首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《JACC: Cardiovascular Imaging》2020,13(11):2330-2339
ObjectivesThis study evaluated cardiac involvement in patients recovered from coronavirus disease-2019 (COVID-19) using cardiac magnetic resonance (CMR).BackgroundMyocardial injury caused by COVID-19 was previously reported in hospitalized patients. It is unknown if there is sustained cardiac involvement after patients’ recovery from COVID-19.MethodsTwenty-six patients recovered from COVID-19 who reported cardiac symptoms and underwent CMR examinations were retrospectively included. CMR protocols consisted of conventional sequences (cine, T2-weighted imaging, and late gadolinium enhancement [LGE]) and quantitative mapping sequences (T1, T2, and extracellular volume [ECV] mapping). Edema ratio and LGE were assessed in post–COVID-19 patients. Cardiac function, native T1/T2, and ECV were quantitatively evaluated and compared with controls.ResultsFifteen patients (58%) had abnormal CMR findings on conventional CMR sequences: myocardial edema was found in 14 (54%) patients and LGE was found in 8 (31%) patients. Decreased right ventricle functional parameters including ejection fraction, cardiac index, and stroke volume/body surface area were found in patients with positive conventional CMR findings. Using quantitative mapping, global native T1, T2, and ECV were all found to be significantly elevated in patients with positive conventional CMR findings, compared with patients without positive findings and controls (median [interquartile range]: native T1 1,271 ms [1,243 to 1,298 ms] vs. 1,237 ms [1,216 to 1,262 ms] vs. 1,224 ms [1,217 to 1,245 ms]; mean ± SD: T2 42.7 ± 3.1 ms vs. 38.1 ms ± 2.4 vs. 39.1 ms ± 3.1; median [interquartile range]: 28.2% [24.8% to 36.2%] vs. 24.8% [23.1% to 25.4%] vs. 23.7% [22.2% to 25.2%]; p = 0.002; p < 0.001, and p = 0.002, respectively).ConclusionsCardiac involvement was found in a proportion of patients recovered from COVID-19. CMR manifestation included myocardial edema, fibrosis, and impaired right ventricle function. Attention should be paid to the possible myocardial involvement in patients recovered from COVID-19 with cardiac symptoms.  相似文献   

2.
BackgroundRisk-stratification of myocarditis is based on functional parameters and tissue characterization of the left ventricle (LV), whereas right ventricular (RV) involvement remains mostly unrecognized.ObjectivesIn this study, the authors sought to analyze the prognostic value of RV involvement in myocarditis by cardiac magnetic resonance (CMR).MethodsPatients meeting the recommended clinical criteria for suspected myocarditis were enrolled at 2 centers. Exclusion criteria were the evidence of coronary artery disease, pulmonary artery hypertension or structural cardiomyopathy. Biventricular ejection fraction, edema according to T2-weighted images, and late gadolinium enhancement (LGE) were linked to a composite end point of major adverse cardiovascular events (MACE), including heart failure hospitalization, ventricular arrhythmia, recurrent myocarditis, and death.ResultsAmong 1,125 consecutive patients, 736 (mean age: 47.8 ± 16.1 years) met the clinical diagnosis of suspected myocarditis and were followed for 3.7 years. Signs of RV involvement (abnormal right ventricular ejection fraction [RVEF], RV edema, and RV-LGE) were present in 188 (25.6%), 158 (21.5%), and 92 (12.5%) patients, respectively. MACE occurred in 122 patients (16.6%) and was univariably associated with left ventricular ejection fraction (LVEF), LV edema, LV-LGE, RV-LGE, RV edema, and RVEF. In a series of nesting multivariable Cox regression models, the addition of RVEF (HRadj: 0.974 [95% CI: 0.956-0.993]; P = 0.006) improved prognostication (chi-square test = 89.5; P = 0.001 vs model 1; P = 0.006 vs model 2) compared with model 1 including only clinical variables (chi-square test = 28.54) and model 2 based on clinical parameters, LVEF, and LV-LGE extent (chi-square test = 78.93).ConclusionsThis study emphasizes the role of RV involvement in myocarditis and demonstrates the independent and incremental prognostic value of RVEF beyond clinical variables, CMR tissue characterization, and LV function. (Inflammatory Cardiomyopathy Bern Registry [FlamBER]; NCT04774549; CMR Features in Patients With Suspected Myocarditis [CMRMyo]; NCT03470571)  相似文献   

3.
ObjectivesThis study examined fibrosis progression in hypertrophic cardiomyopathy (HCM) patients, as well as its relationship to patient characteristics, clinical outcomes, and its effect on clinical decision making.BackgroundMyocardial fibrosis, as quantified by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR), provides valuable prognostic information in patients with HCM.MethodsA total of 157 patients with HCM were enrolled in this study, with 2 sequential CMR scans separated by an interval of 4.7 ± 1.9 years.ResultsAt the first CMR session (CMR-1), 70% of patients had LGE compared with 85% at CMR-2 (p = 0.001). The extent of LGE extent increased between the 2 CMR procedures, from 4.0 ± 5.6% to 6.3 ± 7.4% (p < 0.0001), with an average LGE progression rate of 0.5 ± 1.0%/year. LGE mass progression was correlated with higher LGE mass and extent on CMR-1 (p = 0.0017 and p = 0.007, respectively), greater indexed left ventricular (LV) mass (p < 0.0001), greater LV maximal wall thickness (p < 0.0001), apical aneurysm at CMR-1 (p < 0.0001), and lower LV ejection fraction (EF) (p = 0.029). Patients who were more likely to have a higher rate of LGE progression presented with more severe disease at baseline, characterized by LGE extent >8% of LV mass, indexed LV mass >100 g/m2, maximal wall thickness ≥20 mm, LVEF ≤60%, and apical aneurysm. There was a significant correlation between the magnitude of LGE progression and future implantation of insertable cardioverter-defibrillators (p = 0.004), EF deterioration to ≤50% (p < 0.0001), and admission for heart failure (p = 0.0006).ConclusionsMyocardial fibrosis in patients with HCM is a slowly progressive process. Progression of LGE is significantly correlated with a number of clinical outcomes such as progression to EF ≤50% and heart failure admission. Judicious use of serial CMR with LGE can provide valuable information to help patient management.  相似文献   

4.
ObjectivesThe aim of this study was to assess the effect of sex on myocardial fibrosis as assessed by using cardiac magnetic resonance (CMR) imaging in aortic stenosis (AS).BackgroundPrevious studies reported sex-related differences in the left ventricular (LV) remodeling response to pressure overload in AS. However, there are very few data regarding the effect of sex on myocardial fibrosis, a key marker of LV decompensation and adverse cardiac events in AS.MethodsA total of 249 patients (mean age 66 ± 13 years; 30% women) with at least mild AS were recruited from 2 prospective observational cohort studies and underwent comprehensive Doppler echocardiography and CMR examinations. On CMR, T1 mapping was used to quantify extracellular volume (ECV) fraction as a marker of diffuse fibrosis, and late gadolinium enhancement (LGE) was used to assess focal fibrosis.ResultsThere was no difference in age between women and men (age 66 ± 15 years vs 66 ± 12 years; p = 0.78). However, women presented with a better cardiovascular risk profile than men with less hypertension, dyslipidemia, diabetes, and coronary artery disease (all, p ≤ 0.10). As expected, LV mass index measured by CMR imaging was smaller in women than in men (p < 0.0001). Despite fewer comorbidities, women presented with larger ECV fraction (median: 29.0% [25th to 75th percentiles: 27.4% to 30.6%] vs. 26.8% [25th to 75th percentiles: 25.1% to 28.7%]; p < 0.0001) and similar LGE (median: 4.5% [25th–75th percentiles: 2.3% to 7.0%] vs. 2.8% [25th–75th percentiles: 0.6% to 6.8%]; p = 0.20) than men. In multivariable analysis, female sex remained an independent determinant of higher ECV fraction and LGE (all, p ≤ 0.05).ConclusionsWomen have greater diffuse and focal myocardial fibrosis independent of the degree of AS severity. These findings further emphasize the sex-related differences in LV remodeling response to pressure overload.  相似文献   

5.
ObjectivesThe aim of this study was to assess the diagnostic yield of cardiac magnetic resonance (CMR) including high-resolution (HR) late gadolinium enhancement (LGE) imaging using a 3-dimensional respiratory-navigated method in patients with myocardial infarction with nonobstructed coronary arteries (MINOCA).BackgroundCMR plays a pivotal role for the diagnosis of patients with MINOCA. However, the diagnosis remains inconclusive in a significant number of patients, the results of CMR being either negative or uncertain (i.e., compatible with multiple diagnoses).MethodsConsecutive patients categorized as having MINOCA after blood testing, electrocardiography, coronary angiography, and echocardiography underwent conventional CMR, including cine, T2-weighted, first-pass perfusion, and conventional breath-held LGE imaging. HR LGE imaging using a free-breathing method allowing improved spatial resolution (voxel size 1.25 × 1.25 × 2.5 mm) was added to the protocol when the results of conventional CMR were inconclusive and was optional otherwise. Diagnoses retained after reviewing conventional CMR were compared with those retained after the addition of HR LGE imaging.ResultsFrom 2013 to 2016, 229 patients were included (mean age 56 ± 17 years, 45% women). HR LGE imaging was performed in 172 patients (75%). In this subpopulation, definite diagnoses were retained after conventional CMR in 86 patients (50%): infarction in 39 (23%), myocarditis in 32 (19%), takotsubo cardiomyopathy in 13 (8%), and other diagnoses in 2 (1%). In the remaining 86 patients (50%), results of CMR were inconclusive: negative in 54 (31%) and consistent with multiple diagnoses in 32 (19%). HR LGE imaging led to changes in final diagnosis in 45 patients (26%) and to a lower rate of inconclusive final diagnosis (29%) (p < 0.001). In particular, HR LGE imaging could reveal or ascertain the diagnosis of infarction in 14% and rule out the diagnosis of infarction in 12%. HR LGE imaging was particularly useful when the results of transthoracic echocardiography, ventriculography, and conventional CMR were negative, with a 48% rate of modified diagnosis in this subpopulation.ConclusionsHR LGE imaging has high diagnostic value in patients with MINOCA and inconclusive findings on conventional CMR. This has major diagnostic, prognostic, and therapeutic implications.  相似文献   

6.
ObjectivesThis study aimed to determine the prevalence on cardiac magnetic resonance (CMR) of right ventricular (RV) systolic dysfunction and RV late gadolinium enhancement (LGE), their determinants, and their influences on long-term adverse outcomes in patients with sarcoidosis.BackgroundIn patients with sarcoidosis, RV abnormalities have been described on many imaging modalities. On CMR, RV abnormalities include RV systolic dysfunction quantified as an abnormal right ventricular ejection fraction (RVEF), and RV LGE.MethodsConsecutive patients with biopsy-proven sarcoidosis who underwent CMR for suspected cardiac involvement were studied. They were followed for 2 endpoints: all-cause death, and a composite arrhythmic endpoint of sudden cardiac death or significant ventricular arrhythmia.ResultsAmong 290 patients, RV systolic dysfunction (RVEF <40% in men and <45% in women) and RV LGE were present in 35 (12.1%) and 16 (5.5%), respectively. The median follow-up time was 3.2 years (interquartile range [IQR]: 1.6 to 5.7 years) for all-cause death and 3.0 years (IQR: 1.4 to 5.5 years) for the arrhythmic endpoint. On Cox proportional hazards regression multivariable analyses, only RVEF was independently associated with all-cause death (hazard ratio [HR]: 1.05 for every 1% decrease; 95% confidence interval [CI]: 1.01 to 1.09; p = 0.022) after adjustment for left ventricular EF, left ventricular LGE extent, and the presence of RV LGE. RVEF was not associated with the arrhythmic endpoint (HR: 1.01; 95% CI: 0.96 to 1.06; p = 0.67). Conversely, RV LGE was not associated with all-cause death (HR: 2.78; 95% CI: 0.36 to 21.66; p = 0.33), while it was independently associated with the arrhythmic endpoint (HR: 5.43; 95% CI: 1.25 to 23.47; p = 0.024).ConclusionsIn this study of patients with sarcoidosis, RV systolic dysfunction and RV LGE had distinct prognostic associations; RV systolic dysfunction but not RV LGE was independently associated with all-cause death, whereas RV LGE but not RV systolic dysfunction was independently associated with sudden cardiac death or significant ventricular arrhythmia. These findings may indicate distinct implications for the management of RV abnormalities in sarcoidosis.  相似文献   

7.
ObjectivesThis study determined: 1) the interobserver agreement; 2) valvular flow variation; and 3) which variables independently predicted the variation of valvular flow quantification from 4-dimensional (4D) flow cardiac magnetic resonance (CMR) with automated retrospective valve tracking at multiple sites.BackgroundAutomated retrospective valve tracking in 4D flow CMR allows consistent assessment of valvular flow through all intracardiac valves. However, due to the variance of CMR scanners and protocols, it remains uncertain if the published consistency holds for other clinical centers.MethodsSeven sites each retrospectively or prospectively selected 20 subjects who underwent whole heart 4D flow CMR (64 patients and 76 healthy volunteers; aged 32 years [range 24 to 48 years], 47% men, from 2014 to 2020), which was acquired with locally used CMR scanners (scanners from 3 vendors; 2 1.5-T and 5 3-T scanners) and protocols. Automated retrospective valve tracking was locally performed at each site to quantify the valvular flow and repeated by 1 central site. Interobserver agreement was evaluated with intraclass correlation coefficients (ICCs). Net forward volume (NFV) consistency among the valves was evaluated by calculating the intervalvular variation. Multiple regression analysis was performed to assess the predicting effect of local CMR scanners and protocols on the intervalvular inconsistency.ResultsThe interobserver analysis demonstrated strong-to-excellent agreement for NFV (ICC: 0.85 to 0.96) and moderate-to-excellent agreement for regurgitation fraction (ICC: 0.53 to 0.97) for all sites and valves. In addition, all observers established a low intervalvular variation (≤10.5%) in their analysis. The availability of 2 cine images per valve for valve tracking compared with 1 cine image predicted a decreasing variation in NFV among the 4 valves (beta = ?1.3; p = 0.01).ConclusionsIndependently of locally used CMR scanners and protocols, valvular flow quantification can be performed consistently with automated retrospective valve tracking in 4D flow CMR.  相似文献   

8.
《JACC: Cardiovascular Imaging》2021,14(12):2369-2383
ObjectivesThe objective was to determine the feasibility and effectiveness of cardiac magnetic resonance (CMR) cine and strain imaging before and after cardiac resynchronization therapy (CRT) for assessment of response and the optimal resynchronization pacing strategy.BackgroundCMR with cardiac implantable electronic devices can safely provide high-quality right ventricular/left ventricular (LV) ejection fraction (RVEF/LVEF) assessments and strain.MethodsCMR with cine imaging, displacement encoding with stimulated echoes for the circumferential uniformity ratio estimate with singular value decomposition (CURE-SVD) dyssynchrony parameter, and scar assessment was performed before and after CRT. Whereas the pre-CRT scan constituted a single “imaging set” with complete volumetric, strain, and scar imaging, multiple imaging sets with complete strain and volumetric data were obtained during the post-CRT scan for biventricular pacing (BIVP), LV pacing (LVP), and asynchronous atrial pacing modes by reprogramming the device outside the scanner between imaging sets.Results100 CMRs with a total of 162 imaging sets were performed in 50 patients (median age 70 years [IQR: 50-86 years]; 48% female). Reduction in LV end-diastolic volumes (P = 0.002) independent of CRT pacing were more prominent than corresponding reductions in right ventricular end-diastolic volumes (P = 0.16). A clear dependence of the optimal CRT pacing mode (BIVP vs LVP) on the PR interval (P = 0.0006) was demonstrated. The LVEF and RVEF improved more with BIVP than LVP with PR intervals ≥240 milliseconds (P = 0.025 and P = 0.002, respectively); the optimal mode (BIVP vs LVP) was variable with PR intervals <240 milliseconds. A lower pre-CRT displacement encoding with stimulated echoes (DENSE) CURE-SVD was associated with greater improvements in the post-CRT CURE-SVD (r = −0.69; P < 0.001), LV end-systolic volume (r = −0.58; P < 0.001), and LVEF (r = −0.52; P < 0.001).ConclusionsCMR evaluation with assessment of multiple pacing modes during a single scan after CRT is feasible and provides useful information for patient care with respect to response and the optimal pacing strategy.  相似文献   

9.
《JACC: Cardiovascular Imaging》2020,13(10):2132-2145
ObjectivesThe aim of this study was to investigate the prognostic value of stress cardiac magnetic resonance imaging (CMR) in patients with reduced left ventricular (LV) systolic function.BackgroundPatients with ischemic cardiomyopathy are at risk from both myocardial ischemia and heart failure. Invasive testing is often used as the first-line investigation, and there is limited evidence as to whether stress testing can effectively provide risk stratification.MethodsIn this substudy of a multicenter registry from 13 U.S. centers, patients with reduced LV ejection fraction (<50%), referred for stress CMR for suspected myocardial ischemia, were included. The primary outcome was cardiovascular death or nonfatal myocardial infarction. The secondary outcome was a composite of cardiovascular death, nonfatal myocardial infarction, hospitalization for unstable angina or congestive heart failure, and unplanned late coronary artery bypass graft surgery.ResultsAmong 582 patients (mean age 62 ± 12 years, 34% women), 40% had a history of congestive heart failure, and the median LV ejection fraction was 39% (interquartile range: 28% to 45%). At median follow-up of 5.0 years, 97 patients had experienced the primary outcome, and 182 patients had experienced the secondary outcome. Patients with no CMR evidence of ischemia or late gadolinium enhancement (LGE) experienced an annual primary outcome event rate of 1.1%. The presence of ischemia, LGE, or both was associated with higher event rates. In a multivariate model adjusted for clinical covariates, ischemia and LGE were independent predictors of the primary (hazard ratio [HR]: 2.63; 95% confidence interval [CI]: 1.68 to 4.14; p < 0.001; and HR: 1.86; 95% CI: 1.05 to 3.29; p = 0.03) and secondary (HR: 2.14; 95% CI: 1.55 to 2.95; p < 0.001; and HR 1.70; 95% CI: 1.16 to 2.49; p = 0.007) outcomes. The addition of ischemia and LGE led to improved model discrimination for the primary outcome (change in C statistic from 0.715 to 0.765; p = 0.02). The presence and extent of ischemia were associated with higher rates of use of downstream coronary angiography, revascularization, and cost of care spent on ischemia testing.ConclusionsStress CMR was effective in risk-stratifying patients with reduced LV ejection fractions. (Stress CMR Perfusion Imaging in the United States [SPINS] Study; NCT03192891)  相似文献   

10.
BackgroundAbnormal global longitudinal strain (GLS) has been independently associated with adverse cardiac outcomes in both obstructive and nonobstructive hypertrophic cardiomyopathy.ObjectivesThe goal of this study was to understand predictors of abnormal GLS from baseline data from the National Heart, Lung, and Blood Institute (NHLBI) Hypertrophic Cardiomyopathy Registry (HCMR).MethodsThe study evaluated comprehensive 3-dimensional left ventricular myocardial strain from cine cardiac magnetic resonance in 2,311 patients from HCMR using in-house validated feature-tracking software. These data were correlated with other imaging markers, serum biomarkers, and demographic variables.ResultsAbnormal median GLS (> –11.0%) was associated with higher left ventricular (LV) mass index (93.8 ± 29.2 g/m2 vs 75.1 ± 19.7 g/m2; P < 0.0001) and maximal wall thickness (21.7 ± 5.2 mm vs 19.3 ± 4.1 mm; P < 0.0001), lower left (62% ± 9% vs 66% ± 7%; P < 0.0001) and right (68% ± 11% vs 69% ± 10%; P < 0.01) ventricular ejection fractions, lower left atrial emptying functions (P < 0.0001 for all), and higher presence and myocardial extent of late gadolinium enhancement (6 SD and visual quantification; P < 0.0001 for both). Elastic net regression showed that adjusted predictors of GLS included female sex, Black race, history of syncope, presence of systolic anterior motion of the mitral valve, reverse curvature and apical morphologies, LV ejection fraction, LV mass index, and both presence/extent of late gadolinium enhancement and baseline N-terminal pro–B-type natriuretic peptide and troponin levels.ConclusionsAbnormal strain in hypertrophic cardiomyopathy is associated with other imaging and serum biomarkers of increased risk. Further follow-up of the HCMR cohort is needed to understand the independent relationship between LV strain and adverse cardiac outcomes in hypertrophic cardiomyopathy.  相似文献   

11.
BackgroundAcute ST-segment elevation myocardial infarction (STEMI) has effects on the myocardium beyond the immediate infarcted territory. However, pathophysiologic changes in the noninfarcted myocardium and their prognostic implications remain unclear.ObjectivesThe purpose of this study was to evaluate the long-term prognostic value of acute changes in both infarcted and noninfarcted myocardium post-STEMI.MethodsPatients with acute STEMI undergoing primary percutaneous coronary intervention underwent evaluation with blood biomarkers and cardiac magnetic resonance (CMR) at 2 days and 6 months, with long-term follow-up for major adverse cardiac events (MACE). A comprehensive CMR protocol included cine, T2-weighted, T21, T1-mapping, and late gadolinium enhancement (LGE) imaging. Areas without LGE were defined as noninfarcted myocardium. MACE was a composite of cardiac death, sustained ventricular arrhythmia, and new-onset heart failure.ResultsTwenty-two of 219 patients (10%) experienced an MACE at a median of 4 years (IQR: 2.5-6.0 years); 152 patients returned for the 6-month visit. High T1 (>1250 ms) in the noninfarcted myocardium was associated with lower left ventricular ejection fraction (LVEF) (51% ± 8% vs 55% ± 9%; P = 0.002) and higher NT-pro-BNP levels (290 pg/L [IQR: 103-523 pg/L] vs 170 pg/L [IQR: 61-312 pg/L]; P = 0.008) at 6 months and a 2.5-fold (IQR: 1.03-6.20) increased risk of MACE (2.53 [IQR: 1.03-6.22]), compared with patients with normal T1 in the noninfarcted myocardium (P = 0.042). A lower T1 (<1,300 ms) in the infarcted myocardium was associated with increased MACE (3.11 [IQR: 1.19-8.13]; P = 0.020). Both noninfarct and infarct T1 were independent predictors of MACE (both P = 0.001) and significantly improved risk prediction beyond LVEF, infarct size, and microvascular obstruction (C-statistic: 0.67 ± 0.07 vs 0.76 ± 0.06, net-reclassification index: 40% [IQR: 12%-64%]; P = 0.007).ConclusionsThe acute responses post-STEMI in both infarcted and noninfarcted myocardium are independent incremental predictors of long-term MACE. These insights may provide new opportunities for treatment and risk stratification in STEMI.  相似文献   

12.
《JACC: Cardiovascular Imaging》2021,14(11):2170-2182
ObjectivesThis study used cardiac magnetic resonance (CMR) to assess left ventricular (LV) remodeling in chronic aortic regurgitation (AR) to identify both forms of myocardial fibrosis and examine its association with clinical outcomes.BackgroundChronic AR leads to LV remodeling, which is associated with 2 forms of myocardial fibrosis: regional replacement fibrosis that is directly imaged by late gadolinium enhancement (LGE) CMR; and diffuse interstitial fibrosis, which can be inferred by T1 mapping techniques.MethodsPatients with chronic AR who were undergoing contrast CMR with T1 mapping for valve assessment from 2011 to 2018 were enrolled. Patients with a confounding etiology of myocardial fibrosis were excluded. In addition to quantification of AR severity and LV volumetrics, LGE and T1 mapping pre- and post-contrast were performed to measure extracellular volume (ECV) and indexed ECV (iECV). Patients were followed up longitudinally to assess for the composite event of death and the need for aortic valve replacement.ResultsA total of 177 patients with isolated chronic AR were included (66% males, median age 58 years [IQR: 47.0-68.0 years]) with a median follow up of 2.5 years (IQR: 1.07-3.56 years). The iECV significantly increased with AR severity (P < 0.001), whereas ECV and replacement fibrosis did not (P = NS). On multivariate analysis, iECV remained associated with the composite event (P = 0.01). On Kaplan-Meier analysis stratified by AR regurgitant fraction (RF) and iECV, patients with AR RF severity ≥30% and iECV ≥24 mL/m2 demonstrated the highest event rate.ConclusionsAmong CMR biomarkers of fibrosis, iECV was more closely associated than replacement fibrosis or ECV with survival free of aortic valve replacement.  相似文献   

13.
BackgroundSarcoidosis is a complex multisystem inflammatory disorder, with approximately 5% of patients having overt cardiac involvement. Patients with cardiac sarcoidosis are at an increased risk of both ventricular arrhythmias and sudden cardiac death. Previous studies have shown that the presence of late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) is associated with an increased risk of mortality and ventricular arrhythmias and may be useful in predicting prognosis.ObjectivesThis systematic review and meta-analysis assessed the value of LGE on CMR imaging in predicting prognosis for patients with known or suspected cardiac sarcoidosis.MethodsThe authors searched the Embase and MEDLINE databases from inception to March 2022 for studies reporting individuals with known or suspected cardiac sarcoidosis referred for CMR with LGE. Outcomes were defined as all-cause mortality, ventricular arrhythmia, or a composite outcome of either death or ventricular arrhythmias. The primary analysis evaluated these outcomes according to the presence of LGE. A secondary analysis evaluated outcomes specifically according to the presence of biventricular LGE.ResultsThirteen studies were included (1,318 participants) in the analysis, with an average participant age of 52.0 years and LGE prevalence of 13% to 70% over a follow-up of 3.1 years. Patients with LGE on CMR vs those without had higher odds of ventricular arrhythmias (odds ratio [OR]: 20.3; 95% CI: 8.1-51.0), all-cause mortality (OR: 3.45; 95% CI: 1.6-7.3), and the composite of both (OR: 9.2; 95% CI: 5.1-16.7). Right ventricular LGE is invariably accompanied by left ventricular LGE. Biventricular LGE is also associated with markedly increased odds of ventricular arrhythmias (OR: 43.6; 95% CI: 16.2-117.2).ConclusionsPatients with known or suspected cardiac sarcoidosis with LGE on CMR have significantly increased odds of both ventricular arrhythmias and all-cause mortality. The presence of biventricular LGE may confer additional prognostic information regarding arrhythmogenic risk.  相似文献   

14.
ObjectivesThe purpose of this study was to investigate the diagnostic value of simultaneous hybrid cardiac magnetic resonance (CMR) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection and differentiation of active (aCS) from chronic (cCS) cardiac sarcoidosis.BackgroundLate gadolinium enhancement (LGE) CMR and FDG-PET are both established imaging techniques for the detection of CS. However, there are limited data regarding the value of a comprehensive simultaneous hybrid CMR/FDG-PET imaging approach that includes CMR mapping techniques.MethodsForty-three patients with biopsy-proven extracardiac sarcoidosis (median age: 48 years, interquartile range: 37-57 years, 65% male) were prospectively enrolled for evaluation of suspected CS. After dietary preparation for suppression of myocardial glucose metabolism, patients were evaluated on a 3-T hybrid PET/MR scanner. The CMR protocol included T1 and T2 mapping, myocardial function, and LGE imaging. We assumed aCS if PET and CMR (ie, LGE or T1/T2 mapping) were both positive (PET+/CMR+), cCS if PET was negative but CMR was positive (PET?/CMR+), and no CS if patients were CMR negative regardless of PET findings.ResultsAmong the 43 patients, myocardial glucose uptake was suppressed successfully in 36 (84%). Hybrid CMR/FDG-PET revealed aCS in 13 patients (36%), cCS in 5 (14%), and no CS in 18 (50%). LGE was present in 14 patients (39%); T1 mapping was abnormal in 10 (27%) and T2 mapping abnormal in 2 (6%). CS was diagnosed based on abnormal T1 mapping in 4 out of 18 CS patients (22%) who were LGE negative. PET FDG uptake was present in 17 (47%) patients.ConclusionsComprehensive simultaneous hybrid CMR/FDG-PET imaging is useful for the detection of CS and provides additional value for identifying active disease. Our results may have implications for enhanced diagnosis as well as improved identification of patients with aCS in whom anti-inflammatory therapy may be most beneficial.  相似文献   

15.
BackgroundCarotid and femoral plaque burden is a recognized biomarker of cardiovascular disease risk. A new electronic-sweep 3-dimensional (3D)–matrix transducer method can improve the functionality and image quality of vascular ultrasound atherosclerosis imaging.ObjectivesThis study aimed to validate this method for plaque volume measurement in early and intermediate–advanced plaques in the carotid and femoral territories.MethodsPlaque volumes were measured ex vivo in pig carotid and femoral artery specimens by 3-dimensional vascular ultrasound (3DVUS) using a 3D-matrix (electronic-sweep) transducer and its associated 3D plaque quantification software, and were compared with gold-standard histology. To test the clinical feasibility and accuracy of the 3D-matrix transducer, an experiment was conducted in intermediate–high risk individuals with carotid and femoral atherosclerosis. The results were compared with those obtained using the previously validated mechanical-sweep 3D transducer and established 2-dimensional (2D)–based plaque quantification software.ResultsIn the ex vivo study, the authors assessed 19 atherosclerotic plaques (plaque volume, 0.76 µL-56.30 μL), finding strong agreement between measurements with the 3D-matrix transducer and the histological gold-standard (intraclass correlation coefficient [ICC]: 0.992; [95% CI: 0.978-0.997]). In the clinical analysis of 20 patients (mean age 74.6 ± 4.45 years; 40% men), the authors found 64 (36 carotid and 28 femoral) of 80 scanned territories with atherosclerosis (measured atherosclerotic volume, 10 μL-859 μL). There was strong agreement between measurements made from electronic-sweep and mechanical-sweep 3DVUS transducers (ICC: 0.997 [95% CI: 0.995-0.998]). Agreement was also high between plaque volumes estimated by the 2D and 3D plaque quantification software applications (ICC: 0.999 [95% CI: 0.998-0.999]). Analysis time was significantly shorter with the 3D plaque quantification software than with the 2D multislice approach with a mean time reduction of 46%.Conclusions3DVUS using new matrix transducer technology, together with improved 3D plaque quantification software, simplifies the accurate volume measurement of early (small) and intermediate–advanced plaques located in carotid and femoral arteries.  相似文献   

16.
《JACC: Cardiovascular Imaging》2019,12(12):2445-2456
ObjectivesThis study sought to establish the best definition of left ventricular adverse remodeling (LVAR) to predict outcomes and determine whether its assessment adds prognostic information to that obtained by early cardiac magnetic resonance (CMR).BackgroundLVAR, usually defined as an increase in left ventricular end-diastolic volume (LVEDV) is the main cause of heart failure after an ST-segment elevated myocardial infarction; however, the role of assessment of LVAR in predicting cardiovascular events remains controversial.MethodsPatients with ST-segment elevated myocardial infarction who received percutaneous coronary intervention within 6 h of symptom onset were included (n = 498). CMR was performed during hospitalization (6.2 ± 2.6 days) and after 6 months (6.1 ± 1.8 months). The optimal threshold values of the LVEDV increase and the LV ejection fraction decrease associated with the primary endpoint were ascertained. Primary outcome was a composite of cardiovascular mortality, hospitalization for heart failure, or ventricular arrhythmia.ResultsThe study was completed by 374 patients. Forty-nine patients presented the primary endpoint during follow-up (72.9 ± 42.8 months). Values that maximized the ability to identify patients with and without outcomes were a relative rise in LVEDV of 15% (hazard ratio [HR]: 2.1; p = 0.007) and a relative fall in LV ejection fraction of 3% (HR: 2.5; p = 0.001). However, the predictive model (using C-statistic analysis) failed to demonstrate that direct observation of LVAR at 6 months adds information to data from early CMR in predicting outcomes (C-statistic: 0.723 vs. 0.795).ConclusionsThe definition of LVAR that best predicts adverse cardiovascular events should consider both the increase in LVEDV and the reduction in LV ejection fraction. However, assessment of LVAR does not improve information provided by the early CMR.  相似文献   

17.
BackgroundLeft ventricular abnormalities in cardiac sarcoidosis (CS) are associated with adverse cardiovascular events, whereas the prognostic value of right ventricular (RV) involvement found on cardiac magnetic resonance is unclear.ObjectivesThis study aimed to systematically assess the prognostic value of right ventricular ejection fraction (RVEF) and RV late gadolinium enhancement (LGE) in known or suspected CS.MethodsThis study was prospectively registered in PROSPERO (CRD42022302579). PubMed, Embase, and Web of Science were searched to identify studies that evaluated the association between RVEF or RV LGE on clinical outcomes in CS. A composite endpoint of all-cause death, cardiovascular events, or sudden cardiac death (SCD) was used. A meta-analysis was performed to determine the pooled risk ratio (RR) for these adverse events. The calculated sensitivity, specificity, and area under the curve with 95% CIs were weighted and summarized.ResultsEight studies including a total of 899 patients with a mean follow-up duration of 3.2 ± 0.7 years were included. The pooled RR of RV systolic dysfunction was 3.1 (95% CI: 1.7-5.5; P < 0.01) for composite events and 3.0 (95% CI: 1.3-7.0; P < 0.01) for SCD events. In addition, CS patients with RV LGE had a significant risk for composite events (RR: 4.8 [95% CI: 2.4-9.6]; P < 0.01) and a higher risk for SCD (RR: 9.5 [95% CI: 4.4-20.5]; P < 0.01) than patients without RV LGE. Furthermore, the pooled area under the curve, sensitivity, and specificity of RV LGE for identifying patients with CS who were at highest SCD risk were 0.8 (95% CI: 0.8-0.9), 69% (95% CI: 50%-84%), and 90% (95% CI: 70%-97%), respectively.ConclusionsIn patients with known or suspected CS, RVEF and RV LGE were both associated with adverse events. Furthermore, RV LGE shows good discrimination in identifying CS patients at high risk of SCD.  相似文献   

18.
BackgroundThe left atrium is an early sensor of left ventricular (LV) dysfunction. Still, the prognostic value of left atrial (LA) function (strain) on cardiac magnetic resonance (CMR) in dilated cardiomyopathy (DCM) remains unknown.ObjectivesThe goal of this study was to evaluate the prognostic value of CMR-derived LA strain in DCM.MethodsPatients with DCM from the Maastricht Cardiomyopathy Registry with available CMR imaging were included. The primary endpoint was the combination of sudden or cardiac death, heart failure (HF) hospitalization, or life-threatening arrhythmias. Given the nonlinearity of continuous variables, cubic spline analysis was performed to dichotomize.ResultsA total of 488 patients with DCM were included (median age: 54 [IQR: 46-62] years; 61% male). Seventy patients (14%) reached the primary endpoint (median follow-up: 6 [IQR: 4-9] years). Age, New York Heart Association (NYHA) functional class >II, presence of late gadolinium enhancement (LGE), LV ejection fraction (LVEF), LA volume index (LAVI), LV global longitudinal strain (GLS), and LA reservoir and conduit strain were univariably associated with the outcome (all P < 0.02). LA conduit strain was a stronger predictor of outcome compared with reservoir strain. LA conduit strain, NYHA functional class >II, and LGE remained associated in the multivariable model (LA conduit strain HR: 3.65 [95% CI: 2.01-6.64; P < 0.001]; NYHA functional class >II HR: 1.81 [95% CI: 1.05-3.12; P = 0.033]; and LGE HR: 2.33 [95% CI: 1.42-3.85; P < 0.001]), whereas age, N-terminal pro–B-type natriuretic peptide, LVEF, left atrial ejection fraction, LAVI, and LV GLS were not. Adding LA conduit strain to other independent predictors (NYHA functional class and LGE) significantly improved the calibration, accuracy, and reclassification of the prediction model (P < 0.05).ConclusionsLA conduit strain on CMR is a strong independent prognostic predictor in DCM, superior to LV GLS, LVEF, and LAVI and incremental to LGE. Including LA conduit strain in DCM patient management should be considered to improve risk stratification.  相似文献   

19.
BackgroundCardiac magnetic resonance (CMR) is widely used to assess tissue and functional abnormalities in arrhythmogenic right ventricular cardiomyopathy (ARVC). Recently, a ARVC risk score was proposed to predict the 5-year risk of malignant ventricular arrhythmias in patients with ARVC. However, CMR features such as fibrosis, fat infiltration, and left ventricular (LV) involvement were not considered.ObjectivesThe authors sought to evaluate the prognostic role of CMR phenotype in patients with definite ARVC and to evaluate the effectiveness of the novel 5-year ARVC risk score to predict cardiac events in different CMR presentations.MethodsA total of 140 patients with definite ARVC were enrolled (mean age 42 ± 17 years, 97 males) in this multicenter prospective registry. As per study design, CMR was performed in all the patients at enrollment. The novel 5-year ARVC risk score was retrospectively calculated using the patient’s characteristics at the time of enrollment. During a median follow-up of 5 years (2 to 8 years), the combined endpoint of sudden cardiac death, appropriate implantable cardioverter-defibrillator intervention, and aborted cardiac arrest was considered.ResultsCMR was completely negative in 14 patients (10%), isolated right ventricular (RV) involvement was found in 58 (41%), biventricular in 52 (37%), and LV dominant in 16 (12%). During the follow-up, 48 patients (34%) had major events, but none occurred in patients with negative CMR. At Kaplan-Meier analysis, patients with LV involvement (LV dominant and biventricular) had a worse prognosis than those with lone RV (p < 0.0001). At multivariate analysis, the LV involvement, a LV-dominant phenotype, and the 5-year ARVC risk score were independent predictors of major events. The estimated 5-year risk was able to predict the observed risk in patients with lone RV but underestimated the risk in those with LV involvement.ConclusionsDifferent CMR presentations of ARVC are associated with different prognoses. The 5-year ARVC risk score is valid for the estimation of risk in patients with lone-RV presentation but underestimated the risk when LV is involved.  相似文献   

20.
ObjectivesIn patients with nonischemic dilated cardiomyopathy (NIDCM), native T1, partition coefficient (λGd), and extracellular volume fraction (ECV) mapping may offer prognostic values beyond late gadolinium enhancement (LGE), by scaling the range of myocardial changes.BackgroundIn patients with NIDCM, LGE is seen in 30% of patients and it indicates adverse prognosis.MethodsThe study mapped 6 anatomical locations using all 4 cardiac magnetic resonance (CMR) tissue-characterizing methods and associated with outcome. The authors performed T1 mapping of the myocardium and the blood pool, before and serially after contrast injection, using a Look-Locker cine gradient-echo technique to obtain T1 and the corresponding reciprocal R1 values. λGd values were derived from the slopes of the least-squares regression lines for myocardial versus blood R1, then adjusted to serum hematocrit to yield ECV.ResultsConsecutive 240 NIDCM patients (49 ± 16 years of age; 38% women) underwent CMR for cardiac function, LGE, native T1, λGd, and ECV. After a median of 3.8 years, 36 (15%) experienced major adverse cardiac events (MACE), including 22 heart failure hospitalizations and 14 deaths. Nonischemic LGE was detected in 34%, whereas ECV was elevated (≥1 location) in 58%. Comparing the 4 methods, mean ECV and λGd both demonstrated strong association with MACE (both p < 0.001). In contrast to native T1 and LGE, ECV values from all 6 locations were associated with MACE and death, with the anteroseptum being the most significant (p < 0.0001). The number of abnormal ECV locations correlated linearly with annual MACE rates (p = 0.0003). Mean ECV was the only predictor to enter a prognostic model that contained age, sex, New York Heart Association functional class, and left ventricular ejection fraction. For every 10% increase, mean ECV portended to a 2.8-fold adjusted increase risk to MACE (p < 0.001).ConclusionsIn this study of patients with NIDCM, mapping the myocardial extent of abnormality using ECV offers prognostication toward heart failure outcomes incremental to LGE or native T1 mapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号