首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The purpose of this study was to analyze the response properties of neurons in the frontal eye fields (FEF) of rhesus monkeys (Macaca mulatta) and to compare and contrast the various functional classes with those recorded in the supplementary eye fields (SEF) of the same animals performing the same go/no-go visual tracking task. Three hundred ten cells recorded in FEF provided the data for this investigation. 2. Visual cells in FEF responded to the stimuli that guided the eye movements. The visual cells in FEF responded with a slightly shorter latency and were more consistent and phasic in their activation than their counterparts in SEF. The receptive fields tended to emphasize the contralateral hemifield to the same extent as those observed in SEF visual cells. 3. Preparatory set cells began to discharge after the presentation of the target and ceased firing before the saccade, after the go/no-go cue was given. These neurons comprised a smaller proportion in FEF than in SEF. In contrast to their counterparts in SEF, the preparatory set cells in FEF did not respond preferentially in relation to contralateral movements, even though most responded preferentially for movements in one particular direction. The time course of the discharge of the FEF set cells was similar to that of their SEF counterparts, except that they reached their peak level of activation sooner. The few preparatory set cells in FEF tested with both auditory and visual stimuli tended to respond preferentially to the visual targets, whereas, in contrast, most set cells in SEF were bimodal. 4. Sensory-movement cells represented the largest population of cells recorded in FEF, responding in relation to both the presentation of the targets and the execution of the saccade. Although some of these sensory-movement cells resembled their counterparts in SEF by exhibiting a sustained elevation of activity, most of the FEF sensory-movement cells gave two discrete bursts, one after the presentation of the target and another before and during the saccade. Like their counterparts in SEF, the sensory-movement cells tended to be tuned for saccades into the contralateral hemifield, but this tendency was more pronounced in FEF than in SEF. The FEF sensory-movement cells discharged more briskly, with a shorter latency relative to the presentation of the target, than their counterparts in SEF. In addition, the FEF sensory-movement neurons reached their peak activation sooner than SEF sensory-movement neurons. Most FEF sensory-movement cells exhibited different patterns of activation in response to visual and auditory targets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
This study was designed to investigate how activity patterns of primary motor cortical (MI) neurons change when monkeys perform the same movements guided by somatosensory and/or visual cues. Two adult male rhesus monkeys were trained to make wrist extensions and flexions after holding a steady position during an instructed delay period lasting 0.5–2.0 s. Monkeys held against a 0.07 Nm load that opposed flexion movements. Wrist movements were guided by vibratory cues (VIB-trials), visual cues (VIS-trials), or both in combination (COM-trials). Extracellular recordings of 188 MI neurons were made during all three paradigms. Individual neurons were counted twice, once for each movement direction, yielding 376 cases. All neurons had significant task-related activity (TRA) changes relative to delay period activity during at least one of the three paradigms. TRA was analyzed to determine if it was different as a function of the sensory cue(s) that initiated movement and that specified movement endpoints. Cases were grouped by whether the TRA changes were greater in VIB- or VIS-trials; this defined their “bias”. One hundred and eighteen cases (31.4%) had greater TRA changes in VIB-trials (Vb-neurons), whereas 185 (49.2%) showed greater TRA changes in VIS-trials (Vs-neurons). The remaining 73 cases (19.4%) had similar TRA changes in VIB- and VIS-trials (Nb-neurons). For Vb- and Vs-neurons, earlier TRA onsets and greater TRA changes were observed in the trials for which these neurons were biased. During the COM-trials, the TRA was intermediate. During the trials for which the activity was not biased, the TRA was the least. For Nb-neurons, no significant TRA differences were observed across paradigms. TRA changes of MI neurons may represent movement planning-related inputs from other central, presumably cortical, sources as well as contribute to motor outflow from the cortex. These data suggest that Vb- and Vs-neurons are affected differently by somatosensory- and visually related central inputs, resulting in different TRAs, even for essentially identical movements. Such differences may depend not only on the type of sensory information that initiates movement but also whether that information specifies movement endpoints or might interfere with movement monitoring.  相似文献   

3.
4.
1. Single-neuron activity was recorded from the prefrontal cortex of monkeys performing saccadic eye movements in oculomotor delayed-response (ODR) and visually guided saccade (VGS) tasks. In the ODR task the monkey was required to maintain fixation of a central spot throughout the 0.5-s cue and 3.0-s delay before making a saccadic eye movement in the dark to one of four or eight locations where the visual cue had been presented. The same locations were used for targets in the VGS tasks; however, unlike the ODR task, saccades in the VGS tasks were visually guided. 2. Among 434 neurons recorded from prefrontal cortex within and surrounding the principal sulcus (PS), 147 changed their discharge rates in relation to saccadic eye movements in the ODR task. Their response latencies relative to saccade initiation were distributed between -192 and 460-ms, with 22% exhibiting presaccadic activity and 78% exhibiting only postsaccadic activity. Among PS neurons with presaccadic activity, 53% also had postsaccadic activity when the monkey made saccadic eye movements opposite to the directions for which the presaccadic activity was observed. 3. Almost all (97%) PS neurons with presaccadic activity were directionally selective. The best direction and tuning specificity of each neuron were estimated from parameters used to fit a Gaussian tuning curve function. The best direction for 62% of the neurons with presaccadic activity was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (23%) or along the vertical meridian (15%). 4. Most postsaccadic activity of PS neurons (92%) was also directionally selective. The best direction for 48% of these neurons was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (36%) or along the vertical meridian (16%). Eighteen percent of the neurons with postsaccadic activity showed a reciprocal response pattern: excitatory responses occurred for one set of saccade directions, whereas inhibitory responses occurred for roughly the opposite set of directions. 5. Sixty PS neurons with saccade-related activity in the ODR task were also examined in a VGS task. Forty of these neurons showed highly similar profiles of directional specificity and response magnitude in both tasks, 13 showed saccade-related activity only in the ODR task, and 7 changed their response characteristics between the ODR and VGS tasks.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Monkeys were trained to perform two different motor acts, one involving muscle activity in distal forelimb muscles and the other in proximal forelimb and shoulder girdle muscles. After confirming spatial and temporal dissociation of muscle activity in the two motor acts, single unit activity in the supplementary motor area (SMA) was recorded. SMA neurons related with the distal and proximal forelimb movements were found to be arranged rostrocaudally with a considerable overlap. In the overlapping region, neurons related with the distal movement were located more deeply.  相似文献   

6.
1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.  相似文献   

7.
8.
To execute visually guided reaching movements, the central nervous system (CNS) must transform a desired hand trajectory (kinematics) into appropriate muscle-related commands (dynamics). It has been suggested that the CNS might face this challenging computation by using internal forward models for the dynamics. Previous work in humans found that new internal models can be acquired through experience. In a series of studies in monkeys, we investigated how neurons in the motor areas of the frontal lobe reflect the movement dynamics and how their activity changes when monkeys learn a new internal model. Here we describe the results for the supplementary motor area (SMA-proper, or SMA). In the experiments, monkeys executed visually guided reaching movements and adapted to an external perturbing force field. The experimental design allowed dissociating the neuronal activity related to movement dynamics from that related to movement kinematics. It also allowed dissociating the changes related to motor learning from the activity related to motor performance (kinematics and dynamics). We show that neurons in SMA reflect the movement dynamics individually and as a population, and that their activity undergoes a variety of plastic changes when monkeys adapt to a new dynamic environment.  相似文献   

9.
1. We recorded from 257 neurons in the banks of the posterior third of the principal sulcus of two rhesus monkeys trained to look at a fixation point and make saccades to stimuli in the visual periphery. Sixty-six percent (220/257) discharged or were suppressed in association with one or more aspects of the tasks we used. 2. Fifty-eight percent (151/257) of the neurons responded to the appearance of a spot of light in some part of the contralateral visual field. Cells did not seem to have absolute requirements for stimulus shape, size, or direction of motion. 3. Thirty-six percent (29/79) of visually responsive neurons tested quantitatively gave an enhanced response to the stimulus in the receptive field when the monkey had to make a saccade to the stimulus when its appearance was synchronous with the disappearance of the fixation point (synchron task). Twenty-nine percent (19/57) of the neurons gave an enhanced response to the stimulus when the monkey had to make a saccade to the stimulus some time after it appeared (delayed-saccade task). In general, enhancement in the synchron task correlated well with enhancement in the delayed-saccade task. 4. Enhancement was spatially specific. It did not occur when the monkey made a saccade to a stimulus outside the receptive field even though there was a stimulus within the receptive field. 5. Twenty-three percent (27/117) of neurons studied in the delayed-saccade task gave two bursts, one at the appearance of the stimulus and a second one around the saccade. This second burst generally did not occur when the monkey made the same saccade to a remembered target, but instead required the presence of the visual stimulus, and so we describe it as a reactivation of the visual response. Reactivation was also spatially specific. 6. The latency from reactivation to the beginning of the saccade ranged from 160 ms before the saccade to the beginning of the saccade. Reactivation usually continued for several hundred milliseconds after the saccade, sometimes for the duration of the trial. 7. Reactivation and enhancement are not the same mechanism. Although some cells showed both phenomena there was no correlation between enhancement and reactivation. 8. Cells that showed reactivation in the saccade task also showed reactivation at a weaker level in a suppressed-saccade task. In this task the monkeys had to hold fixation despite the disappearance of the fixation point and the continued presence of the peripheral stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
We used apparent motion targets to explore how degraded visual motion alters smooth pursuit eye movements. Apparent motion targets consisted of brief stationary flashes with a spatial separation (Deltax), temporal separation (Deltat), and apparent target velocity equal to Deltax/Deltat. Changes in pursuit initiation were readily observed when holding target velocity constant and increasing the flash separation. As flash separation increased, the first deficit observed was an increase in the latency to peak eye acceleration. Also seen was a paradoxical increase in initial eye acceleration. Further increases in the flash separation produced larger increases in latency and resulted in decreased eye acceleration. By varying target velocity, we were able to discern that the visual inputs driving pursuit initiation show both temporal and spatial limits. For target velocities above 4-8 degrees /s, deficits in the initiation of pursuit were seen when Deltax exceeded 0.2-0.5 degrees, even when Deltat was small. For target velocities below 4-8 degrees /s, deficits appeared when Deltat exceeded 32-64 ms, even when Deltax was small. Further experiments were designed to determine whether the spatial limit varied as retinal and extra-retinal factors changed. Varying the initial retinal position of the target for motion at 18 degrees /s revealed that the spatial limit increased as a function of retinal eccentricity. We then employed targets that increased velocity twice, once from fixation and again during pursuit. These experiments revealed that, as expected, the spatial limit is expressed in terms of the flash separation on the retina. The spatial limit is uninfluenced by either eye velocity or the absolute velocity of the target. These experiments also demonstrate that "initiation" deficits can be observed during ongoing pursuit, and are thus not deficits in initiation per se. We conclude that such deficits result from degradation of the retino-centric motion signals that drive pursuit eye acceleration. For large flash separations, we also observed deficits in the maintenance of pursuit: sustained eye velocity failed to match the constant apparent target velocity. Deficits in the maintenance of pursuit depended on both target velocity and Deltat and did not result simply from a failure of degraded image motion signals to drive eye acceleration. We argue that such deficits result from a low gain in the eye velocity memory that normally supports the maintenance of pursuit. This low gain may appear because visual inputs are so degraded that the transition from fixation to tracking is incomplete.  相似文献   

11.
Neuronal activity in macaque supplementary eye field (SEF) is enhanced during performance of the antisaccade task. This could be related to the selection of targets by a difficult rule (move to a location diametrically opposite the cue) or to conflict between the automatic tendency to look at the cue and the voluntary intention to look away. To distinguish between rule- and conflict-based mechanisms of enhancement, we monitored neuronal activity in the SEF during performance of a delayed response task in which monkeys selected saccade targets in response to peripheral visual cues. In spatial trials, the monkey had to select as target the location marked by the cue. In color trials, the monkey had to select as target the location associated with the color of the cue. 'Color-congruent' trials resembled spatial trials in that saccades were directed to the location occupied by the cue. Nevertheless, many SEF neurons were sensitive to the rule being used, with the majority firing more strongly under the color-rule condition. 'Color-incongruent' trials resembled 'color-congruent' trials in that a color rule guided target selection. Nevertheless, many SEF neurons were sensitive to the spatial relation between cue and saccade, with the majority firing more strongly on trials in which they were incongruent. We conclude that neuronal activity in the SEF is enhanced in connection both with the use of a more difficult rule and with conflict.  相似文献   

12.
The activity of neurones was recorded from the supplementary motor area (SMA) of monkeys while they were performing a discrete, arbitrary wrist movement. The cells responded similarly whether there was a triggering stimulus at the time of the movement or not. This experiment indicates that SMA neurones are active both in relation to externally triggered and internally initiated (voluntary) actions.  相似文献   

13.
It is essential to sense anticipated and elapsed time in our daily life. Several areas of the brain including parietal cortex, prefrontal cortex, basal ganglia and olivo-cerebellar system are known to be related to this temporal processing. We now describe a number of cells in the supplementary eye field (SEF) with phasic, delay activity and postdelay activity modulation that varied with the length of the delay period. This variation occurred in two manners. First, cells became active with the shorter delay periods (GO signal presented earlier). We call these cells “short-delay cells”. Second, cells became active with the longer delay periods (GO signal presented later). We call these cells “long-delay cells”. However, such changed neuronal activity did not correlate with reaction time. These results suggest that the delay-dependent activity may reflect anticipated and elapsed time during performance of a delayed saccadic eye movement.  相似文献   

14.
Single-unit recordings were made from the basal-ganglia- and cerebellar-receiving areas of the thalamus in two monkeys trained to make arm movements that were either visually triggered (VT) or internally generated (IG). A total of 203 neurons displaying movement-related changes in activity were examined in detail. Most of these cells (69%) showed an increase in firing rate in relation to the onset of movement and could be categorized according to whether they fired in the VT task exclusively, in the IG task exclusively, or in both tasks. The proportion of cells in each category was found to vary between each of the cerebellar-receiving [oral portion of the ventral posterolateral nucleus (VPLo) and area X] and basal-ganglia-receiving [oral portion of the ventral lateral nucleus (VLo) and parvocellular portion of the ventral anterior nucleus (VApc)] nuclei that were examined. In particular, in area X the largest group of cells (52%) showed an increase in activity during the VT task only, whereas in VApc the largest group of cells (53%) fired in the IG task only. In contrast to this, relatively high degree of task specificity, in both VPLo and VLo the largest group of cells ( approximately 55%) burst in relation to both tasks. Of the cells that were active in both tasks, a higher proportion were preferentially active in the VT task in VPLo and area X, and the IG task in VLo and VApc. In addition, cells in all four nuclei became active earlier relative to movement onset in the IG task compared with the VT task. These results demonstrate that functional distinctions do exist in the cerebellar- and basal-ganglia-receiving portions of the primate motor thalamus in relation to the types of cues used to initiate and control movement. These distinctions are most clear in area X and VApc, and are much less apparent in VPLo and VLo.  相似文献   

15.
Single units were recorded from the primary motor (MI) and supplementary motor (SMA) areas of Rhesus monkeys performing one-arm (unimanual) and two-arm (bimanual) proximal reaching tasks. During execution of the bimanual movements, the task related activity of about one-half the neurons in each area (MI: 129/232, SMA: 107/206) differed from the activity during similar displacements of one arm while the other was stationary. The bulk of this "bimanual-related" activity could not be explained by any linear combination of activities during unimanual reaching or by differences in kinematics or recorded EMG activity. The bimanual-related activity was relatively insensitive to trial-to-trial variations in muscular activity or arm kinematics. For example, trials where bimanual arm movements differed the most from their unimanual controls did not correspond to the ones where the largest bimanual neural effects were observed. Cortical localization established by using a mixture of surface landmarks, electromyographic recordings, microstimulation, and sensory testing suggests that the recorded neurons were not limited to areas specifically involved with postural muscles. By rejecting this range of alternative explanations, we conclude that neural activity in MI as well as SMA can reflect specialized cortical processing associated with bimanual movements.  相似文献   

16.
To study how neurons in the medial motor areas participate in performing sequential multiple movements that are individually separated in time, we analyzed neuronal activity in the supplementary (SMA) and presupplementary (pre-SMA) motor areas. Monkeys were trained to perform three different movements separated by waiting times, in four or six different orders. Initially each series of movements was learned during five trials guided by visual signals that indicated the correct movements. The monkeys subsequently executed the three movements in the memorized order without the visual signals. Three types of neuronal activity were of particular interest; these appeared to be crucially involved in sequencing the multiple motor tasks in different orders. First, we found activity changes that were selective for a particular sequence of the three movements that the monkeys were prepared to perform. The sequence-selective activity ceased when the monkeys initiated the first movement. Second, we found interval-selective activity that appeared in the interval between one particular movement and the next. Third, we found neuronal activity representing the rank order of three movements arranged chronologically; that is, the activity differed selectively in the process of preparing the first, second, or third movements in individual trials. The interval-selective activity was more prevalent in the SMA, whereas the rank-order selective activity was more frequently recorded in the pre-SMA. These results suggest how neurons in the SMA and pre-SMA are involved in sequencing multiple movements over time.  相似文献   

17.
Summary Four monkeys were trained to position, with either hand, a vertical rod in front of one of 5 target lights spaced 20° apart on a semicircular screen. After the monkeys had reached the preoperative criterion (80% trials correct per session) they received a 1- or 2-stage bilateral lesion of posterior parietal cortex restricted to area 7. The lesion produced in all the monkeys considerable but temporary changes in movement latency, accuracy, velocity and duration. Latency increase appeared to be independent of changes in the other parameters. After the first lesion, movement latency increased for the contralateral arm in both left and right working spaces, from 100 ms up to 400 ms depending on the animal. A second lesion symmetrical to the first one increased movement latency of the arm contralateral or ipsilateral to the last lesion, depending on the time interval between the two lesions. In addition, unilateral lesions of area 7 induced a gross inaccuracy in movements of the arm contralateral to the lesion, more marked in the contralateral working space. These lesions also increased movement peak velocity and simultaneously decreased movement duration for the arm contralateral to the lesion. The increase in velocity appeared to be related to the decrease in duration. A second lesion of area 7 in the opposite hemisphere similarly affected accuracy, velocity and duration but for the arm contralateral to the second lesion.  相似文献   

18.
Cancelling of pursuit and saccadic eye movements in humans and monkeys   总被引:4,自引:0,他引:4  
The countermanding paradigm provides a useful tool for examining the mechanisms responsible for cancelling eye movements. The key feature of this paradigm is that, on a minority of trials, a stop signal is introduced some time after the appearance of the target, indicating that the subject should cancel the incipient eye movement. If the delay in giving the stop signal is too long, subjects fail to cancel the eye movement to the target stimulus. By modeling this performance as a race between a go process triggered by the appearance of the target and a stop process triggered by the appearance of the stop signal, it is possible to estimate the processing interval associated with cancelling the movement. We have now used this paradigm to analyze the cancelling of pursuit and saccades. For pursuit, we obtained consistent estimates of the stop process regardless of our technique or assumptions--it took 50-60 ms to cancel pursuit in both humans and monkeys. For saccades, we found different values depending on our assumptions. When we assumed that saccade preparation was under inhibitory control up until movement onset, we found that saccades took longer to cancel (humans: approximately 110, monkeys: approximately 80 ms) than pursuit. However, when we assumed that saccade preparation includes a final "ballistic" interval not under inhibitory control, we found that the same rapid stop process that accounted for our pursuit results could also account for the cancelling of saccades. We favor this second interpretation because cancelling pursuit or saccades amounts to maintaining a state of fixation, and it is more parsimonious to assume that this involves a single inhibitory process associated with the fixation system, rather than two separate inhibitory processes depending on which type of eye movement will not be made. From our behavioral data, we estimate that this ballistic interval has a duration of 9-25 ms in monkeys, consistent with the known physiology of the final motor pathways for saccades, although we obtained longer values in humans (28-60 ms). Finally, we examined the effect of trial sequence during the countermanding task and found that pursuit and saccade latencies tended to be longer if the previous trial contained a stop signal than if it did not; these increases occurred regardless of whether the preceding trial was associated with the same or different type of eye movement. Together, these results suggest that a common inhibitory mechanism regulates the initiation of pursuit and saccades.  相似文献   

19.
Summary Using permanently implanted electrodes in squirrel monkeys and macaques, transmission through the lateral geniculate nucleus (LGN) was assayed from the amplitude of potentials evoked in optic radiation by an electrical pulse applied to optic tract. Averaging of either individually or machine selected potentials, elicited at 0.3, 1.0, 20 or 50 Hz, in all cases showed a decrease in transmission ranging from 5–60 % in the period after saccadic eye movements made ad libitum. The suppression was greater in a patterned visual environment than in diffuse illumination, which in turn was greater than that occurring following saccades in the dark. Demonstration of the effect in darkness always required data averaging and never exceeded 20%. The effect was consistently greater in the magnocellular than parvocellular component. Suppression was often abruptly terminated and replaced by a facilitation of 5–15% about 100 msec after saccade detection. Comparable effects were observed for excitability of striate cortex tested by a stimulus pulse applied to optic radiation. In addition, sharply demarcated potentials inherently arising in LGN and striate cortex were found in association with saccades made even in total darkness. Neglecting a possible but dubious contribution from eye muscle proprioceptors, the experiments establish the existence of a centrally originating modulation of visual processing at both LGN and striate cortex in relation to saccadic eye movement in primates. This modulation may partially underlie the phenomenon of saccadic suppression and hasten the acquisition of a meaningful visual sample immediately following an ocular saccade. It remains uncertain as to how it may relate to similar or greater effects accompanying changes in alertness, or to fluctuations of unknown origin occurring sometimes semirhythmically at 0.05–0.03 Hz (Fig. 7).Supported by Grant NS 03606 and Contract 70-2279 from the National Institutes of Neurological Diseases and Stroke, National Institutes of Health and by Grant GB 7522X from the National Science Foundation. B.B.L. was also aided by a travel grant from the Wellcome Trust (U.K.) and H.S. received a travel grant from the International Brain Research Organization.  相似文献   

20.
Recent anatomical and physiological studies have suggested that parts of the cingulate cortex are involved in the control of movement. These areas have been collectively termed the cingulate motor area (CMA). Currently almost nothing is known, however, about how neurons in the CMA actually participate in the control of movement. Therefore, we investigated the role of cells in the dorsal and ventral banks of the CMA (CMAd and CMAv, respectively) in the preparation and execution of visually guided arm movements. We recorded the activity of neurons while a monkey performed a visually guided, two-dimensional instructed delay task. A monkey was required to operate a joystick that moved a cursor from a centrally located hold target to one of four peripheral targets. Neurons were classified as exhibiting preparatory activity if the neural discharge during the postinstruction delay period was significantly higher than the preinstruction activity. Neurons were classified as exhibiting movement activity if the neural discharge was significantly elevated around the time of the movement. Of the 115 task-related neurons studied, 18 (16%) exhibited only preparatory activity, 48 (42%) exhibited only movement activity, and 49 (43%) exhibited both preparatory and movement activity. Neurons were further classified in terms of their directional tuning. For 51% of neurons with preparatory activity, that activity was directional. A significantly larger proportion of movement-related activity was directional (78%). For neurons with both directional preparatory and movement activity, the preferred directions were highly correlated (r=0.83). The median onset of movement activity was 10 ms before the beginning of movement (range -200 to 200 ms). The patterns and directionality of task-related activity of CMA neurons observed in this study are similar to those previously reported for other cortical motor areas. Together, these data provide preliminary evidence that neurons in CMAd and CMAv play a role in both the preparation and execution of visually guided arm movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号