readings and have depth dependent sensitivity. The MOSFET used in this study was accurate to within 5% for distances of 20 to 50 mm from the 192Ir source in water but gave errors of 30%-40% for distances greater than 50 mm from the source. The BrachyFOD was found to be accurate to within 3% for distances of 10 to 100 mm from an HDR 192Ir brachytherapy source in water. It has an angular dependence of less than 2% and the background signal created by Cerenkov radiation and fluorescence of the plastic optical fiber is insignificant compared to the signal generated in the scintillator. Of the four detectors compared in this study the BrachyFOD has the most favorable combination of characteristics for dosimetry in HDR brachytherapy.  相似文献   

14.
Solid state pellets (1 mm thick) for electron spin resonance (ESR) dosimetry were made using ammonium tartrate as the radiation-sensitive substance. Their behaviour was experimentally investigated as a function of dose with 60Co gamma rays. The calibration function obtained permits measurements of absorbed dose in the 2-50 Gy range, with a combined uncertainty of +/-4%. The lowest detectable dose was about 0.5 Gy. These properties are comparable with or even better than those of ESR dosimeters made from other materials. The time stability of the ESR signal of ammonium tartrate dosimeters at different storage conditions after irradiation was studied. A rather complex behaviour was observed, which suggests that more species of free radicals are produced by radiation and that migration processes may be effective. No dependence of the response on beam quality was found for high-energy photon and electron beams produced by a linear accelerator used in radiotherapy, whereas dose was underestimated with low-energy x-rays.  相似文献   

15.
Single-walled carbon nanotubes (SWNTs) are a new class of highly promising nanomaterials for future nano-electronics. Here, we present an initial investigation of the feasibility of using SWNT field effect transistors (SWNT-FETs) formed on silicon-oxide substrates and suspended FETs for radiation dosimetry applications. Electrical measurements and atomic force microscopy (AFM) revealed the intactness of SWNT-FET devices after exposure to over 1 Gy of 6 MV therapeutic x-rays. The sensitivity of SWNT-FET devices to x-ray irradiation is elucidated by real-time dose monitoring experiments and accumulated dose reading based on threshold voltage shift. SWNT-FET devices exhibit sensitivities to x-rays that are at least comparable to or orders of magnitude higher than commercial MOSFET (metal-oxide semiconductor field effect transistor) dosimeters and could find applications as miniature dosimeters for microbeam profiling and implantation.  相似文献   

16.
Mather ML  Baldock C 《Medical physics》2003,30(8):2140-2148
A novel imaging system for investigation of absorbed dose distributions in radiotherapy polymer gel dosimeters using ultrasound is introduced. A prototype transmission ultrasound computed tomography (UCT) imaging system is developed and evaluated. The imaging capabilities of the system are assessed through investigation of an irradiated polyacrylamide gel test phantom. Images based on transmitted signal amplitude and time of flight (TOF) of the ultrasonic signal through the phantom are reconstructed using a filtered backprojection technique. In general, the reconstruction of the square field in the TOF image was superior to the transmission image, however, transmission images displayed superior contrast to TOF images. The image quality achieved with this prototype system is promising and could be significantly enhanced through improvements, in particular through the development of more sophisticated experimental equipment. It is concluded that UCT is a viable technique for imaging absorbed dose distributions in polymer gel dosimeters and investigations are continuing to further improve the system.  相似文献   

17.
Kurjewicz L  Berndt A 《Medical physics》2007,34(3):1007-1012
The relative dose rate for the different Gamma Knife helmets (4, 8, 14, and 18 mm) is characterized by their respective helmet factors. Since the plateau of the dose profile for the 4 mm helmet is at most 1 mm wide, detector choices are limited. Traditionally helmet factors have been measured using 1 x 1 x 1 mm3 thermoluminescent dosimeters (TLDs). However, these are time-consuming, cumbersome measurements. This article investigates the use of metal-oxide-semiconductor field effect transistors (MOSFETs) (active area of 0.2 x 0.2 mm2) as a more accurate and convenient dosimeter. Their suitability for these measurements was confirmed by basic characterization measurements. Helmet factors were measured using both MOSFETs and the established TLD approach. A custom MOSFET cassette was designed in analogy to the Elekta TLD cassette (Elekta Instruments AB) for use with the Elekta dosimetry sphere. Although both dosimeters provided values within 3% of the manufacturer's suggestion, MOSFETs provided superior accuracy and precision, in a fraction of the time required for the TLD measurements. Thus, MOSFETs proved to be a reasonable alternative to TLDs for performing helmet factor measurements.  相似文献   

18.
Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducial-based methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few projections at the start and end of the treatment in which beam intensities were extremely low. At 2 cGy/fraction dose level, the method can still determine the respiration phase very well with less than 10% of projections having more than two phases (approximately 1 s) error. This technique can also be applied in other delivery systems such as orthogonal x-ray systems, although in those cases it would entail the delivery of additional non-treatment radiation.  相似文献   

19.
In our earlier study, we experimentally evaluated the characteristics of a newly designed metal oxide semiconductor field effect transistor (MOSFET) OneDose in-vivo dosimetry system for Ir-192 (380 keV) energy and the results were compared with thermoluminescent dosimeters (TLDs). We have now extended the same study to the clinical application of this MOSFET as an in-vivo dosimetry system. The MOSFET was used during high dose rate brachytherapy (HDRBT) of internal mammary chain (IMC) irradiation for a carcinoma of the breast. The aim of this study was to measure the skin dose during IMC irradiation with a MOSFET and a TLD and compare it with the calculated dose with a treatment planning system (TPS). The skin dose was measured for ten patients. All the patients' treatment was planned on a PLATO treatment planning system. TLD measurements were performed to compare the accuracy of the measured results from the MOSFET. The mean doses measured with the MOSFET and the TLD were identical (0.5392 Gy, 15.85% of the prescribed dose). The mean dose was overestimated by the TPS and was 0.5923 Gy (17.42% of the prescribed dose). The TPS overestimated the skin dose by 9% as verified by the MOSFET and TLD. The MOSFET provides adequate in-vivo dosimetry for HDRBT. Immediate readout after irradiation, small size, permanent storage of dose and ease of use make the MOSFET a viable alternative for TLDs.  相似文献   

20.
Wang B  Kim CH  Xua XG 《Medical physics》2004,31(5):1003-1008
Metal-oxide-semiconductor field effect transistor (MOSFET) dosimeters are increasingly utilized in radiation therapy and diagnostic radiology. While it is difficult to characterize the dosimeter responses for monoenergetic sources by experiments, this paper reports a detailed Monte Carlo simulation model of the High-Sensitivity MOSFET dosimeter using Monte Carlo N-Particle (MCNP) 4C. A dose estimator method was used to calculate the dose in the extremely thin sensitive volume. Efforts were made to validate the MCNP model using three experiments: (1) comparison of the simulated dose with the measurement of a Cs-137 source, (2) comparison of the simulated dose with analytical values, and (3) comparison of the simulated energy dependence with theoretical values. Our simulation results show that the MOSFET dosimeter has a maximum response at about 40 keV of photon energy. The energy dependence curve is also found to agree with the predicted value from theory within statistical uncertainties. The angular dependence study shows that the MOSFET dosimeter has a higher response (about 8%) when photons come from the epoxy side, compared with the kapton side for the Cs-137 source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号