首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibody against Clostridium perfringens type A enterotoxin was found in 82% of Brazilian and 65% of American serum samples.  相似文献   

2.
Clostridium perfringens enterotoxin (CPE) is responsible for the diarrheal and cramping symptoms of human C. perfringens type A food poisoning. CPE-producing C. perfringens isolates have also recently been associated with several non-food-borne human gastrointestinal (GI) illnesses, including antibiotic-associated diarrhea and sporadic diarrhea. The current study has used restriction fragment length polymorphism (RFLP) and pulsed-field gel electrophoresis (PFGE) analyses to compare the genotypes of 43 cpe-positive C. perfringens isolates obtained from diverse sources. All North American and European food-poisoning isolates examined in this study were found to carry a chromosomal cpe, while all non-food-borne human GI disease isolates characterized in this study were determined to carry their cpe on an episome. Collectively, these results provide the first evidence that distinct subpopulations of cpe-positive C. perfringens isolates may be responsible for C. perfringens type A food poisoning versus CPE-associated non-food-borne human GI diseases. If these putative associations are confirmed in additional surveys, cpe RFLP and PFGE genotyping assays may facilitate the differential diagnosis of food-borne versus non-food-borne CPE-associated human GI illnesses and may also be useful epidemiologic tools for identifying reservoirs or transmission mechanisms for the subpopulations of cpe-positive isolates specifically responsible for CPE-associated food-borne versus non-food-borne human GI diseases.  相似文献   

3.
Several Clostridium perfringens genotype E isolates, all associated with hemorrhagic enteritis of neonatal calves, were identified by multiplex PCR. These genotype E isolates were demonstrated to express α and ι toxins, but, despite carrying sequences for the gene (cpe) encoding C. perfringens enterotoxin (CPE), were unable to express CPE. These silent cpe sequences were shown to be highly conserved among type E isolates. However, relative to the functional cpe gene of type A isolates, these silent type E cpe sequences were found to contain nine nonsense and two frameshift mutations and to lack the initiation codon, promoters, and ribosome binding site. The type E animal enteritis isolates carrying these silent cpe sequences do not appear to be clonally related, and their silent type E cpe sequences are always located, near the ι toxin genes, on episomal DNA. These findings suggest that the highly conserved, silent cpe sequences present in most or all type E isolates may have resulted from the recent horizontal transfer of an episome, which also carries ι toxin genes, to several different type A C. perfringens isolates.  相似文献   

4.
The epidemiological and bacteriological investigations on four foodborne outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens are described. C. perfringens isolated from patients of these outbreaks did not produce any known enterotoxin and did not carry the C. perfringens enterotoxin gene. However, the culture filtrates of these isolates induced the accumulation of fluid in rabbit ileal loop tests. The molecular weight of the new enterotoxin may be between 50,000 and 100,000, although the known C. perfringens enterotoxin is ca. 35,000. This new enterotoxin was heat labile, and its biological activities were inactivated by heating for 5 min at 60°C. The new enterotoxin was sensitive to pH values higher than 11.0 and protease treatment but was resistant to trypsin treatment. These results suggest that the new enterotoxin may be a protein. Although C. perfringens enterotoxin induced morphological changes in Vero cells, the changes induced by the new enterotoxin differed from those by the known C. perfringens enterotoxin. The new enterotoxin also induced morphological changes in L929 cells, whereas the known C. perfringens enterotoxin did not, because L929 cells lacked an appropriate enterotoxin receptor. Although C. perfringens enterotoxin is recognized as the only diarrheagenic toxin responsible for C. perfringens foodborne outbreaks, the results of the present study indicate that C. perfringens isolated from these four outbreaks produced a new type of enterotoxin.  相似文献   

5.
Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence.Clostridium perfringens isolates are classified into five toxinotypes (A to E) based upon the production of four (α, β, ɛ, and ι) typing toxins (29). Each toxinotype is associated with different diseases affecting humans or animals (25). In livestock species, C. perfringens type C isolates cause fatal necrotizing enteritis and enterotoxemia, where toxins produced in the intestines absorb into the circulation to damage internal organs. Type C-mediated animal diseases result in serious economic losses for agriculture (25). In humans, type C isolates cause enteritis necroticans, which is also known as pigbel or Darmbrand (15, 17), an often fatal disease that involves vomiting, diarrhea, severe abdominal pain, intestinal necrosis, and bloody stools. Acute cases of pigbel, resulting in rapid death, may also involve enterotoxemia (15).By definition, type C isolates must produce alpha and beta toxins (24, 29). Alpha toxin, a 43-kDa protein encoded by the chromosomal plc gene, has phospholipase C, sphingomyelinase, and lethal properties (36). Beta toxin, a 35-kDa polypeptide, forms pores that lyse susceptible cells (28, 35). Recent studies demonstrated that beta toxin is necessary for both the necrotizing enteritis and lethal enterotoxemia caused by type C isolates (33, 37). Besides alpha and beta toxins, type C isolates also commonly express beta2 toxin, perfringolysin O, or enterotoxin (11).There is growing appreciation that naturally occurring plasmids contribute to both C. perfringens virulence and antibiotic resistance. For example, all typing toxins, except alpha toxin, can be encoded by genes carried on large plasmids (9, 19, 26, 30-32). Other C. perfringens toxins, such as the enterotoxin or beta2 toxin, can also be plasmid encoded (6, 8, 12, 34). Furthermore, conjugative transfer of several C. perfringens antibiotic resistance plasmids or toxin plasmids has been demonstrated, supporting a key role for plasmids in the dissemination of virulence or antibiotic resistance traits in this bacterium (2).Despite their pathogenic importance, the toxin-encoding plasmids of C. perfringens only recently came under intensive study (19, 26, 27, 31, 32). The first carefully analyzed C. perfringens toxin plasmids were two plasmid families carrying the enterotoxin gene (cpe) in type A isolates (6, 8, 12, 26). One of those cpe plasmid families, represented by the ∼75-kb prototype pCPF5603, has an IS1151 sequence present downstream of the cpe gene and also carries the cpb2 gene, encoding beta2 toxin. A second cpe plasmid family of type A isolates, represented by the ∼70-kb prototype pCPF4969, lacks the cpb2 gene and carries an IS1470-like sequence, rather than an IS1151 sequence, downstream of the cpe gene. The pCPF5603 and pCPF4969 plasmid families share an ∼35-kb region that includes transfer of a clostridial plasmid (tcp) locus (26). The presence of this tcp locus likely explains the demonstrated conjugative transfer of some cpe plasmids (5) since a similar tcp locus was shown to mediate conjugative transfer of the C. perfringens tetracycline resistance plasmid pCW3 (2).The iota toxin-encoding plasmids of type E isolates are typically larger (up to ∼135 kb) than cpe plasmids of type A isolates (19). Plasmids carrying iota toxin genes often encode other potential virulence factors, such as lambda toxin and urease, as well as a tcp locus (19). Many iota toxin plasmids of type E isolates share, sometimes extensively, sequences with cpe plasmids of type A isolates (19). It has been suggested that many iota toxin plasmids evolved from the insertion of a mobile genetic element carrying the iota toxin genes near the plasmid-borne cpe gene in a type A isolate, an effect that silenced the cpe gene in many type E isolates (3, 19).Plasmids carrying the epsilon toxin gene (etx) vary from ∼48 kb to ∼110 kb among type D isolates (32). In part, these etx plasmid size variations in type D isolates reflect differences in toxin gene carriage. For example, the small ∼48-kb etx plasmids present in some type D isolates lack both the cpe gene and the cpb2 gene. In contrast, larger etx plasmids present in other type D isolates often carry the cpe gene, the cpb2 gene, or both the cpe and cpb2 genes. Thus, the virulence plasmid diversity of type D isolates spans from carriage of a single toxin plasmid, possessing from one to three distinct toxin genes, to carriage of three different toxin plasmids.In contrast to the variety of etx plasmids found among type D isolates, type B isolates often or always share the same ∼65-kb etx plasmid, which is related to pCPF5603 but lacks the cpe gene (27). This common etx plasmid of type B isolates, which carries a cpb2 gene and the tcp locus, is also present in a few type D isolates. Most type B isolates surveyed to date carry their cpb gene, encoding beta toxin, on an ∼90-kb plasmid, although a few of those type B isolates possess an ∼65-kb cpb plasmid distinct from their ∼65-kb etx plasmid (31).To our knowledge, the cpb gene has been mapped to a plasmid (uncharacterized) in only a single type C strain (16). Furthermore, except for the recent localization of the cpe gene to plasmids in type C strains (20), plasmid carriage of other potential toxin genes in type C isolates has not been investigated. Considering the limited information available regarding the toxin plasmids of type C isolates, our study sought to systematically characterize the size, diversity, and toxin gene carriage of toxin plasmids in a collection of type C isolates. Also, to gain insight into possible mobilization of the cpb gene by insertion sequences or conjugative transfer, the presence of IS1151 sequences or the tcp locus on type C toxin plasmids was investigated.  相似文献   

6.
7.
Mammalian orthoreoviruses (MRVs) are known to cause mild enteric and respiratory infections in humans. They are widespread and infect a broad spectrum of mammals. We report here the first case of an MRV detected in a child with acute gastroenteritis, which showed the highest similarity to an MRV reported recently in European bats. An examination of a stool sample from the child was negative for most common viral and bacterial pathogens. Reovirus particles were identified by electron microscopic examination of both the stool suspension and cell culture supernatant. The whole-genome sequence was obtained with the Ion Torrent next-generation sequencing platform. Prior to sequencing, the stool sample suspension and cell culture supernatant were pretreated with nucleases and/or the convective interaction medium (CIM) monolithic chromatographic method to purify and concentrate the target viral nucleic acid. Whole-genome sequence analysis revealed that the Slovenian SI-MRV01 isolate was most similar to an MRV found in a bat in Germany. High similarity was shared in all genome segments, with nucleotide and amino acid identities between 93.8 to 99.0% and 98.4 to 99.7%, respectively. It was shown that CIM monolithic chromatography alone is an efficient method for enriching the sample in viral particles before nucleic acid isolation and next-generation sequencing application.  相似文献   

8.
The ability of Clostridium perfringens type C to cause human enteritis necroticans (EN) is attributed to beta toxin (CPB). However, many EN strains also express C. perfringens enterotoxin (CPE), suggesting that CPE could be another contributor to EN. Supporting this possibility, lysate supernatants from modified Duncan-Strong sporulation (MDS) medium cultures of three CPE-positive type C EN strains caused enteropathogenic effects in rabbit small intestinal loops, which is significant since CPE is produced only during sporulation and since C. perfringens can sporulate in the intestines. Consequently, CPE and CPB contributions to the enteropathogenic effects of MDS lysate supernatants of CPE-positive type C EN strain CN3758 were evaluated using isogenic cpb and cpe null mutants. While supernatants of wild-type CN3758 MDS lysates induced significant hemorrhagic lesions and luminal fluid accumulation, MDS lysate supernatants of the cpb and cpe mutants caused neither significant damage nor fluid accumulation. This attenuation was attributable to inactivating these toxin genes since complementing the cpe mutant or reversing the cpb mutation restored the enteropathogenic effects of MDS lysate supernatants. Confirming that both CPB and CPE are needed for the enteropathogenic effects of CN3758 MDS lysate supernatants, purified CPB and CPE at the same concentrations found in CN3758 MDS lysates also acted together synergistically in rabbit small intestinal loops; however, only higher doses of either purified toxin independently caused enteropathogenic effects. These findings provide the first evidence for potential synergistic toxin interactions during C. perfringens intestinal infections and support a possible role for CPE, as well as CPB, in some EN cases.  相似文献   

9.
Clostridium perfringens type C strains are the only non-type-A isolates that cause human disease. They are responsible for enteritis necroticans, which was termed Darmbrand when occurring in post-World War II Germany. Darmbrand strains were initially classified as type F because of their exceptional heat resistance but later identified as type C strains. Since only limited information exists regarding Darmbrand strains, this study genetically and phenotypically characterized seven 1940s era Darmbrand-associated strains. Results obtained indicated the following. (i) Five of these Darmbrand isolates belong to type C, carry beta-toxin (cpb) and enterotoxin (cpe) genes on large plasmids, and express both beta-toxin and enterotoxin. The other two isolates are cpe-negative type A. (ii) All seven isolates produce highly heat-resistant spores with D100 values (the time that a culture must be kept at 100°C to reduce its viability by 90%) of 7 to 40 min. (iii) All of the isolates surveyed produce the same variant small acid-soluble protein 4 (Ssp4) made by type A food poisoning isolates with a chromosomal cpe gene that also produce extremely heat-resistant spores. (iv) The Darmbrand isolates share a genetic background with type A chromosomal-cpe-bearing isolates. Finally, it was shown that both the cpe and cpb genes can be mobilized in Darmbrand isolates. These results suggest that C. perfringens type A and C strains that cause human food-borne illness share a spore heat resistance mechanism that likely favors their survival in temperature-abused food. They also suggest possible evolutionary relationships between Darmbrand strains and type A strains carrying a chromosomal cpe gene.  相似文献   

10.
Clostridium perfringens enterotoxin (CPE), a single polypeptide of 319 amino acids, has a unique multistep mechanism of action. In the first step, CPE binds to claudin proteins and/or a 50-kDa eukaryotic membrane protein receptor, forming a small ( approximately 90-kDa) complex. This small complex apparently then associates with a 70-kDa eukaryotic membrane protein, resulting in formation of a large complex that induces the onset of membrane permeability alterations. To better define the boundaries of CPE functional regions and to identify specific amino acid residues involved in various steps of CPE action, in this study we subjected the cloned cpe gene to random mutagenesis in XL-1 Red strains of Escherichia coli. Seven CPE random mutants with reduced cytotoxicity for Vero cells were phenotypically characterized for the ability to complete each step in CPE action. Five of these seven recombinant CPE (rCPE) random mutants (G49D, S59L, R116S, R137G, and S167P) exhibited binding characteristics similar to those of rCPE or native CPE, while the Y310C and W226Stop mutants showed reduced binding and no binding, respectively, to brush border membranes. Interestingly, two completely nontoxic mutants (G49D and S59L) were able to bind and form small complex but they did not mediate any detectable large complex formation. Another strongly attenuated mutant, R116S, formed reduced amounts of an anomalously migrating large complex. Collectively, these results provide further support for large complex formation being an essential step in CPE action and also identify the CPE region ranging from residues approximately 45 to 116 as important for large complex formation. Finally, we also report that limited removal of extreme N-terminal CPE sequences, which may occur in vivo during disease, stimulates cytotoxic activity by enhancing large complex formation.  相似文献   

11.
12.
The etiology of an outbreak of gastroenteritis in humans cannot always be determined, and ∼25% of outbreaks remain unsolved in New Zealand. It is hypothesized that novel viruses may account for a proportion of unsolved cases, and new unbiased high-throughput sequencing methods hold promise for their detection. Analysis of the fecal metagenome can reveal the presence of viruses, bacteria, and parasites which may have evaded routine diagnostic testing. Thirty-one fecal samples from 26 gastroenteritis outbreaks of unknown etiology occurring in New Zealand between 2011 and 2012 were selected for de novo metagenomic analysis. A total data set of 193 million sequence reads of 150 bp in length was produced on an Illumina MiSeq. The metagenomic data set was searched for virus and parasite sequences, with no evidence of novel pathogens found. Eight viruses and one parasite were detected, each already known to be associated with gastroenteritis, including adenovirus, rotavirus, sapovirus, and Dientamoeba fragilis. In addition, we also describe the first detection of human parechovirus 3 (HPeV3) in Australasia. Metagenomics may thus provide a useful audit tool when applied retrospectively to determine where routine diagnostic processes may have failed to detect a pathogen.  相似文献   

13.
The 24-member claudin protein family plays a key role in maintaining the normal structure and function of epithelial tight junctions. Previous studies with fibroblast transfectants and naturally sensitive Caco-2 cells have also implicated certain claudins (e.g., Claudin-4) as receptors for Clostridium perfringens enterotoxin (CPE). The present study first provided evidence that the second extracellular loop (ECL-2) of claudins is specifically important for mediating the host cell binding and cytotoxicity of native CPE. Rat fibroblast transfectants expressing a Claudin-4 chimera, where the natural ECL-2 was replaced by ECL-2 from Claudin-2, exhibited no CPE-induced cytotoxicity. Conversely, CPE bound to, and killed, CPE-treated transfectants expressing a Claudin-2 chimera with a substituted ECL-2 from Claudin-4. Site-directed mutagenesis was then used to alter an ECL-2 residue that invariably aligns as N in claudins known to bind native CPE but as D or S in claudins that cannot bind CPE. Transfectants expressing a Claudin-4N149D mutant lost the ability to bind or respond to CPE, while transfectants expressing a Claudin-1 mutant with the corresponding ECL-2 residue changed from D to N acquired CPE binding and sensitivity. Identifying carriage of this N residue in ECL-2 as being important for native CPE binding helps to explain why only certain claudins can serve as CPE receptors. Finally, preincubating CPE with soluble recombinant Claudin-4, or Claudin-4 fragments containing ECL-2 specifically blocked the cytotoxicity on Caco-2 cells. This result opens the possibility of using receptor claudins as therapeutic decoys to ameliorate CPE-mediated intestinal disease.Clostridium perfringens enterotoxin (CPE) causes the intestinal symptoms of C. perfringens type A food poisoning, the second most commonly identified bacterial food-borne illness (21), and also contributes to many cases of antibiotic-associated diarrhea (21). CPE applications are also emerging, including (i) use of this toxin as a potential anticancer agent, based upon cancer cells often overexpressing CPE receptors and thus exhibiting strong CPE sensitivity (16, 17, 25, 30) and (ii) use of noncytotoxic, but binding-capable, C-terminal CPE fragments to increase drug delivery (8, 11, 18, 38).The first step in CPE action involves binding of this toxin to host cell receptors; however, CPE binding to these receptors is insufficient to trigger cytotoxicity (22, 40). Instead, the toxin-receptor complex must oligomerize on the enterocyte plasma membrane surface to form an ∼450-kDa prepore named CH-1 (29). CH-1 then inserts into the plasma membrane, producing an active pore that allows a Ca2+ influx to trigger apoptotic or oncotic cell death pathways (4, 5). Dying CPE-treated cells develop morphological damage, which facilitates formation of an ∼600-kDa CPE complex named CH-2 that may contribute to tight junction disruption (29, 33).Increasing evidence implicates certain members of the claudin tight-junction protein family as functional receptors for CPE binding to host cells. First, expression cloning approaches showed that mouse fibroblasts, which are naturally CPE insensitive and produce no claudins, acquire the ability to bind and respond to native CPE when transfected to express Claudin-3 or -4 (9, 13, 14, 36). Similarly, fibroblast transfectants expressing Claudin-6, -7, -8, or -14 also exhibited CPE binding ability (9). However, not all claudins are CPE receptors, since fibroblast transfectants expressing Claudin-1, -2, or -5 did not bind CPE (9). Additional evidence for certain claudins functioning as CPE receptors was provided by coimmunoprecipitation studies showing that enterotoxin interacts with Claudin-3 and -4 prior to CH-1 formation in naturally CPE-sensitive, enterocytelike Caco-2 cells (29).A claudin structure is not yet available, but hydropathy plots predict these 20- to 27-kDa proteins contain a short cytoplasmic N-terminal domain, four transmembrane domains, two extracellular loops (ECLs), and a cytoplasmic C-terminal tail (39). The first predicted ECL (ECL-1) of claudins consists of ∼52 amino acids, while the second predicted ECL (ECL-2) is smaller, containing 16 to 35 amino acids (27). The C-terminal tail, the most variable region among different claudins, can trigger cell signaling events via its PDZ binding motif, although such signaling is not required for CPE action (29).Fujita et al. (9) began mapping the Claudin-3 region involved in CPE binding. They showed that fibroblast transfectants acquire CPE sensitivity when expressing a chimeric claudin where the N-terminal half of Claudin-1 is fused with the C-terminal half of Claudin-3. However, CPE did not affect transfectants expressing a claudin chimera with the N-terminal half of Claudin-3 fused to the C-terminal half of Claudin-1. The presence of a CPE binding region in the C-terminal half of Claudin-3 received further support from in vitro overlay blot results showing CPE binding to an ECL-2-containing fusion protein (9).Since our primary interest concerns elucidating CPE-induced cytotoxicity during intestinal disease, the current study sought to investigate (i) why some, but not all, claudins can bind and mediate native CPE cytotoxicity and (ii) whether claudin-based receptor decoys might be useful as therapeutics to block CPE-induced cytotoxicity.  相似文献   

14.
We conducted a case-control study to explore the prevalence of 10 human polyomaviruses in fecal specimens from hospitalized children with diarrhea and asymptomatic control subjects by using multiplex PCR detected by matrix-assisted laser desorption ionization–time of flight mass spectrometry. The differences between cases and controls were not statistically significant.  相似文献   

15.
16.
17.
The effect of feeding human beings individual strains of Clostridium perfringens or culture filtrates thereof was examined. The strains selected for challenge included both those which had previously been shown to produce fluid accumulation in the ligated ileum or overt diarrhea when injected into the nonligated ileum of the rabbit, or had produced both, and those which did not regularly produce these responses. Challenge doses prepared by allowing each strain to grow in beef stew for 3 hr at 46 C resulted in a 61% incidence of diarrhea when rabbit-positive cells were used. No diarrhea occurred among the subjects fed rabbit-negative strains prepared in a similar manner. The procedures employed in preparing the challenge dose appeared to influence the results obtained. When cell-free filtrates were fed, 4 of 15 persons consuming filtrates from rabbit-positive strains developed diarrhea. All subjects fed filtrates from rabbit-negative strains remained free from diarrhea. Serological tests were carried out to compare the identity of the strains of C. perfringens consumed by the subjects and those excreted in the feces. Heat resistance measured as D100 values varied greatly among the rabbit-positive strains.  相似文献   

18.
BackgroundDuring one week in September, one index case, followed by two cases of rotavirus gastroenteritis infection, was identified in a neonate intermediate care unit of a tertiary teaching children's hospital. An outbreak investigation was launched to clarify the possible infection source and to stop the spread of infection.MethodsCohort care and environmental disinfection were immediately implemented. We screened rotavirus in all the unit neonates' stool samples as well as environmental swab samples. The precautionary measures with regard to hand hygiene and contact isolation taken by healthcare providers and family members were re-examined.ResultsThe fourth case was identified 5 days after commencement of the outbreak investigation. There were total 39 contacts, including 6 neonates, 8 family members, and 25 healthcare providers. Nineteen stool samples collected from other neonates in the units revealed one positive case (the fourth case). However, one sample taken from the computer keyboard and mouse in the ward was also positive. The observation of hygiene precautions and the use of isolation gowns by healthcare workers were found to be inadequate. Following the intensification of infection control measures, no further cases of infection were reported.ConclusionsHand hygiene and an intensive isolation strategy remained the most critical precautions for preventing an outbreak of healthcare-associated viral gastroenteritis in the neonate care unit.  相似文献   

19.
Ninety-six percent of Clostridium perfringens isolates from clinical specimens were reverse CAMP test positive, whereas several other Clostridium species tested were reverse CAMP test negative. C. perfringens was detected by direct inoculation of clinical specimens to reverse CAMP plates, and the reverse CAMP procedure provided reliable presumptive identification of this organism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号