首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Abnormal mitochondria are an increasingly recognized cause of neuromuscular disease. We have used phosphorus magnetic resonance spectroscopy to monitor noninvasively the metabolism of high-energy phosphates and the intracellular pH of human skeletal muscle in vivo in 12 patients with mitochondrial myopathy. At rest, an abnormality could be demonstrated in 11 of 12 patients. Ten patients had evidence of a reduced muscle energy state with at least one of the following abnormalities: low phosphorylation potential, low phosphocreatine concentration, high adenosine diphosphate concentration, or high inorganic phosphate concentration. Two patients had abnormal resting muscle intracellular pH. In some patients phosphocreatine concentration decreased to low values during exercise despite limited work output. This was not accompanied by particularly severe intracellular acidosis. Evidence of impaired rephosphorylation of adenosine diphosphate to adenosine triphosphate during recovery from exercise was found in approximately half the patients. Phosphorus magnetic resonance spectroscopy is useful in the noninvasive diagnosis of mitochondrial myopathies and in defining the pathophysiological basis of these disorders.  相似文献   

2.
Studies on a 27-year-old man with a 3-year history of exercise-induced muscle pain, passage of red urine and elevated serum creatine kinase are described. Histological examination of a biopsy from quadriceps revealed non-specific myopathic changes with occasional clusters of subsarcolemmal mitochondria. The phosphorylase stain was normal. Phosphorous nuclear magnetic resonance (NMR) spectroscopy studies of gastrocnemius and flexor digitorum superficialis muscles showed no abnormalities at rest. During aerobic exercise there was an abnormally rapid decrease in phosphocreatine concentration but the pH remained within the normal range. There was a build-up of phosphomonoester (probably glucose 6-phosphate), usually indicative of a block in glycolysis. However, a primary defect in the glycolytic pathway seemed unlikely because muscle acidified normally during ischaemic exercise. Recovery from exercise was unusual in that phosphocreatine resynthesis and inorganic phosphate disappearance followed similar prolonged time courses (in control subjects the rate of inorganic phosphate disappearance was about twice as fast as the rate of phosphocreatine resynthesis). The transport of inorganic phosphate into the mitochondria appeared to be delayed. These slow recovery data suggested that oxidative metabolism was impaired. However, with all substrates tested, isolated muscle mitochondria had rates of oxygen uptake that were similar to control values, thereby ruling out a primary defect in mitochondrial respiration. A system involving several mitochondrial transport systems, the malate-aspartate shuttle, was measured. The activity in the patient's isolated mitochondria was less than 20% of the activity present in samples from control subjects. This patient is the only one so far reported with a defect involving the malate-aspartate shuttle system.  相似文献   

3.
The purpose of this study was to assess the effect of physical deconditioning on skeletal muscle's oxidative metabolism as evaluated by phosphorus-31 magnetic resonance spectroscopy ((31)P MRS). Twenty-seven subjects without muscle disease, representing a wide range of fitness levels, were evaluated with (31)P MRS. Spectra were obtained at rest and during recovery from in-magnet exercise. The data show a significant correlation between maximum resting metabolic equivalent (MET) score and the following (31)P MRS recovery indices: adenosine diphosphate and phosphocreatine recovery half-time; initial phosphocreatine resynthesis rate; calculated estimation of mitochondrial capacity; pH at end of exercise; and phosphocreatine depletion. In addition, significant differences between the deconditioned and conditioned group were found for all of the aforementioned recovery indices. At rest, only the inorganic phosphate concentration was significantly different between the two groups. These data indicate that physical activity level should be taken into account when assessing patients' oxidative metabolism with (31)P MRS.  相似文献   

4.
One hundred patients presenting with exercise intolerance or rhabdomyolysis episodes have been examined successively by 31P Nuclear Magnetic Resonance Spectroscopy (MRS) of leg plantar flexor muscles with exercise test. In all cases a muscle biopsy was performed. At the end of investigations, diagnosis of a metabolic myopathy was made in 33 patients: glycogenolysis or glycolysis deficiency in 8 cases, mitochondrial myopathy in 24 cases and CPT II deficiency in one case. Muscular dystrophy or congenital myopathy were diagnosed in 6 cases. No precise etiology could be found in 30 patients with either high CK levels or muscle biopsy abnormalities. Seven patients had rhabdomyolysis related to excessive physical activities. Twenty-four patients had functional symptoms. The principal MRS parameters used for diagnosis were the values of intracellular pH at the end of exercise and the time constant of phosphocreatine resynthesis during recovery. Lack of acidosis after exercise was observed in all patients with blockade of glycogenolysis or glycolysis. A slowing in phosphocreatine resynthesis was found in 66 p.cent of patients with definite mitochondrial myopathy. The specificity of these parameters were respectively 92.4 p.cent and 85.5 p.cent for the two groups. In conclusion (31)P MRS allows the detection of muscular glycogenoses with a sensitivity close to 100 p.cent. However, its sensitivity was lower for the detection of mitochondrial myopathies, as is also known for the other in vivo metabolic investigations, reflecting the heterogeneity of expression of mitochondrial abnormalities in a given muscle. The integration of imaging in the examination protocol may help to orientate towards the diagnostic of a dystrophy in some patients.  相似文献   

5.
We studied in vivo muscle energy metabolism in patients with Huntington's disease (HD) and dentatorubropallidoluysian atrophy (DRPLA) using 31P magnetic resonance spectroscopy (MRS). Twelve gene-positive HP patients (4 presymptomatic patients) and 2 gene-positive DRPLA patients (1 presymptomatic patient) were studied. 31P-MRS at rest showed a reduced phosphocreatine-to-inorganic phosphate ratio in the symptomatic HD patients and DRPLA patient. Muscle adenosine triphosphate/(phosphocreatine + inorganic phosphate) at rest was significantly reduced in both groups of symptomatic and presymptomatic HD subjects and was below the normal range in the 2 DRPLA subjects. During recovery from exercise, the maximum rate of mitochondrial adenosine triphosphate production was reduced by 44% in symptomatic HD patients and by 35% in presymptomatic HD carriers. The maximum rate of mitochondrial adenosine triphosphate production in muscle was also reduced by around 46% in the 2 DRPLA subjects. Our findings show that HD and DRPLA share a deficit of in vivo mitochondrial oxidative metabolism, supporting a role for mitochondrial dysfunction as a factor involved in the pathogenesis of these polyglutamine repeat-mediated neurodegenerative disorders. The identification of 31P-MRS abnormalities may offer a surrogate biochemical marker by which to study disease progression and the effects of treatment in HD and DRPLA.  相似文献   

6.
Phosphorus magnetic resonance spectra of resting muscle were obtained from 4 patients with alternating hemiplegia of childhood. All patients had abnormally high resonance intensities from inorganic phosphate and an abnormally law calculared cytosolic phosphorylation potential. Tow of the 4 patients had abnormally law resonance intensities from phosphocreatine and an abnormally high calculated cytosolic free adenosine diphosphare conecntration. These abnormalities are indicative of mitochondrial dysfunction. The combination of a central nervous system disorder and evidence of mitochondrial dysfunction in muscle suggests that alternating hemiplegia of childhood may represent a previously unrecognized phenotype of mitochondrial disease.  相似文献   

7.
Z Argov  W J Bank  J Maris  P Peterson  B Chance 《Neurology》1987,37(2):257-262
Twelve adults with mitochondrial myopathies were studied by phosphorus magnetic resonance spectroscopy of muscle. All 12 had abnormal 31P-NMR findings; recovery from exercise was abnormal in 11 patients. At rest, the ratio of phosphocreatine to inorganic phosphate was reduced in 10. Exercise transfer characteristics were abnormal in all five patients who could exercise. Exercise-induced intracellular acidosis was subnormal in nine patients. The range of abnormalities indicates biochemical heterogeneity, with two possible groups: primary defects of energy metabolism with marked 31P-NMR abnormalities, and secondary, less specific 31P-NMR abnormalities.  相似文献   

8.
31P-magnetic resonance spectroscopy (31P-MRS) provides new biochemical information on mitochondrial disorders affecting brain and muscle. To elucidate the mechanisms of mitochondrial abnormalities, however, animal models are needed. We assessed the movbr (mottled viable brindled) mouse for its value in studying (1) energetics of a mitochondrial disorder and (2) 31P-MRS changes associated with mitochondrial abnormalities in vivo. The maximal activity of succinate-cytochrome c reductase was significantly reduced in movbr muscle compared to controls, whereas cytochrome oxidase activity was only reduced in movbr brain. 31P-MRS of movbr brain showed an increased pH, but no changes in any metabolite ratios. The phosphocreatine (PCr) recovery rate after exercise was reduced in muscles from movbr mice, indicating impairment of oxidative metabolism. We conclude that movbr brain and muscle tissue have biochemical abnormalities consistent with mitochondrial impairment. The PCr recovery rate, measured by 31P-MRS, was sensitive to the muscle abnormality. This strain is best described as having chronic mitochondrial dysfunction. © 1997 John Wiley & Sons, Inc. Muscle Nerve 20: 1352–1359, 1997  相似文献   

9.
A woman affected by chronic progressive external ophthalmoplegia and muscle mitochondrial DNA deletion was studied by phosphorus magnetic resonance spectroscopy (31P-MRS) prior to and after 1 and 7 months of treatment with oral lipoic acid. Before treatment a decreased phosphocreatine (PCr) content was found in the occipital lobes, accompanied by normal inorganic phosphate (Pi) level and cytosolic pH. Based on these findings, we found a high cytosolic adenosine diphosphate concentration [ADP] and high relative rate of energy metabolism together with a low phosphorylation potential. Muscle MRS showed an abnormal work-energy cost transfer function and a low rate of PCr recovery during the post-exercise period. All of these findings indicated a deficit of mitochondrial function in both brain and muscle. Treatment with 600 mg lipoic acid daily for 1 month resulted in a 55% increase of brain [PCr], 72% increase of phosphorylation potential, and a decrease of calculated [ADP] and rate of energy metabolism. After 7 months of treatment MRS data and mitochondrial function had improved further. Treatment with lipoate also led to a 64% increase in the initial slope of the work-energy cost transfer function in the working calf muscle and worsened the rate of PCr resynthesis during recovery. The patient reported subjective improvement of general conditions and muscle performance after therapy. Our results indicate that treatment with lipoate caused a relevant increase in levels of energy available in brain and skeletal muscle during exercise.  相似文献   

10.
Skeletal muscle bioenergetics in the chronic fatigue syndrome.   总被引:4,自引:2,他引:2       下载免费PDF全文
Skeletal muscle bioenergetics and control of intracellular pH have been investigated in 46 patients with chronic fatigue syndrome by phosphorus magnetic resonance spectroscopy. The results have been compared with those from healthy controls and from a group of patients with mitochondrial cytopathies affecting skeletal muscle. No consistent abnormalities of glycolysis, mitochondrial metabolism or pH regulation were identified in the group when taken as a whole, although in 12 of the 46 patients the relationship between pH and phosphocreatine utilisation during exercise fell outside the normal range. Of these, 6 patients showed increased acidification relative to phosphocreatine depletion while 6 showed reduced acidification. These findings do not support the hypothesis that any specific metabolic abnormality underlies fatigue in this syndrome although abnormalities may be present in a minority of patients.  相似文献   

11.
Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty‐five HD subjects and twenty‐five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. © 2010 Movement Disorder Society  相似文献   

12.
OBJECTIVE: To determine whether a multisystemic bioenergetic deficit is an underlying feature of familial hypobetalipoproteinaemia. METHODS: Brain and skeletal muscle bioenergetics were studied by in vivo phosphorus MR spectroscopy (31P-MRS) in two neurologically affected members (mother and son) and in one asymptomatic member (daughter) of a kindred with familial hypobetalipoproteinaemia. Plasma concentrations of vitamin E and coenzyme Q10 (CoQ10) were also assessed. RESULTS: Brain 31P-MRS disclosed in all patients a reduced phosphocreatine (PCr) concentration whereas the calculated ADP concentration was increased. Brain phosphorylation potential was reduced in the members by about 40%. Skeletal muscle was studied at rest in the three members and during aerobic exercise and recovery in the son and daughter. Only the mother showed an impaired mitochondrial function at rest. Both son and daughter showed an increased end exercise ADP concentration whereas the rates of postexercise recovery of PCr and ADP were slow in the daughter. The rate of inorganic phosphate recovery was reduced in both cases. Plasma concentration of vitamin E and CoQ10 was below the normal range in all members. CONCLUSIONS: Structural changes in mitochondrial membranes and deficit of vitamin E together with reduced availability of CoQ10 can be responsible for the multisystemic bioenergetic deficit. Present findings suggest that CoQ10 supplementation may be important in familial hypobetalipoproteinaemia.  相似文献   

13.
Impairment of muscle glycogenolysis in McArdle's disease (myophosphorylase deficiency) leads to exercise intolerance and exercise-induced myalgia. The pathophysiology of these symptoms is not entirely clear. We used phosphorus magnetic resonance spectroscopy to measure muscle phosphate metabolite concentrations and intracellular pH during brief ischemic exercise and in the period of aerobic metabolic recovery after exercise, with special attention to cytoplasmic adenosine 5′-diphosphate (ADP). In 5 patients with McArdle's disease, calculated muscle intracellular ADP concentrations at the beginning of recovery were higher than in normal control subjects (70–425 mmol/L, control mean: 73 ± 40 mmol/L, P < 0.05). The half-time for intracellular ADP recovery after exercise, an index of maximal mitochondrial oxidative phosphorylation, was 0.16 ± 0.07 in normal controls and was independent of metabolic state or intracellular pH. ADP recoveries were abnormally slow in all patients with McArdle's disease (range: 0.32–0.83 min, mean = 0.2 min, P < 0.0001). These results are indicative of a limitation in the rate of oxidative phosphorylation in muscle of patients with McArdle's disease, most likely due to impaired substrate delivery to mitochondria. This impairment of mitochondrial function may contribute to the exercise-related symptoms in McArdle's disease. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
We investigated the energy metabolism of the gastrocnemius muscle of the rat after spinal cord transection, using in vivo (31)P magnetic resonance spectroscopy (MRS). Spectra were obtained at rest and during exercise and recovery before, and at different time-points after, spinal cord transection. At rest, the adenosine triphosphate (ATP) level was not altered and the intracellular pH became permanently more alkaline. In electrically stimulated muscle, cord transection caused a greater phosphocreatine depletion than in control animals, and the maximum rate of oxidative ATP synthesis was significantly diminished; at days 30 and 60 after transection, an intracellular acidification was observed at the end of exercise. These effects indicate that, as in humans, spinal cord transection in rats leads to a decrease in mitochondrial oxidative metabolism and probably to an increase in anaerobic metabolism. This experimental model may prove useful for evaluating various approaches to improve muscle function in paraplegia.  相似文献   

15.
Friedreich ataxia occurs due to mutations in the gene encoding the mitochondrial protein frataxin. This (31)P magnetic resonance spectroscopy study on the calf muscle of Friedreich ataxia patients provides in vivo evidence of a severe impairment of mitochondrial function. Mitochondrial adenosine triphosphate resynthesis was studied by means of the post-exercise recovery of phosphocreatine. After ischemic exercise in calf muscles of all patients, phosphocreatine recovery was dramatically delayed. Time constants of recovery correlated with mutations of the frataxin gene, the age of the patients, and disease duration. (31)P magnetic resonance spectroscopy represents the first expedient tool for monitoring therapeutic trials in Friedreich ataxia non-invasively.  相似文献   

16.
A cardinal feature of impaired skeletal muscle oxidative metabolism in mitochondrial myopathies is a limited ability to increase the extraction of O(2) from blood relative to the increase in O(2) delivery by the circulation during exercise. We investigated whether aerobic forearm exercise would result in an abnormal increase in venous effluent O(2) in patients with impaired skeletal muscle oxidative phosphorylation attributable to mitochondrial disease. We monitored the partial pressure of O(2) (PO(2)) in cubital venous blood at rest, during handgrip exercise, and during recovery in 13 patients with mitochondrial myopathy and exercise intolerance and in 13 healthy control and 11 patient control subjects. Resting and recovery venous effluent PO(2) were similar in all subjects, but during exercise venous PO(2) paradoxically rose in mitochondrial myopathy patients from 27.2 +/- 4.0mmHg to 38.2 +/- 13.3mmHg, whereas PO(2) fell from 27.2 +/- 4.2mmHg to 24.2 +/- 2.7mmHg in healthy subjects and from 27.4 +/- 9.5mmHg to 22.2 +/- 5.2mmHg in patient controls. The range of elevated venous PO(2) during forearm exercise in mitochondrial myopathy patients (32 to 82mmHg) correlated closely with the severity of oxidative impairment as assessed during cycle exercise. We conclude that measurement of venous PO(2) during aerobic forearm exercise provides an easily performed screening test that sensitively detects impaired O(2) use and accurately assesses the severity of oxidative impairment in patients with mitochondrial myopathy and exercise intolerance.  相似文献   

17.
For 2 years we administered high doses of coenzyme Q10 (CoQ) to a patient having mitochondrial encephalomyopathy with cytochrome c oxidase deficiency. Abnormal elevation of the serum lactate per pyruvate ratio and the increased concentration of serum lactate plus pyruvate induced by exercise decreased with CoQ treatment. This therapeutic effect continued for 2 years. 31P nuclear magnetic resonance spectroscopy showed acceleration of the postexercise recovery of the ratio of phosphocreatine to inorganic phosphate in muscle during CoQ treatment. These observations support the beneficial effect of CoQ on the impaired mitochondrial oxidative metabolism in muscle. Also, impaired central and peripheral nerve conductivities consistently improved during CoQ treatment. These results indicate that CoQ has clinical value in the long-term management of patients with mitochondrial encephalomyopathies, even though there are clinical limitations to the effects of this therapy.  相似文献   

18.
A simple test is described for identifying patients with abnormalities of muscle energy metabolism secondary to mitochondrial dysfunction, based on the venous lactate response to exercise at 90% of predicted work rate at the anaerobic threshold. The test was standardised for age, weight and sex of subjects, and was abnormal in all cases of mitochondrial cytopathy tested, with a false positive rate of 7% in a control population. The test was abnormal in two cases of mitochondrial disease in which muscle biopsy was normal or showed only non-specific changes.  相似文献   

19.
Our aim was to develop an exercise protocol using 31P-magnetic resonance spectroscopy (31P-MRS), which can discriminate between malignant hyperthermia-susceptible (MHS) individuals and controls. MRS spectra of the forearm muscles were recorded at rest, during and after a standardized exercise protocol in 10 MHS patients and compared with spectra obtained in 10 controls. There was no difference in resting intracellular pH (pHi) or PCr/ (Pi+PCr) ratio between the groups (PCr = phosphocreatine, Pi = inorganic phosphorus). At the end of the exercise and during the initial recovery phase, the pHi and PCr/(Pi+PCr) ratio were significantly lower in the MHS group ([pHi: 6.37 (0.07) for MHS vs 6.70 (0.05) for controls, P < 0.005; PCr/(Pi+PCr): 0.784 (0.017) for MHS vs 0.954 (0.020) for controls, P < 0.0005]). For PCr/ (Pi+PCr), complete separation between the two groups was observed during the initial recovery phase. The mean recovery time of PCr/ (Pi+PCr) was 0.57 min for the control group and 1.28 min for the MHS group. The slower recovery of PCr/ (Pi+PCr) is likely to be caused by a combination of several factors, including the lower pHi in MHS subjects at the start of recovery (inhibiting ATP production) and excessive sarcoplasmic calcium overload (causing continued enzyme activation and ATP consumption). Our exercise protocol can be a valuable adjunct to discriminate between MHS and non susceptible subjects. Received: 10 July 1996 Received in revised form: 7 August 1997 Accepted: 11 August 1997  相似文献   

20.
Phosphorus magnetic resonance spectroscopy monitors muscle energy metabolism by recording the ratio of phosphocreatine to inorganic phosphate at rest, during exercise, and during recovery from exercise. In mitochondrial diseases, abnormalities may appear during some or all these phases. Low phosphocreatine-inorganic phosphate ratios at rest are not disease-specific, but can be increased by drug therapy in several myopathies. Phosphorus magnetic resonance spectroscopy can also record intracellular pH and thus identify disorders of glycogen metabolism in which the production of lactic acid is blocked during ischemic exercise. The measurements of accumulated sugar phosphate intermediates further delineate glycolytic muscle defects. Myophosphorylase deficiency responds to intravenous glucose administration with improved exercise bioenergetics, but no such response is seen in phosphofructokinase deficiency. The muscular dystrophies show no specific bioenergetic abnormality; however, elevation of phospholipids metabolites and phosphodiesters was detected in some cases. While phosphorus magnetic resonance spectroscopy remains primarily a research tool in metabolic myopathies, it will be clinically useful in identifying new therapies and monitoring their effects in a variety of neuromuscular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号