首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA mapping studies in two families provide further information on the Angelman syndrome critical region, which has recently been defined by the gene UBE3A. The first family has probable familial Angelman syndrome with a maternally imprinted inheritance pattern. A 5 year old girl with this disorder has a 14 year old brother and an 11 year old male cousin who have less typical clinical features. DNA microsatellite analysis has shown that the three share a common segment of the same grandpaternal chromosome 15q11-q13 that overlaps with UBE3A. The child with typical Angelman syndrome has an additional maternal recombination 5' to UBE3A. The second family is a mother and son both of whom have mental retardation but no other features of Angelman syndrome despite an extensive DNA deletion on the telomeric side of UBE3A. Together, the two families identify a region between loci D15S210 and D15S986 which forms part of the Angelman syndrome critical region. A new microsatellite (D15S1234) is described which can be used in place of the LS6-1 marker at locus D15S113.  相似文献   

2.
More than two thirds of the patients with Angelman syndrome (AS) carry a deletion or other chromosomal abnormality in the 15q11–13 region. A much less frequent cause (4%) is paternal uniparental disomy of the entire chromosome. In general no abnormalities are detectable in familial cases and an inherited submicroscopic deletion was described only once. Here a familial case of 2 sibs with AS is reported. No major cytogenetic or molecular abnormality was identified, but a recombination event had occurred in the AS critical region. The AS locus, D15S113, D15S10, D15S11, and D15S18 mapped proximal and the GABRB3 gene, D15S97, the GABRA5 gene, and D15S12 distal to the crossover site. This recombination within the AS critical region confirmed the exclusion of GABRB3 as a candidate gene for AS. Other markers and candidate genes can be tested genetically as well for a possible role in AS. © 1994 Wiley-Liss, Inc.  相似文献   

3.
DNA deletion studies using 5 DNA markers localized at 15q11-q12 were performed in 14 Angelman syndrome (AS) patients (9 sporadic and 5 familial cases). A one-copy density for one or more of the 5 loci was detected in 8 (57.1%) of the 14 patients. A deletion of only the D15S11 locus was detected in one sporadic patient, that involving only the D15S10 in 3 familial patients (sibs in a family), that spanning 3 loci (D15S11, D15S10, D15S12) in one sporadic patient, and that spanning 4 loci (D15S9, D15S11, D15S10, D15S12) in the other 3 sporadic patients. The deletion common to our patients as well as to the reported patients may be confined to a segment between D15S11 and D15S10, if the 5 loci are ordered as cen-D15S18-(D15S9-D15S11-D15S10)-D15S12-qt er. This site overlaps but is more distal to the common deletion site in Prader-Willi syndrome (PWS) patients. In the family of the 3 sibs, both of the phenotypically normal mother and maternal grandfather also have deletions of the D15S10 locus. These results were consistent with the genomic imprinting hypothesis for the occurrence of AS, i.e., the lack of a maternally derived locus leads to AS, but may not support a model that AS is the alternative phenotype of PWS at the identical locus.  相似文献   

4.
Angelman syndrome (AS) is a disorder of psychomotor development caused by loss of function of the imprinted UBE3A gene. Since the paternal UBE3A copy is regularly silent, only mutations inactivating the maternal copy cause AS. Among 1,272 patients suspected of AS, we found one with an isolated deletion of the UBE3A gene on the maternally inherited chromosome. Initial DNA methylation testing at the SNURF-SNRPN locus in the patient revealed a normal pattern. The deletion was only detected through allelic loss at microsatellite loci D15S1506, D15S122, and D15S210, and confirmed with fluorescence in situ hybridization (FISH) using bacterial artificial chromosome (BAC) probes derived from the loci. It extends approximately 570 kilobase pairs (kbp), encompassing the UBE3A locus, and is flanked by loci PAR/SN and D15S986. The deletion is familial, and haplotype studies suggest that a great grandfather of the index patient already carried this deletion, and that it causes AS when inherited through the female germline but not Prader-Willi syndrome (PWS) when paternally inherited. Our findings support the hypothesis that the functional loss of maternal UBE3A gene activity is sufficient to cause AS and that the deleted region does not contain genes or other structures that are involved in PWS. Finally, this case highlights that methylation tests can fail to detect some familial AS cases with a recurrence risk of 50%.  相似文献   

5.
Angelman syndrome (AS) is a neurogenetic disorder arising froma lack of genetic contribution from the maternal chromosome15q11–13. To date, the AS critical region has been definedby an inherited deletion of approximately 1.5Mb, spanning the3–21 (D15S10), LS6–1 (D15S113) and GABRB3 loci.We have Identified an individual with the typical features ofAS who has a deletion of the maternal chromosome which encompassesLS6–1, but does not extend to either flanking marker.This deletion, initially detected by (CA)n repeat analysis,was further characterised by fluorescence In situ hybridisation(FISH) using cosmids derived from a 260 kb LS6–1 yeastartificial chromosome (YAC). Neither end cosmid from this YACclone falls within the deletion, suggesting that the minimalAS region Is less than 200 kb. We also studied three loci within15q11–13 which detect parent-of-origin specific DNA methylationimprints, and found that both normal maternal and paternal patternswere present in this patient.  相似文献   

6.
We report the molecular characterisation of two families with Angelman syndrome referred for prenatal diagnosis, in which atypical molecular findings resulted in counselling dilemmas. The first is a familial case of Angelman syndrome in which the two affected children have mutations which affect the imprinting mechanism, as shown by the presence of paternal DNA methylation patterns at D15S63 and SNRPN and biparental inheritance of 15q11-q13 markers. DNA prepared from a 21 week fetal blood sample detected a fetus with normal maternal and paternal DNA methylation patterns at D15S63, but inheritance of the same maternal chromosome 15q11-q13 as the two affected sibs. This is probably a result of germline mosaicism in the mother. The second is a case of Angelman syndrome with an atypical deletion of 15q11-q13, which involves both unusual proximal and distal breakpoints. The deletion was characterised in order to assess the risk of Angelman syndrome in a second pregnancy in the mother of this child.  相似文献   

7.
We report on a combined high resolution cytogenetic and fluorescent in situ hybridization study (FISH) on 15 Prader-Willi syndrome (PWS) and 14 Angelman syndrome (AS) patients. High resolution banding showed a microdeletion in the 15q11-q13 region in 7 out of 15 PWS patients, and FISH analysis of the D15S11 and SNRPN cosmids demonstrated absence of the critical region in three additional cases. Likewise 8 out of 14 AS patients were found to be deleted with FISH, using the GABRB3 specific cosmid, whereas only 4 of them had a cytogenetically detectable deletion. © 1995 Wiley-Liss, Inc.  相似文献   

8.
We report on a 11-year-old boy investigated for a clinical suspicion of Angelman syndrome (AS) (OMIM 105830) who was found to carry a de novo interstitial deletion of chromosome 15q13.2q13.3. The deletion overlaps the critical region for the newly recognized recurrent 15q13.3 deletion syndrome. This is the first report of a patient with 15q13.3 deletion syndrome with clinical features similar to that of AS, thus broadening the phenotypic spectrum associated with the 15q13.3 microdeletion syndrome.  相似文献   

9.
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by loss of function of imprinted genes in the 15q11-13 critical region. Reports of PWS and AS in close relatives within the same family are rare. We report on the diagnosis of a familial unbalanced 10;15 translocation causing AS in a child that led to the prenatal diagnosis of an unbalanced 10;15 translocation with resultant deletion of the Prader-Willi critical region in her maternal uncle's offspring.  相似文献   

10.
Angelman syndrome (AS) results from a lack of maternal contribution from chromosome 15q11-13, arising from de novo deletion in most cases or rarely from uniparental disomy. These families are associated with a low recurrence risk. However, in a minority of families, more than one child is affected. No deletion has been found in these families, except one. The mode of inheritance in these families is autosomal dominant modified by imprinting. Sporadic cases, with no observable deletion, therefore pose a counselling dilemma as there could be a recurrence risk as high as 50%. We present a series of 93 AS patients, showing the relative contribution of these different genetic mechanisms. Eighty-one AS patients were sporadic cases while 12 cases came from six families. Sixty cases had deletions in 15q11-13 detected by a set of highly polymorphic (CA)n repeats markers and conventional RFLPs. Ten sporadic cases plus all 12 familial cases had no detectable deletion. In addition, two cases of de novo deletions occurred in a chromosome 15 carrying a pericentric inversion. In one of these the AS child had a cousin with Prader-Willi syndrome (PWS) arising from a de novo deletion in an inv(15) inherited from his father. One case arose from a maternal balanced t(9;15)(p24;q15) translocation. There were three cases of uniparental disomy. Five patients were monoallelic for all loci across the minimal AS critical region, but the presence of a deletion cannot be confirmed. In familial cases, all affected sibs inherited the same maternal chromosome 15 markers for the region 15q11-13. Two cases were observed with a de novo deletion starting close to the locus D15S11 (IR4-2R), providing evidence for the development of classical AS with smaller deletions. Cytogenetic analysis proved limited in its ability to detect deletions, detecting only 42 out of 60 cases. However, cytogenetic analysis is still essential to detect chromosomal abnormalities other than deletions such as inversions and balanced translocations since both have an increased risk for deletions. A staged diagnostic strategy based on the use of highly informative (CA)n repeat markers is proposed.  相似文献   

11.
Angelman syndrome (AS) and Prader-Willi syndrome (PWS) have become the classical examples of genomic imprinting in man, as completely different phenotypes are generated by the absence of maternal (AS) or paternal (PWS) contributions to the q11-13 region of chromosome 15 as a result of deletion or uniparental disomy. Apparently, most patients are sporadic cases. The genetic mechanism underlying familial AS has remained enigmatic for a long time. Recently, evidence has been emerging suggesting autosomal dominant inheritance of a detectable or undetectable defect in a gene or genes at 15q11-13, subject to genomic imprinting. The present report describes an unusually large pedigree with segregation of AS through maternal inheritance and apparent asymptomatic transmission through several male ancestors. Deletion and paternal disomy at 15q11-13 were excluded. However, the genetic defect is still located in this region, as we obtained a maximum lod score of 5.40 for linkage to the GABA receptor locus GABRB3 and the anonymous DNA marker D15S10, which have been mapped within or adjacent to the AS critical region at 15q11-13. The size of the pedigree allowed calculation of an odds ratio in favour of genomic imprinting of 9.25 x 10(5). This family illustrates the necessity of extensive pedigree analysis when considering recurrence risks for relatives of AS patients, those without detectable deletion or disomy in particular.  相似文献   

12.
Patients with monosomy 22q13.3 --> qter have, in addition to (usually severe) developmental delay, hypotonia, severe expressive language delay leading to absence of speech, pervasive developmental abnormalities, and subtle facial anomalies. Thus far, it has been one of the more common submicroscopic telomere deletions seen in patients with mental retardation. Due to the phenotypic overlap between monosomy 22q13.3 and Angelman syndrome (AS), 44 patients with AS features but without one of the characteristic molecular 15q abnormalities were tested for 22qter deletions. In the study group, 31/44 (70%) were heterozygous for locus D22S163 with probe cMS607 (distance 0.125 Mb from telomere). The remaining 13/44 (30%) patients were heterozygous for one or more of four microsatellite markers centromeric from D22S163 in the 22qter region (distances 1.5-4.3 Mb from telomere). Based on the present study, there is no evidence that patients with an "Angelman-like" phenotype are more likely to have a 22qter deletion than other individuals with mental retardation.  相似文献   

13.
We analyzed 61 Angelman syndrome (AS) patients by cytogenetic and molecular techniques. On the basis of molecular findings, the patients were classified into the following 4 groups: familial cases without deletion, familial cases with submicroscopic deletion, sporadic cases with deletion, and sporadic cases without deletion. Among 53 sporadic cases, 37 (70%) had molecular deletion which commonly extended from D15S9 to D15S12, although not all deletions were identical. Of 8 familial cases, 3 sibs from one family had a molecular deletion involving only 2 loci, D15S10 and GABRB3, which define the critical region for AS phenotypes. The parental origin of deletion, both in sporadic and familial cases, was exclusively maternal and consistent with a genomic imprinting hypothesis. Among sporadic and familial cases without deletion, no uniparental disomy was found and most of them were shown to inherit chromosomes 15 from both parents (biparental inheritance). A discrepancy between cytogenetic and molecular deletion was observed in 14 (26%) of 53 patients in whom cytogenetic analysis could be performed. Ten (43%) of 23 patients with a normal karyotype showed a molecular deletion, and 4 (13%) of 30 patients with cytogenetic deletion, del(15) (q11q13), showed no molecular deletion. Most clinical manifestations, including neurological signs and facial characteristics, were not distinct in each group except for hypopigmentation of skin or hair. Familial cases with submicroscopic deletion were not associated with hypopigmentation. These findings suggested that a gene for hypopigmentation is located is located outside the critical region of AS and is not imprinted. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Angelman syndrome (AS) is a profound disorder notable for mental retardation and severe language deficits that results from lack of function of the maternally inherited copy of the UBE3A gene. Chromosome deletions of 15q11q13, paternal uniparental disomy (UPD), UBE3A gene mutations, and imprinting center defects are all commonly recognized mechanisms that disrupt the function of the maternal copy of the UBE3A gene. We report here two patients with different atypical etiologies of AS. The first patient is a 3-year-old boy with global developmental delay, severe speech deficits, seizures, and very happy disposition. Southern blot analysis for the maternal and paternal chromosome 15 methylation products showed a mosaic methylation pattern, suggesting an imprinting center defect. The second patient is a 4(1/2)-year-old boy with global developmental delay, no expressive language, microcephaly, seizures, and ataxic gait. Array-based comparative genomic hybridization (CGH) demonstrated a loss in copy number for two overlapping clones encompassing the UBE3A gene, indicating a partial deletion within UBE3A. His mother, who was adopted, had an identical pattern, suggesting that her deletion was probably on her paternally imprinted allele. These patients illustrate the expanding spectrum of molecular findings in AS, reinforce the need to maintain suspicion when clinical features suggest AS but initial testing is normal, and show the power of CGH as a tool to uncover partial UBE3A deletions.  相似文献   

15.
We report on a case of Prader-Willi syndrome (PWS) with a true reciprocal unbalanced translocation, 45,XX,-15,der(11)t(11;15)pat. The proposita was diagnosed clinically as having severe PWS. Molecular studies revealed loss of the paternal methylation pattern at locus D15S63 and a deletion encompassing the loci from at least D15S10 to D15S97 of paternal chromosome 15. FISH studies confirmed the deletion of 15q11-q13 region and the presence of two telomeres on all chromosomes. The proposita's father, the father's sister and their mother are all carriers of the same balanced translocation t(11;15)(q25;q13). By genomic imprinting we would expect that if the father's sister were to give birth to a child with the same unbalanced translocation as the proband, it would be affected by Angelman syndrome.
To date, a similar familial unbalanced translocation due to loss of the small chromosome 15 derivative has not been described.  相似文献   

16.
The Prader-Willi (PWS) and Angelman syndromes (AS) share the same apparent cytogenetic and molecular lesions of 15q11-13 and yet exhibit distinct clinical phenotypes. The etiology of PWS or AS appears to depend on the parental origin of the aberrant chromosome 15. Substantial clinical overlap has not been reported between deletion-positive PWS and AS patients. In the present study, we report the clinical, cytogenetic, and molecular findings in three AS patients. The first patient is a mentally retarded woman with a visible deletion of 15q11-13 with typical craniofacial, behavioral, and neurologic changes of AS. This patient is hyperphagic, and she is moderately obese for her height. Her hands and feet are small. These manifestations are more characteristic of PWS and not of AS. The molecular studies showed deletions of maternal origin for five distal PWCR loci. The most proximal locus, D15S18, was not deleted. These findings are identical to those found in our third AS patient who does not have any PWS features. To the best of our knowledge, this is the first report of concurrence of hyperphagia with consequent obesity and the AS phenotype in a patient with a del 15(q11-13) of maternal origin. These clinical findings suggest that overlap in the symptoms of PWS and AS can occur. Our second AS patient presents with atypical molecular findings in that he cannot be classed into any of the three proposed sub-groups of AS patients and may be representative of a fourth sub-group of AS patients.  相似文献   

17.
The inheritance of Angelman's syndrome, a disorder characterised by mental retardation, epilepsy, ataxia, and a happy disposition, is debated because affected sibs occur less frequently than expected with autosomal recessive inheritance. After discovering two unrelated patients with a small deletion of the proximal long arm of chromosome 15, 10 further patients with Angelman's syndrome were reassessed. Five had apparently normal karyotypes, four had a deletion within 15q11-13, and one had a pericentric inversion, inv(15)(p11q13) involving the same chromosomal region. In the latter case, the healthy mother had the same pericentric inversion, indicating that the patient also had a submicroscopic mutation on his other chromosome 15. These data map the Angelman locus to 15q11-13 and suggest that de novo visible deletions (associated with a low recurrence risk) and autosomal recessively inherited cases combine to give an overall sib recurrence risk of less than 25%.  相似文献   

18.
The Prader-Willi (PWS) and Angelman syndromes (AS) share the same apparent cytogenetic and molecular lesions of 15q11-13 and yet exhibit distinct clinical phenotypes. The etiology of PWS or AS appears to depend on the parental origin of the aberrant chromosome 15. Substantial clinical overlap has not been reported between deletion-positive PWS and AS patients. In the present study, we report the clinical, cytogenetic, and molecular findings in three AS patients. The first patient is a mentally retarded woman with a visible deletion of 15q11-13 with typical craniofacial, behavioral, and neurologic changes of AS. This patient is hyperphagic, and she is moderately obese for her height. Her hands and feet are small. These manifestations are more characteristic of PWS and not of AS. The molecular studies showed deletions of maternal origin for five distal PWCR loci. The most proximal locus, D15S18, was not deleted. These findings are identical to those found in our third AS patient who does not have any PWS features. To the best of our knowledge, this is the first report of concurrence of hyperphagia with consequent obesity and the AS phenotype in a patient with a del 15(q11-13) of maternal origin. These clinical findings suggest that overlap in the symptoms of PWS and AS can occur. Our second AS patient presents with atypical molecular findings in that he cannot be classed into any of the three proposed sub-groups of AS patients and may be representative of a fourth sub-group of AS patients.  相似文献   

19.
We had previously described a patient with an overgrowth syndrome and the chromosome constitution 45,XY,t(15q15q) (Wajntal et al., DNA Cell Biol 1993: 12: 227–231). Clinical reassessment and the use of molecular studies, including methylation analysis with an SNRPN probe, microsatellite analyses of D15S11 , GABRB3 and D15S113 loci, and fluorescence in situ hybridization (FISH) using the SNRPN and GABRB3 probes, are consistent with a diagnosis of Angelman syndrome (AS) due to paternal isodisomy. This is the fourth report case of a translocation 15q15q with paternal uniparental disomy (UPD). Our findings suggest that some patients with clinical features of AS have hyperphagia and obesity with overgrowth, and that these features should not rule out a diagnosis of AS.  相似文献   

20.
Angelman syndrome (AS) is a disorder of psychomotor development caused by loss of function of the imprinted UBE3A gene. Since the paternal UBE3A copy is regularly silent, only mutations inactivating the maternal copy cause AS. Among 1,272 patients suspected of AS, we found one with an isolated deletion of the UBE3A gene on the maternally inherited chromosome. Initial DNA methylation testing at the SNURF‐SNRPN locus in the patient revealed a normal pattern. The deletion was only detected through allelic loss at microsatellite loci D15S1506, D15S122, and D15S210, and confirmed with fluorescence in situ hybridization (FISH) using bacterial artificial chromosome (BAC) probes derived from the loci. It extends approximately 570 kilobase pairs (kbp), encompassing the UBE3A locus, and is flanked by loci PAR/SN and D15S986. The deletion is familial, and haplotype studies suggest that a great grandfather of the index patient already carried this deletion, and that it causes AS when inherited through the female germline but not Prader‐Willi syndrome (PWS) when paternally inherited. Our findings support the hypothesis that the functional loss of maternal UBE3A gene activity is sufficient to cause AS and that the deleted region does not contain genes or other structures that are involved in PWS. Finally, this case highlights that methylation tests can fail to detect some familial AS cases with a recurrence risk of 50%. © 2002 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号