首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: A body of literature has suggested an elevated risk of lung cancer associated with particulate matter and traffic-related pollutants.Objective: We examined the relation of lung cancer incidence with long-term residential exposures to ambient particulate matter and residential distance to roadway, as a proxy for traffic-related exposures.Methods: For participants in the Nurses’ Health Study, a nationwide prospective cohort of women, we estimated 72-month average exposures to PM2.5, PM2.5–10, and PM10 and residential distance to road. Follow-up for incident cases of lung cancer occurred from 1994 through 2010. Cox proportional hazards models were adjusted for potential confounders. Effect modification by smoking status was examined.Results: During 1,510,027 person-years, 2,155 incident cases of lung cancer were observed among 103,650 participants. In fully adjusted models, a 10-μg/m3 increase in 72-month average PM10 [hazard ratio (HR) = 1.04; 95% CI: 0.95, 1.14], PM2.5 (HR = 1.06; 95% CI: 0.91, 1.25), or PM2.5–10 (HR = 1.05; 95% CI: 0.92, 1.20) was positively associated with lung cancer. When the cohort was restricted to never-smokers and to former smokers who had quit at least 10 years before, the associations appeared to increase and were strongest for PM2.5 (PM10: HR = 1.15; 95% CI: 1.00, 1.32; PM2.5: HR = 1.37; 95% CI: 1.06, 1.77; PM2.5–10: HR = 1.11; 95% CI: 0.90, 1.37). Results were most elevated when restricted to the most prevalent subtype, adenocarcinomas. Risks with roadway proximity were less consistent.Conclusions: Our findings support those from other studies indicating increased risk of incident lung cancer associated with ambient PM exposures, especially among never- and long-term former smokers.Citation: Puett RC, Hart JE, Yanosky JD, Spiegelman D, Wang M, Fisher JA, Hong B, Laden F. 2014. Particulate matter air pollution exposure, distance to road, and incident lung cancer in the Nurses’ Health Study Cohort. Environ Health Perspect 122:926–932; http://dx.doi.org/10.1289/ehp.1307490  相似文献   

2.

Background

Limited information is available regarding long-term effects of air pollution on blood pressure (BP) and hypertension.

Objective

We studied whether 1-year exposures to particulate matter (PM) and nitrogen oxides (NOx) were correlated with BP and hypertension in the elderly.

Methods

We analyzed cross-sectional data from 27,752 Taipei City residents > 65 years of age who participated in a health examination program in 2009. Land-use regression models were used to estimate participants’ 1-year exposures to particulate matter with aerodynamic diameter ≤ 10 μm (PM10), coarse particles (PM2.5–10), fine particles (≤ 2.5 μm; PM2.5), PM2.5 absorbance, NOx, and nitrogen dioxide (NO2). Generalized linear regressions and logistic regressions were used to examine the association between air pollution and BP and hypertension, respectively.

Results

Diastolic BP was associated with 1-year exposures to air pollution, with estimates of 0.73 [95% confidence interval (CI): 0.44, 1.03], 0.46 (95% CI: 0.30, 0.63), 0.62 (95% CI: 0.24, 0.99), 0.34 (95% CI: 0.19, 0.50), and 0.65 (95% CI: 0.44, 0.85) mmHg for PM10 (10 μg/m3), PM2.5–10 (5 μg/m3), PM2.5 absorbance (10–5/m), NOx (20 μg/m3), and NO2 (10 μg/m3), respectively. PM2.5 was not associated with diastolic BP, and none of the air pollutants was associated with systolic BP. Associations of diastolic BP with PM10 and PM2.5 absorbance were stronger among participants with hypertension, diabetes, or a body mass index ≥ 25 kg/m2 than among participants without these conditions. One-year air pollution exposures were not associated with hypertension.

Conclusions

One-year exposures to PM10, PM2.5–10, PM2.5 absorbance, and NOx were associated with higher diastolic BP in elderly residents of Taipei.

Citation

Chen SY, Wu CF, Lee JH, Hoffmann B, Peters A, Brunekreef B, Chu DC, Chan CC. 2015. Associations between long-term air pollutant exposures and blood pressure in elderly residents of Taipei City: a cross-sectional study. Environ Health Perspect 123:779–784; http://dx.doi.org/10.1289/ehp.1408771  相似文献   

3.
Background: Exposure to fine particulate matter (PM with diameter ≤ 2.5 μm; PM2.5) has been linked to type 2 diabetes mellitus, but associations with hyperglycemia in pregnancy have not been well studied.Methods: We studied Boston, Massachusetts–area pregnant women without known diabetes. We identified impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) during pregnancy from clinical glucose tolerance tests at median 28.1 weeks gestation. We used residential addresses to estimate second-trimester PM2.5 and black carbon exposure via a central monitoring site and spatiotemporal models. We estimated residential traffic density and roadway proximity as surrogates for exposure to traffic-related air pollution. We performed multinomial logistic regression analyses adjusted for sociodemographic covariates, and used multiple imputation to account for missing data.Results: Of 2,093 women, 65 (3%) had IGT and 118 (6%) had GDM. Second-trimester spatiotemporal exposures ranged from 8.5 to 15.9 μg/m3 for PM2.5 and from 0.1 to 1.7 μg/m3 for black carbon. Traffic density was 0–30,860 vehicles/day × length of road (kilometers) within 100 m; 281 (13%) women lived ≤ 200 m from a major road. The prevalence of IGT was elevated in the highest (vs. lowest) quartile of exposure to spatiotemporal PM2.5 [odds ratio (OR) = 2.63; 95% CI: 1.15, 6.01] and traffic density (OR = 2.66; 95% CI: 1.24, 5.71). IGT also was positively associated with other exposure measures, although associations were not statistically significant. No pollutant exposures were positively associated with GDM.Conclusions: Greater exposure to PM2.5 and other traffic-related pollutants during pregnancy was associated with IGT but not GDM. Air pollution may contribute to abnormal glycemia in pregnancy.Citation: Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, Coull BA, Zanobetti A, Gillman MW, Oken E. 2014. Air pollution exposure and abnormal glucose tolerance during pregnancy: the Project Viva Cohort. Environ Health Perspect 122:378–383; http://dx.doi.org/10.1289/ehp.1307065  相似文献   

4.
Background: Epidemiological studies have examined the association between PM2.5 and mortality, but uncertainty remains about the seasonal variations in PM2.5-related effects and the relative importance of species.Objectives: We estimated the effects of PM2.5 species on mortality and how infiltration rates may modify the association.Methods: Using city–season specific Poisson regression, we estimated PM2.5 effects on approximately 4.5 million deaths for all causes, cardiovascular disease (CVD), myocardial infarction (MI), stroke, and respiratory diseases in 75 U.S. cities for 2000–2006. We added interaction terms between PM2.5 and monthly average species-to-PM2.5 proportions of individual species to determine the relative toxicity of each species. We combined results across cities using multivariate meta-regression, and controlled for infiltration.Results: We estimated a 1.18% (95% CI: 0.93, 1.44%) increase in all-cause mortality, a 1.03% (95% CI: 0.65, 1.41%) increase in CVD, a 1.22% (95% CI: 0.62, 1.82%) increase in MI, a 1.76% (95% CI: 1.01, 2.52%) increase in stroke, and a 1.71% (95% CI: 1.06, 2.35%) increase in respiratory deaths in association with a 10-μg/m3 increase in 2-day averaged PM2.5 concentration. The associations were largest in the spring. Silicon, calcium, and sulfur were associated with more all-cause mortality, whereas sulfur was related to more respiratory deaths. County-level smoking and alcohol were associated with larger estimated PM2.5 effects.Conclusions: Our study showed an increased risk of mortality associated with PM2.5, which varied with seasons and species. The results suggest that mass alone might not be sufficient to evaluate the health effects of particles.Citation: Dai L, Zanobetti A, Koutrakis P, Schwartz JD. 2014. Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis. Environ Health Perspect 122:837–842; http://dx.doi.org/10.1289/ehp.1307568  相似文献   

5.
Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent.Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project.Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach.Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days).Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards.Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. Environ Health Perspect 121:1026–1033; http://dx.doi.org/10.1289/ehp.1206151  相似文献   

6.
Background: Long-term exposures to particulate matter air pollution (PM2.5 and PM10) and high traffic load have been associated with markers of systemic inflammation. Epidemiological investigations have focused primarily on total PM, which represents a mixture of pollutants originating from different sources.Objective: We investigated associations between source-specific PM and high-sensitive C-reactive protein (hs-CRP), an independent predictor of cardiovascular disease.Methods: We used data from the first (2000–2003) and second examination (2006–2008) of the Heinz Nixdorf Recall study, a prospective population-based German cohort of initially 4,814 participants (45–75 years of age). We estimated residential long-term exposure to local traffic- and industry-specific fine particulate matter (PM2.5) at participants’ residences using a chemistry transport model. We used a linear mixed model with a random participant intercept to estimate associations of source-specific PM and natural log-transformed hs-CRP, controlling for age, sex, education, body mass index, low- and high-density lipoprotein cholesterol, smoking variables, physical activity, season, humidity, and city (8,204 total observations).Results: A 1-μg/m3 increase in total PM2.5 was associated with a 4.53% increase in hs-CRP concentration (95% CI: 2.76, 6.33%). hs-CRP was 17.89% (95% CI: 7.66, 29.09%) and 7.96% (95% CI: 3.45, 12.67%) higher in association with 1-μg/m3 increases in traffic- and industry-specific PM2.5, respectively. Results for PM10 were similar.Conclusions: Long-term exposure to local traffic-specific PM (PM2.5, PM10) was more strongly associated with systemic inflammation than total PM. Associations of local industry-specific PM were slightly stronger but not significantly different from associations with total PM.Citation: Hennig F, Fuks K, Moebus S, Weinmayr G, Memmesheimer M, Jakobs H, Bröcker-Preuss M, Führer-Sakel D, Möhlenkamp S, Erbel R, Jöckel KH, Hoffmann B, Heinz Nixdorf Recall Study Investigative Group. 2014. Association between source-specific particulate matter air pollution and hs-CRP: local traffic and industrial emissions. Environ Health Perspect 122:703–710; http://dx.doi.org/10.1289/ehp.1307081  相似文献   

7.
Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations.Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort.Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between enrollment (1993–1997) and 30 December 2009 were identified by record linkage. Six-year average (2001–2006) remote-sensing derived estimates of PM2.5 were assigned to participants’ residences at enrollment, and Cox proportional hazards models were used to estimate hazard ratios (HR) in relation to a 10-μg/m3 increase in PM2.5 adjusted for individual-level covariates.Results: In total, 5,931 nonaccidental and 1,967 cardiovascular deaths occurred over a median follow-up time of 13.9 years. PM2.5 was not associated with nonaccidental mortality in the cohort as a whole (HR = 0.95; 95% CI: 0.76, 1.20), but consistent inverse relationships were observed among women. Positive associations were observed between ambient PM2.5 and cardiovascular mortality among men, and these associations were strongest among men who did not move from their enrollment address (HR = 1.63; 95% 0.94, 2.84). In particular, cardiovascular mortality risk in men was significantly increased when analyses were limited to nonmoving participants with the most precise exposure geocoding (HR = 1.87; 95% CI: 1.04, 3.36).Conclusions: Rural PM2.5 may be associated with cardiovascular mortality in men; however, similar associations were not observed among women. Further evaluation is required to explore these sex differences.Citation: Weichenthal S, Villeneuve PJ, Burnett RT, van Donkelaar A, Martin RV, Jones RR, DellaValle CT, Sandler DP, Ward MH, Hoppin JA. 2014. Long-term exposure to fine particulate matter: association with nonaccidental and cardiovascular mortality in the Agricultural Health Study Cohort. Environ Health Perspect 122:609–615; http://dx.doi.org/10.1289/ehp.1307277  相似文献   

8.
Background: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms.Objectives: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2).Methods: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively.Results: Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: –0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dB(A).Conclusion: Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by collinearity.Citation: Foraster M, Künzli N, Aguilera I, Rivera M, Agis D, Vila J, Bouso L, Deltell A, Marrugat J, Ramos R, Sunyer J, Elosua R, Basagaña X. 2014. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic. Environ Health Perspect 122:1193–1200; http://dx.doi.org/10.1289/ehp.1307156  相似文献   

9.
10.
Background: Previous studies have examined fine particulate matter (≤ 2.5 μm; PM2.5) and preterm birth, but there is a dearth of longitudinal studies on this topic and a paucity of studies that have investigated specific sources of this exposure.Objectives: Our aim was to assess whether anthropogenic sources are associated with risk of preterm birth, comparing successive pregnancies to the same woman.Methods: Birth certificates were used to select women who had vaginal singleton live births at least twice in Connecticut during 2000–2006 (n = 23,123 women, n = 48,208 births). We procured 4,085 daily samples of PM2.5 on Teflon filters from the Connecticut Department of Environmental Protection for six cities in Connecticut. Filters were analyzed for chemical composition, and Positive Matrix Factorization was used to determine contributions of PM2.5 sources. Risk estimates were calculated with conditional logistic regression, matching pregnancies to the same women.Results: Odds ratios of preterm birth per interquartile range increase in whole pregnancy exposure to dust, motor vehicle emissions, oil combustion, and regional sulfur PM2.5 sources were 1.01 (95% CI: 0.93, 1.09), 1.01 (95% CI: 0.92, 1.10), 1.00 (95% CI: 0.89, 1.12), and 1.09 (95% CI: 0.97, 1.22), respectively.Conclusion: This was the first study of PM2.5 sources and preterm birth, and the first matched analysis, that better addresses individual-level confounding potentially inherent in all past studies. There was insufficient evidence to suggest that sources were statistically significantly associated with preterm birth. However, elevated central estimates and previously observed associations with mass concentration motivate the need for further research. Future studies would benefit from high source exposure settings and longitudinal study designs, such as that adopted in this study.Citation: Pereira G, Bell ML, Lee HJ, Koutrakis P, Belanger K. 2014. Sources of fine particulate matter and risk of preterm birth in Connecticut, 2000–2006: a longitudinal study. Environ Health Perspect 122:1117–1122; http://dx.doi.org/10.1289/ehp.1307741  相似文献   

11.

Background

Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear.

Objective

We aimed to investigate the association between air pollution and adult onset asthma.

Methods

Asthma incidence was prospectively assessed in six European cohorts. Exposures studied were annual average concentrations at home addresses for nitrogen oxides assessed for 23,704 participants (including 1,257 incident cases) and particulate matter (PM) assessed for 17,909 participants through ESCAPE land-use regression models and traffic exposure indicators. Meta-analyses of cohort-specific logistic regression on asthma incidence were performed. Models were adjusted for age, sex, overweight, education, and smoking and included city/area within each cohort as a random effect.

Results

In this longitudinal analysis, asthma incidence was positively, but not significantly, associated with all exposure metrics, except for PMcoarse. Positive associations of borderline significance were observed for nitrogen dioxide [adjusted odds ratio (OR) = 1.10; 95% CI: 0.99, 1.21 per 10 μg/m3; p = 0.10] and nitrogen oxides (adjusted OR = 1.04; 95% CI: 0.99, 1.08 per 20 μg/m3; p = 0.08). Nonsignificant positive associations were estimated for PM10 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 10 μg/m3), PM2.5 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 5 μg/m3), PM2.5absorbance (adjusted OR = 1.06; 95% CI: 0.95, 1.19 per 10–5/m), traffic load (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 4 million vehicles × meters/day on major roads in a 100-m buffer), and traffic intensity (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 5,000 vehicles/day on the nearest road). A nonsignificant negative association was estimated for PMcoarse (adjusted OR = 0.98; 95% CI: 0.87, 1.14 per 5 μg/m3).

Conclusions

Results suggest a deleterious effect of ambient air pollution on asthma incidence in adults. Further research with improved personal-level exposure assessment (vs. residential exposure assessment only) and phenotypic characterization is needed.

Citation

Jacquemin B, Siroux V, Sanchez M, Carsin AE, Schikowski T, Adam M, Bellisario V, Buschka A, Bono R, Brunekreef B, Cai Y, Cirach M, Clavel-Chapelon F, Declercq C, de Marco R, de Nazelle A, Ducret-Stich RE, Ferretti VV, Gerbase MW, Hardy R, Heinrich J, Janson C, Jarvis D, Al Kanaani Z, Keidel D, Kuh D, Le Moual N, Nieuwenhuijsen MJ, Marcon A, Modig L, Pin I, Rochat T, Schindler C, Sugiri D, Stempfelet M, Temam S, Tsai MY, Varraso R, Vienneau D, Vierkötter A, Hansell AL, Krämer U, Probst-Hensch NM, Sunyer J, Künzli N, Kauffmann F. 2015. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ Health Perspect 123:613–621; http://dx.doi.org/10.1289/ehp.1408206  相似文献   

12.

Background

The International Agency for Research on Cancer (IARC) recently declared air pollution carcinogenic to humans. However, no study of air pollution and lung cancer to date has incorporated adjustment for exposure measurement error, and few have examined specific histological subtypes.

Objectives

Our aim was to assess the association of air pollution and incident lung cancer in the Netherlands Cohort Study on Diet and Cancer and the impact of measurement error on these associations.

Methods

The cohort was followed from 1986 through 2003, and 3,355 incident cases were identified. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals, for long-term exposures to nitrogen dioxide (NO2), black smoke (BS), PM2.5 (particulate matter with diameter ≤ 2.5 μm), and measures of roadway proximity and traffic volume, adjusted for potential confounders. Information from a previous validation study was used to correct the effect estimates for measurement error.

Results

We observed elevated risks of incident lung cancer with exposure to BS [hazard ratio (HR) = 1.16; 95% CI: 1.02, 1.32, per 10 μg/m3], NO2 (HR = 1.29; 95% CI: 1.08, 1.54, per 30 μg/m3), PM2.5 (HR = 1.17; 95% CI: 0.93, 1.47, per 10 μg/m3), and with measures of traffic at the baseline address. The exposures were positively associated with all lung cancer subtypes. After adjustment for measurement error, the HRs increased and the 95% CIs widened [HR = 1.19 (95% CI: 1.02, 1.39) for BS and HR = 1.37 (95% CI: 0.86, 2.17) for PM2.5].

Conclusions

These findings add support to a growing body of literature on the effects of air pollution on lung cancer. In addition, they highlight variation in measurement error by pollutant and support the implementation of measurement error corrections when possible.

Citation

Hart JE, Spiegelman D, Beelen R, Hoek G, Brunekreef B, Schouten LJ, van den Brandt P. 2015. Long-term ambient residential traffic–related exposures and measurement error–adjusted risk of incident lung cancer in the Netherlands Cohort Study on Diet and Cancer. Environ Health Perspect 123:860–866; http://dx.doi.org/10.1289/ehp.1408762  相似文献   

13.
Background: Few studies have investigated effects of air pollution on the incidence of cerebrovascular events.Objectives: We assessed the association between long-term exposure to multiple air pollutants and the incidence of stroke in European cohorts.Methods: Data from 11 cohorts were collected, and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE). The exposures were: PM2.5 [particulate matter (PM) ≤ 2.5 μm in diameter], coarse PM (PM between 2.5 and 10 μm), PM10 (PM ≤ 10 μm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation.Results: A total of 99,446 study participants were included, 3,086 of whom developed stroke. A 5-μg/m3 increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke [hazard ratio (HR) = 1.19, 95% CI: 0.88, 1.62]. Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list of cardiovascular risk factors and noise coexposure. The association with PM2.5 was apparent among those ≥ 60 years of age (HR = 1.40, 95% CI: 1.05, 1.87), among never-smokers (HR = 1.74, 95% CI: 1.06, 2.88), and among participants with PM2.5 exposure < 25 μg/m3 (HR = 1.33, 95% CI: 1.01, 1.77).Conclusions: We found suggestive evidence of an association between fine particles and incidence of cerebrovascular events in Europe, even at lower concentrations than set by the current air quality limit value.Citation: Stafoggia M, Cesaroni G, Peters A, Andersen ZJ, Badaloni C, Beelen R, Caracciolo B, Cyrys J, de Faire U, de Hoogh K, Eriksen KT, Fratiglioni L, Galassi C, Gigante B, Havulinna AS, Hennig F, Hilding A, Hoek G, Hoffmann B, Houthuijs D, Korek M, Lanki T, Leander K, Magnusson PK, Meisinger C, Migliore E, Overvad K, Östenson CG, Pedersen NL, Pekkanen J, Penell J, Pershagen G, Pundt N, Pyko A, Raaschou-Nielsen O, Ranzi A, Ricceri F, Sacerdote C, Swart WJ, Turunen AW, Vineis P, Weimar C, Weinmayr G, Wolf K, Brunekreef B, Forastiere F. 2014. Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environ Health Perspect 122:919–925; http://dx.doi.org/10.1289/ehp.1307301  相似文献   

14.
Background: Particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) has been variably associated with preterm birth (PTB).Objective: We classified PTB into four categories (20–27, 28–31, 32–34, and 35–36 weeks completed gestation) and estimated risk differences (RDs) for each category in association with a 1-μg/m3 increase in PM2.5 exposure during each week of gestation.Methods: We assembled a cohort of singleton pregnancies that completed ≥ 20 weeks of gestation during 2000–2005 using live birth certificate data from three states (Pennsylvania, Ohio, and New Jersey) (n = 1,940,213; 8% PTB). We estimated mean PM2.5 exposures for each week of gestation from monitor-corrected Community Multi-Scale Air Quality modeling data. RDs were estimated using modified Poisson linear regression and adjusted for maternal race/ethnicity, marital status, education, age, and ozone.Results: RD estimates varied by exposure window and outcome period. Average PM2.5 exposure during the fourth week of gestation was positively associated with all PTB outcomes, although magnitude varied by PTB category [e.g., for a 1-μg/m3 increase, RD = 11.8 (95% CI: –6, 29.2); RD = 46 (95% CI: 23.2, 68.9); RD = 61.1 (95% CI: 22.6, 99.7); and RD = 28.5 (95% CI: –39, 95.7) for preterm births during 20–27, 28–31, 32–34, and 35–36 weeks, respectively]. Exposures during the week of birth and the 2 weeks before birth also were positively associated with all PTB categories.Conclusions: Exposures beginning around the time of implantation and near birth appeared to be more strongly associated with PTB than exposures during other time periods. Because particulate matter exposure is ubiquitous, evidence of effects of PM2.5 exposure on PTB, even if small in magnitude, is cause for concern.Citation: Rappazzo KM, Daniels JL, Messer LC, Poole C, Lobdell DT. 2014. Exposure to fine particulate matter during pregnancy and risk of preterm birth among women in New Jersey, Ohio, and Pennsylvania, 2000–2005. Environ Health Perspect 122:992–997; http://dx.doi.org/10.1289/ehp.1307456  相似文献   

15.
Background: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5).Objective: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments.Methods: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe.Results: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 μg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 μg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 μg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater.Conclusions: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study are available for public use.Citation: van Donkelaar A, Martin RV, Brauer M, Boys BL. 2015. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ Health Perspect 123:135–143; http://dx.doi.org/10.1289/ehp.1408646  相似文献   

16.

Background

Studies on the association between prenatal exposure to fine particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) and term low birth weight (LBW) have resulted in inconsistent findings. Most studies were conducted in snapshots of small geographic areas and no national study exists.

Objectives

We investigated geographic variation in the associations between ambient PM2.5 during pregnancy and term LBW in the contiguous United States.

Methods

A total of 3,389,450 term singleton births in 2002 (37–44 weeks gestational age and birth weight of 1,000–5,500 g) were linked to daily PM2.5 via imputed birth days. We generated average daily PM2.5 during the entire pregnancy and each trimester. Multi-level logistic regression models with county-level random effects were used to evaluate the associations between term LBW and PM2.5 during pregnancy.

Results

Without adjusting for covariates, the odds of term LBW increased 2% [odds ratio (OR) = 1.02; 95% CI: 1.00, 1.03] for every 5-μg/m3 increase in PM2.5 exposure during the second trimester only, which remained unchanged after adjusting for county-level poverty (OR = 1.02; 95% CI: 1.01, 1.04). The odds did change to null after adjusting for individual-level predictors (OR = 1.00; 95% CI: 0.99, 1.02). Multi-level analyses, stratified by census division, revealed significant positive associations of term LBW and PM2.5 exposure (during the entire pregnancy or a specific trimester) in three census divisions of the United States: Middle Atlantic, East North Central, and West North Central, and significant negative association in the Mountain division.

Conclusions

Our study provided additional evidence on the associations between PM2.5 exposure during pregnancy and term LBW from a national perspective. The magnitude and direction of the estimated associations between PM2.5 exposure and term LBW varied by geographic locations in the United States.

Citation

Hao Y, Strosnider H, Balluz L, Qualters JR. 2016. Geographic variation in the association between ambient fine particulate matter (PM2.5) and term low birth weight in the United States. Environ Health Perspect 124:250–255; http://dx.doi.org/10.1289/ehp.1408798  相似文献   

17.

Background

Autism spectrum disorder (ASD) is a developmental disorder with increasing prevalence worldwide, yet has unclear etiology.

Objective

We explored the association between maternal exposure to particulate matter (PM) air pollution and odds of ASD in her child.

Methods

We conducted a nested case–control study of participants in the Nurses’ Health Study II (NHS II), a prospective cohort of 116,430 U.S. female nurses recruited in 1989, followed by biennial mailed questionnaires. Subjects were NHS II participants’ children born 1990–2002 with ASD (n = 245), and children without ASD (n = 1,522) randomly selected using frequency matching for birth years. Diagnosis of ASD was based on maternal report, which was validated against the Autism Diagnostic Interview-Revised in a subset. Monthly averages of PM with diameters ≤ 2.5 μm (PM2.5) and 2.5–10 μm (PM10–2.5) were predicted from a spatiotemporal model for the continental United States and linked to residential addresses.

Results

PM2.5 exposure during pregnancy was associated with increased odds of ASD, with an adjusted odds ratio (OR) for ASD per interquartile range (IQR) higher PM2.5 (4.42 μg/m3) of 1.57 (95% CI: 1.22, 2.03) among women with the same address before and after pregnancy (160 cases, 986 controls). Associations with PM2.5 exposure 9 months before or after the pregnancy were weaker in independent models and null when all three time periods were included, whereas the association with the 9 months of pregnancy remained (OR = 1.63; 95% CI: 1.08, 2.47). The association between ASD and PM2.5 was stronger for exposure during the third trimester (OR = 1.42 per IQR increase in PM2.5; 95% CI: 1.09, 1.86) than during the first two trimesters (ORs = 1.06 and 1.00) when mutually adjusted. There was little association between PM10–2.5 and ASD.

Conclusions

Higher maternal exposure to PM2.5 during pregnancy, particularly the third trimester, was associated with greater odds of a child having ASD.

Citation

Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, Weisskopf MG. 2015. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case–control analysis within the Nurses’ Health Study II cohort. Environ Health Perspect 123:264–270; http://dx.doi.org/10.1289/ehp.1408133  相似文献   

18.
Background: Air pollution is linked to low lung function and to respiratory events, yet little is known of associations with lung structure.Objectives: We examined associations of particulate matter (PM2.5, PM10) and nitrogen oxides (NOx) with percent emphysema-like lung on computed tomography (CT).Methods: The Multi-Ethnic Study of Atherosclerosis (MESA) recruited participants (45–84 years of age) in six U.S. states. Percent emphysema was defined as lung regions < –910 Hounsfield Units on cardiac CT scans acquired following a highly standardized protocol. Spirometry was also conducted on a subset. Individual-level 1- and 20-year average air pollution exposures were estimated using spatiotemporal models that included cohort-specific measurements. Multivariable regression was conducted to adjust for traditional risk factors and study location.Results: Among 6,515 participants, we found evidence of an association between percent emphysema and long-term pollution concentrations in an analysis leveraging between-city exposure contrasts. Higher concentrations of PM2.5 (5 μg/m3) and NOx (25 ppb) over the previous year were associated with 0.6 (95% CI: 0.1, 1.2%) and 0.5 (95% CI: 0.1, 0.9%) higher average percent emphysema, respectively. However, after adjustment for study site the associations were –0.6% (95% CI: –1.5, 0.3%) for PM2.5 and –0.5% (95% CI: –1.1, 0.02%) for NOx. Lower lung function measures (FEV1 and FVC) were associated with higher PM2.5 and NOx levels in 3,791 participants before and after adjustment for study site, though most associations were not statistically significant.Conclusions: Associations between ambient air pollution and percentage of emphysema-like lung were inconclusive in this cross-sectional study, thus longitudinal analyses may better clarify these associations with percent emphysema.Citation: Adar SD, Kaufman JD, Diez-Roux AV, Hoffman EA, D’Souza J, Stukovsky KH, Rich SS, Rotter JI, Guo X, Raffel LJ, Sampson PD, Oron AP, Raghunathan T, Barr RG. 2015. Air pollution and percent emphysema identified by computed tomography in the Multi-Ethnic Study of Atherosclerosis. Environ Health Perspect 123:144–151; http://dx.doi.org/10.1289/ehp.1307951  相似文献   

19.

Background

Exposure to traffic noise has been associated with adverse effects on neuropsychological outcomes in children, but findings with regard to behavioral problems are inconsistent.

Objective

We investigated whether residential road traffic noise exposure is associated with behavioral problems in 7-year-old children.

Methods

We identified 46,940 children from the Danish National Birth Cohort with complete information on behavioral problems at 7 years of age and complete address history from conception to 7 years of age. Road traffic noise (Lden) was modeled at all present and historical addresses. Behavioral problems were assessed by the parent-reported Strengths and Difficulties Questionnaire (SDQ). Associations between pregnancy and childhood exposure to noise and behavioral problems were analyzed by multinomial or logistic regression and adjusted for potential confounders.

Results

A 10-dB increase in average time-weighted road traffic noise exposure from birth to 7 years of age was associated with a 7% increase (95% CI: 1.00, 1.14) in abnormal versus normal total difficulties scores; 5% (95% CI: 1.00, 1.10) and 9% (95% CI: 1.03, 1.18) increases in borderline and abnormal hyperactivity/inattention subscale scores, respectively; and 5% (95% CI: 0.98, 1.14) and 6% (95% CI: 0.99, 1.12) increases in abnormal conduct problem and peer relationship problem subscale scores, respectively. Exposure to road traffic noise during pregnancy was not associated with child behavioral problems at 7 years of age.

Conclusions

Residential road traffic noise in early childhood may be associated with behavioral problems, particularly hyperactivity/inattention symptoms.

Citation

Hjortebjerg D, Andersen AM, Christensen JS, Ketzel M, Raaschou-Nielsen O, Sunyer J, Julvez J, Forns J, Sørensen M. 2016. Exposure to road traffic noise and behavioral problems in 7-year-old children: a cohort study. Environ Health Perspect 124:228–234; http://dx.doi.org/10.1289/ehp.1409430  相似文献   

20.
Background: A recent meta-analysis suggested evidence for an effect of exposure to ambient air pollutants on risk of certain congenital heart defects. However, few studies have investigated the effects of traffic-related air pollutants with sufficient spatial accuracy.Objectives: We estimated associations between congenital anomalies and exposure to traffic-related air pollution in Barcelona, Spain.Method: Cases with nonchromosomal anomalies (n = 2,247) and controls (n = 2,991) were selected from the Barcelona congenital anomaly register during 1994–2006. Land use regression models from the European Study of Cohorts for Air Pollution Effects (ESCAPE), were applied to residential addresses at birth to estimate spatial exposure to nitrogen oxides and dioxide (NOx, NO2), particulate matter with diameter ≤ 10 μm (PM10), 10–2.5 μm (PMcoarse), ≤ 2.5 μm (PM2.5), and PM2.5 absorbance. Spatial estimates were adjusted for temporal trends using data from routine monitoring stations for weeks 3–8 of each pregnancy. Logistic regression models were used to calculate odds ratios (ORs) for 18 congenital anomaly groups associated with an interquartile-range (IQR) increase in exposure estimates.Results: In spatial and spatiotemporal exposure models, we estimated statistically significant associations between an IQR increase in NO2 (12.2 μg/m3) and coarctation of the aorta (ORspatiotemporal = 1.15; 95% CI: 1.01, 1.31) and digestive system defects (ORspatiotemporal = 1.11; 95% CI: 1.00, 1.23), and between an IQR increase in PMcoarse (3.6 μg/m3) and abdominal wall defects (ORspatiotemporal = 1.93; 95% CI: 1.37, 2.73). Other statistically significant increased and decreased ORs were estimated based on the spatial model only or the spatiotemporal model only, but not both.Conclusions: Our results overall do not indicate an association between traffic-related air pollution and most groups of congenital anomalies. Findings for coarctation of the aorta are consistent with those of the previous meta-analysis.Citation: Schembari A, Nieuwenhuijsen MJ, Salvador J, de Nazelle A, Cirach M, Dadvand P, Beelen R, Hoek G, Basagaña X, Vrijheid M. 2014. Traffic-related air pollution and congenital anomalies in Barcelona. Environ Health Perspect 122:317–323; http://dx.doi.org/10.1289/ehp.1306802  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号