首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The recovery of the EEG and somatosensory evoked responses (SER) as compared with recovery of the cerebral energy state was studied in rats during recirculation following different degrees of brain ischemia with varying tissue lactic acidosis. Reversible complete and incomplete ischemia was induced either by increasing the intracranial pressure (compression ischemia) or by carotid artery clamping combined with arterial hypotension. In incomplete ischemia the degree of tissue lactic acidosis was varied by manipulations of blood and brain glucose levels. Animals with an increase in brain lactate to about 25 mumol X g-1 (whole brain wet weight) during ischemia showed persistent failure of both cerebral energy metabolism and neurophysiologic restitution during the recirculation phase; if less than 20 mumol X g-1 metabolic recovery was almost complete. Despite a similar restitution of tissue energy metabolism in these animals, neurophysiologic recovery was inversely proportional to brain lactate concentrations during ischemia. At similar levels of ischemic tissue lactic acidosis, and despite a similar recovery of cortical energy state, the neurophysiologic restitution was clearly inferior after complete ischemia to that following incomplete ischemia. Three conclusions were drawn: (i) neurophysiologic variables were more sensitive indicators of postischemic persistent cerebral dysfunction than the cerebral energy state; (ii) the degree to which lactate accumulated in the ischemic brain influenced neurophysiologic restitution even if concentrations critical for metabolic recovery were not attained; and (iii) incomplete ischemia was less harmful than complete ischemia provided that tissue lactic acidosis was not excessive.  相似文献   

2.
Intraischemic hyperglycemia has different effects on neurologic outcome in mature vs. immature brain, and may reflect differences in the extent or duration of cerebral lactic acidosis. We examined the hypotheses that post-ischemic lactate and acid clearance rates depend on the severity of intraischemic cerebral acidosis, and that rates of clearance change as a function of brain maturation. In vivo 31P and 1H magnetic resonance spectroscopy (MRS) was used to compare intracellular acid and lactate clearance rates in newborn and 1-month old swine following a 14-min episode of transient near-complete global ischemia. In the same animals, in vivo microdialysis was used to determine if extracellular lactate clearance changed as a function of cerebral lactic acidosis or differed between age groups following ischemia. Plasma glucose concentration was altered in individual animals to study a range of intraischemic cerebral lactic acidosis. For both age-groups, maximal brain acidosis and lactosis occurred in the post-ischemia interval, indicating a delay in the re-establishment of oxidative metabolism following ischemia. Clearance half-lives of both cerebral acidosis and lactosis increase as a function of increased intraischemic cerebral acidosis. For either age group, the clearance half-life for acidosis was faster than the half-life for lactate. However, the subgroup of 1-month old swine who experienced severe cerebral acidosis (i.e., pH<6.1) had a longer cerebral lactate clearance half-life as compared to the subgroup of newborn animals with a similar severity of acidosis. In both age groups, there were comparable maximal increases in extracellular lactate concentrations in the post-ischemic period and similar rates of decline from the maximum. These results demonstrate that post-ischemic lactate and acid clearance are altered by the extent of intraischemic acidosis, and the extent of post-ischemic uncoupling between brain acid and lactate clearance increases with advancing age. The transmembrane clearance of lactate was not a prominent mechanism that differentiated lactate clearance rates between newborn and 1-month old swine.  相似文献   

3.
The ischemic tissue becomes acidic after initiation of anaerobic respiration, which may result in impaired tissue metabolism and, ultimately, in severe tissue damage. Although changes in the major cerebral metabolites can be studied using magnetic resonance (MR) spectroscopy (MRS)-based techniques, their spatiotemporal resolution is often not sufficient for routine examination of fast-evolving and heterogeneous acute stroke lesions. Recently, pH-weighted MR imaging (MRI) has been proposed as a means to assess tissue acidosis by probing the pH-dependent chemical exchange of amide protons from endogenous proteins and peptides. In this study, we characterized acute ischemic tissue damage using localized proton MRS and multiparametric imaging techniques that included perfusion, diffusion, pH, and relaxation MRI. Our study showed that pH-weighted MRI can detect ischemic lesions and strongly correlates with tissue lactate content measured by 1H MRS, indicating lactic acidosis. Our results also confirmed the correlation between apparent diffusion coefficient and lactate; however, no significant relationship was found for perfusion, T1, and T2. In summary, our study showed that optimized endogenous pH-weighted MRI, by sensitizing to local tissue pH, remains a promising tool for providing a surrogate imaging marker of lactic acidosis and altered tissue metabolism, and augments conventional techniques for stroke diagnosis.  相似文献   

4.
Lactic acidosis is associated with both inherited and acquired metabolic diseases. Lactic acid metabolism in the presence of altered gluconeogenesis, anaerobic glycolysis, and acid-base balance is a major factor in many disorders. Lactic acid can be formed only from pyruvic acid; therefore, disorders that increase pyruvate concentration, enhance lactic acid formation, or reduce lactic acid degradation cause lactic acidosis. Inborn metabolic errors that are accompanied by derangement of metabolic pathways of glucose, pyruvate, amino acids, and organic acids as well as toxic and systemic conditions that promote tissue hypoxia or mitochondrial injury result in lactic acidosis. In the presence of acquired disorders, treatment is directed initially toward modification or cure of the primary condition and then toward eliminating acidosis and other metabolic complications. Specific therapy is available for some inborn errors of metabolism.  相似文献   

5.
There is increasing evidence that affective disorders are associated with dysfunction of neurotransmitter postsynaptic transduction pathways and that chronic treatment with clinically active drugs results in adaptive modification of these pathways. Despite the close dependence of signal transduction on adenosine triphosphate (ATP) availability, the changes in energy metabolism in affective disorders are largely unknown. This question has been indirectly dealt with through functional imaging studies (PET, SPECT, MRS). Despite some inconsistencies, PET and SPECT studies suggest low activity in cortical (especially frontal) regions in depressed patients, both unipolar and bipolar, and normal or increased activity in the manic pole. Preliminary MRS studies indicate some alterations in brain metabolism, with reduced creatine phosphate and ATP levels in the brain of patients with affective disorders. However, the involvement of the energy metabolism in affective disorders is still debated. We propose direct neurochemical investigations on mitochondrial functional parameters of energy transduction, such as the activities of (a) the enzymatic systems of oxidative metabolic cycle (Kreb's cycle); (b) the electron transfer chain; (c) oxidative phosphorylation, and (d) the enzyme activities of ATP-requiring ATPases. These processes should be studied in affective disorders and in animals treated with antidepressant drugs or lithium.  相似文献   

6.
Energy metabolism in disorders of the nervous system   总被引:6,自引:0,他引:6  
"Energy metabolism" is deranged in a wide variety of disorders of the nervous system. This term refers rather loosely to the pathways responsible for the utilization of the major substrates of brain. Primary disorders of energy metabolism are those in which the primary insult affects the cellular machinery required for energy metabolism. A typical example would be a defect in a gene coding for a mitochondrial protein. Biochemically, defects which appear to be hereditary and which lead to disease of the central nervous system have been described in each of the pathways of energy metabolism: glycogenolysis (the break-down of glycogen to glucose); glycolysis (the break down of glucose to pyruvate and lactate); the pyruvate dehydrogenase complex (which oxidizes pyruvate to enter the Krebs tricarboxylic acid cycle); the tricarboxylic acid cycle itself (which completes the oxidation of carbohydrates and other substrates to carbon dioxide); electron transport (which carries out their oxidation to water); the pentose phosphate pathway (an alternate pathway for glucose oxidation); and several "minor" mitochondrial pathways. Clinically, the spectrum of syndromes associated with primary disorders of energy metabolism is wide. Common manifestations include psychomotor retardation, with associated lactic acidosis and/or hypoglycemia. The laboratory abnormalities may be intermittent. Syndromes which have been culled out include congenital lactic acidosis, Leigh disease, intermittent ataxia, Kearns-Sayre-Shy syndrome (KSS), myoclonus epilepsy with ragged red fibers (MERRF), and mitochondrial myopathy-encephalopathy-lactic acidosis-stroke (MELAS). As with other families of inborn errors, both clinical and biochemical heterogeneity occur. Patients with apparently similar clinical syndromes can turn out to have different inborn errors, and patients with abnormalities of the same gene product can have clinically distinguishable syndromes. Secondary disorders are those in which the derangements of energy metabolism are presumably secondary to some other insult but may still be important for the cellular pathophysiology. These include the metabolic encephalopathies and probably a number of well-known neurodegenerative disorders. In the hereditary ataxias, abnormalities of mitochondrial markers are common but do not correlate consistently with the disorders as conventionally classified; a new classification into axonal ataxias, multiple system degenerations, and ataxic encephalopathies may be easier to relate to the pathophysiology.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Twenty patients with histologically confirmed gliomas were studied with positron emission tomography (PET) and proton magnetic resonance spectroscopy (1H-MRS). PET with 18F-2-fluoro-2-deoxy-D-glucose (FDG) provided tomograms of the metabolic rate of glucose. MRS images were obtained by combining volume-selective excitation with phase-encoded acquisition. With 32 x 32 gradient phase-encoding steps, an in-plane resolution of 7 x 7 mm was achieved. From this set of spectra, lactate maps were created and compared with PET maps of glucose metabolism. Maximum glucose metabolic rates within tumors (relative to metabolic rates of glucose in contralateral regions of the brain) were correlated significantly with maximum lactate concentrations (relative to N-acetyl aspartate peaks in the contralateral part of the brain). In 8 tumors, no lactate was detected, and in 7 of these the maximum glucose metabolic rate was below the median value. The tumor with the highest lactate concentration also had the highest glucose metabolic rate. The topographic relation between glucose metabolic rate and lactate concentration could be analyzed in 9 patients by three-dimensional alignment of the PET and MRS images. In that analysis, maximum lactate concentrations were often not found in the same location as maximum glucose metabolism, but lactate tended to accumulate in tumor cysts, necrotic areas, and the vicinity of the lateral ventricles. The combination of FDG PET and 1H-MRS imaging demonstrates details of the spatial relation between the two poles of nonoxidative glycolysis, glucose uptake and lactate deposition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In order to evaluate the influence of cellular acidosis upon the restitution of brain energy metabolism after ischemia the amount of lactate accumulated during a 5 min period of total compression ischemia was varied by means of induced hypoglycemia (administration of insulin) or hyperglycemia (administration of glucose). In this way the lactate content of the tissue varied between 4.8 (hypoglycemia) and 20.7 (hyperglycemia) μmoles/g. Calculations indicate that the corresponding intracellular pH values differed by 0.8 units, and that the hyperglycemic animals had an intracellular pH of close to 6. In spite of these pH differences the energy state of the tissue, as evaluated from the concentrations of phosphocreatine, creatine, ATP, ADP and AMP, and from the adenylate energy charge, did not differ between the groups. Furthermore, when the tissue was recirculated for 15 min following a 5 min ischemic period there was an identical degree of restitution of the energy state in the hypo-, normo- and hyperglycemic animals. Thus, the results lend no support to the view that even a marked lactic acidosis adversely affects the ability of brain cells to survive total ischemia of limited duration.  相似文献   

9.
The effect of different degrees of lactic acidosis on the recovery of brain mitochondrial function, measured as respiratory activity in isolated mitochondria or cortical concentrations of labile phosphates and carbohydrate substrates, was studied during 30 min of recirculation following 15 min of near-complete forebrain ischemia in rats. During ischemia, there was a marked decrease in mitochondrial State 3 respiration in vitro and a depletion of energy stores (i.e., phosphocreatine, ATP, glucose, and glycogen) in vivo that was similar in the high- and low-lactate ischemia groups. However, lactate concentrations differed markedly (20 and 10 mumol g-1, respectively). During recirculation, there was a near-complete recovery of both respiratory activity in vitro and adenylate energy charge (EC) in vivo regardless of the differences in lactic acidosis during ischemia. Respiratory activity and EC were well correlated. The changes in Ca2+ homeostasis during ischemia, an increase in tissue and a decrease in mitochondrial Ca2+ content, were reversed rapidly after ischemia in both high- and low-lactate ischemia animals and did not hinder an early recovery of mitochondrial function. It is concluded that lactic acidosis, with lactate levels reaching 20 mumol g-1 during 15-min ischemia, does not adversely affect early postischemic recovery of mitochondrial function.  相似文献   

10.
Is brain lactate increased in Huntington's disease?   总被引:1,自引:0,他引:1  
Impaired brain energy metabolism with increased regional brain lactate may play a role in the pathogenesis of Huntington's disease (HD). Magnetic resonance spectroscopy (MRS) has provided conflicting evidence, however, regarding metabolic changes. Our objective was to evaluate the potential contribution of CSF lactate to the changes observed with MRS in HD. We performed single voxel MRS at 3 T in 23 patients with HD and 28 age-matched control subjects using a method to segment voxels into grey matter, white matter, and CSF, and to extrapolate regional lactate content to a hypothetical voxel containing 100% brain in order to control for differences in CSF lactate. Lactate/creatine and lactate/N-acetyl aspartate (Lac/NAA) ratios were significantly increased in parieto-occipital (p<0.05) and cerebellar (p<0.01) voxels in HD patients. After extrapolating group Lac/NAA results to a theoretical voxel containing 100% brain, this ratio was greater in the HD group than the control group, suggesting possibly increased lactate in this predicted voxel, although the difference between groups did not reach statistical significance. These results suggest an increase in brain lactate content in manifest HD, in a regionally non-specific fashion, although the possibility of a CSF contribution to this increase cannot be ruled out. Regardless, this supports the possibility of impaired mitochondrial function resulting in abnormal brain energy metabolism in HD.  相似文献   

11.
Brain metabolism increases during stimulation, but this increase does not affect all energy metabolism equally. Briefly after stimulation, there is a local increase in cerebral blood flow and in glucose uptake, but a smaller increase in oxygen uptake. This indicates that temporarily the rate of glycolysis is faster than the rate of oxidative metabolism, with a corresponding temporary increase in lactate production. This minireview discusses the long-standing controversy about which cell type, neurons or astrocytes, are involved in this increased aerobic glycolysis. Recent biosensor studies measuring metabolic changes in neurons, in acute brain slices or in vivo, are placed in the context of other data bearing on this question. The most direct measurements indicate that, although both neurons and astrocytes may increase glycolysis after stimulation, neurons do not rely on import of astrocytic-produced lactate, and instead they increase their own glycolytic rate and become net exporters of lactate. This temporary increase in neuronal glycolysis may provide rapid energy to meet the acute energy demands of neurons.  相似文献   

12.
Lactic acidosis accompanies many acquired and inherited metabolic diseases. The role of lactic acid in anaerobic glycolysis, gluconeogenesis, and acid-base balance is key to the understanding of these disorders. Because lactic acid can be formed only from pyruvic acid, disorders which increase pyruvate production, inhibit its catabolism, or shift the equilibrium toward lactic acid formation cause lactic acidosis. Lactic acidosis results from systemic diseases and toxins which produce tissue hypoxia or mitochondrial injury. Abnormalities of other metabolites such as glucose, pyruvate, amino acids, and organic acids may provide clues to inborn metabolic errors. Treatment must first be directed toward removing precipitating causes of the acquired disorders and then toward correcting the acidosis and other metabolic complications such as hypoglycemia. Some of the inborn errors respond to specific therapies.  相似文献   

13.
Purpose: To clarify the roles of serial MR spectroscopy (MRS) and continuous arterial spin labeling (CASL) perfusion images for evaluating cerebral lesions in patients with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS). Materials and methods: Two cases of MELAS followed up serially using MRS and CASL images in addition to routine MR imaging were enrolled. Results: Newly appeared lesions assessed by MRS revealed increased lactate doublets which correlated well with CSF lactate level, and these showed a decreasing trend after treatment, although conventional T2 weighted images revealed hyper-intensity in both phases. Spectra from normally appearing white matter depicted slight lactate peaks during clinical exacerbation periods with marked elevation of CSF lactate and showed a decreasing NAA concentration during the prolonged course. In CASL images, acute lesions of the disease were clearly visible as hyper-perfusion foci, and chronic lesions were demonstrated as hypo- or iso-perfusion regions. Conclusion: The detection of lactate peaks in the MR spectrum from normally appearing white matter may be considered as systemic lactic acidosis or an exacerbation of MELAS, and active lesions can be distinguished from chronic inactive lesions by the increase of lactate peaks in MRS or the state of hyper-perfusion in CASL images.  相似文献   

14.
The clinical manifestations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS syndrome) are nonspecific and can easily be misdiagnosed. Magnetic resonance spectroscopy (MRS)-based detection of lactate in the brain has been found to be of diagnostic help in MELAS syndrome, however, the issue of whether MRS features vary by stage remains unresolved. We assessed the causative mutation and radiological features of a family of MELAS. Four of the family members harbored the A3243G mutation, probably of maternal inheritance. However, the clinical phenotypic expression was different in these patients. MRS showed a lactate peak, decreased N-acetylaspartate, choline, and creatine, which became more pronounced with progression of the disease, demonstrating that brain-MRS-based detection of lactate may be a suitable way to monitor the progression and treatment of MELAS.  相似文献   

15.
This case report describes a follow up investigation of a patient with impaired word discrimination due to mitochondrial encephalopathy with lactic acidosis and stroke-like syndrome (MELAS) using proton magnetic resonance spectroscopy ((1)H MRS) and auditory evoked magnetic fields (AEFs). The initial (1)H MRS showed no N-acetyl aspartate (NAA) and marked accumulation of lactate (Lac) in the stroke-like lesion of MELAS, which was silent in neural activity according to AEFs. The follow up investigations, however, demonstrated that NAA reappeared, that the formerly increased Lac signal was significantly reduced, and that the magnitude of AEFs of the lesion was markedly increased. Metabolic and functional changes in (1)H MRS and AEFs reflected the neurological recovery very well. The stroke-like lesion was shown, using AEFs and (1)H MRS, to be able to function properly, although brain tissue of the lesion initially had severe damage due to mitochondrial dysfunction.  相似文献   

16.
Brain slices of varying thickness were used to modify retention of metabolic products in an in vitro model of ischemia. Past and present results reveal increased anaerobic glycolysis in 660-microns slices with accumulation of lactate as slice thickness reaches 1,000 microns. Brain slice glucose utilization and lactate content were measured in buffers of various extracellular K+ levels and pH in 540-, 660-, and 1,000-microns slices. Acidosis suppresses glucose utilization at all slice thicknesses without affecting tissue lactate. Studies of 2-deoxyglucose metabolites establish that the suppression of glucose utilization by acidosis is due entirely to inhibition of glucose phosphorylation without any effect on glucose uptake into tissue. The inhibition is reversible after 45 min at pH 6.1. The experiments with acidosis also suggest that persistent energy demands continue to stimulate phosphofructokinase despite the low pH so that glycolysis continues, with potential for injury. Increasing K+ increases glucose utilization and tissue lactate at all three thicknesses. Correlations of glucose utilization with lactate accumulation support the possibility that high K+ may exert a dual influence on the tissue metabolism, not only stimulating glucose utilization by inducing depolarization but also by influencing the removal of metabolic products.  相似文献   

17.
We studied six infants with thiamine-responsive congenital lactic acidosis and normal pyruvate dehydrogenase complex activity in vitro, through clinical and biochemical analysis. In addition to elevated lactate and pyruvate levels, the data revealed increased urinary excretion of alpha-ketoglutarate, alpha-ketoadipate, and branched chain ketoacids, indicating functional impairment of thiamine-requiring enzymes, such as pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, alpha-ketoadipate dehydrogenase, and branched chain amino acid dehydrogenase. The metabolism of thiamine has not been investigated in patients with thiamine-responsive congenital lactic acidosis. We evaluated two specific transport systems, THTR-1 (SLC19A2) and THTR-2 (SLC19A3), and a pyrophosphorylating enzyme of thiamine, thiamine pyrophosphokinase (hTPK 1), in addition to pyruvate dehydrogenase complex and alpha-ketoglutarate dehydrogenase complex activity; no abnormality was found. Although the clinical features of thiamine-responsive congenital lactic acidosis are heterogeneous and clinical responses to thiamine administration vary, we emphasize the importance of early diagnosis and initiation of thiamine therapy before the occurrence of permanent brain damage. Careful monitoring of lactate and pyruvate would be useful in determining thiamine dosage.  相似文献   

18.
Abstract: A case of mitochondrial encephalomyopathy with lactic acidosis, a stroke-like episode (MELAS) without ragged red fiber, diagnosed by mitochondrial DNA testing, is reported. A 37-year-old woman experienced a sudden and recurrent headache with vomiting and stroke-like episodes. Brain CT and MRI showed multiple infarction in the temporal lobes, not corresponding to artery distribution. However, the plasma levels of lactate and pyruvate were normal, and showed no increase after aerobic exercise. Biopsied muscle showed no evidence of ragged red fibers and deficient activity of mitochondrial enzymes in the respiratory chain. The final diagnosis was made by mitochondrial DNA testing. A southern blot analysis after Apa I digestion revealed the A-to-G mutation in the tRNAL eu (UUR), which is specific to MELAS.  相似文献   

19.
Lactate: the ultimate cerebral oxidative energy substrate?   总被引:14,自引:0,他引:14  
Research over the past two decades has renewed the interest in lactate, no longer as a useless end product of anaerobic glycolysis in brain (and other tissues), but as an oxidative substrate for energy metabolism. While this topic would be considered blasphemy only three decades ago, much recent evidence indicates that lactate does play a major role in aerobic energy metabolism in the brain, the heart, skeletal muscle, and possibly in any other tissue and organ. Nevertheless, this concept has challenged the old dogma and ignited a fierce debate, especially among neuroscientists, pitting the supporters of glucose as the major oxidative energy substrate against those who support lactate as a possible alternative to glucose under certain conditions. Meanwhile, researchers working on energy metabolism in skeletal muscle have taken great strides toward bridging between these two extreme positions, while avoiding the high decibels of an emotional debate. Employing their findings along with the existing old and new data on cerebral energy metabolism, it is postulated here that lactate is the only major product of cerebral (and other tissues) glycolysis, whether aerobic or anaerobic, neuronal or astrocytic, under rest or during activation. Consequently, this postulate entails that lactate is a major, if not the only, substrate for the mitochondrial tricarboxylic acid cycle. If proven true, this hypothesis could provide better understanding of the biochemistry and physiology of (cerebral) energy metabolism, while holding important implications in the field of neuroimaging. Concomitantly, it could satisfy both 'glucoseniks' and 'lactatians' in the ongoing debate.  相似文献   

20.
We report a patient with mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes treated with riboflavin and nicotinamide for 18 months, during which time previously frequent encephalopathic spells ceased. To confirm clinical benefit, we withdrew treatment and monitored response with muscle 31P magnetic resonance spectroscopy (MRS) and sural nerve conduction studies. Of three prospectively chosen MRS variables, two changed coincidentally with clinical end points; phosphocreatine (PCr)/adenosine triphosphate recovery rates fell in parallel with sural nerve sensory amplitudes, and a drop in muscle bioenergetic efficiency (relationship of inorganic phosphate/PCr to the accelerating force of contracting muscle) coincided with development of encephalopathy. Investigations revealed a deficiency of respiratory complex I and mutation of the mitochondrial tRNA(Leu)(UUR). We suggest that a defective cellular energy state in mitochondrial disease may be partially treatable and that changes seen in appropriate muscle spectroscopy studies may parallel improvement in brain and peripheral nerve function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号