首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of divalent ionophores (A23187 and ionomycin), Ca2+ channel agonist (BAY K 8644), and protein kinase C (C-kinase) activators [phorbol 12-myristate 13-acetate (PMA), mezerein] on bovine tracheal smooth muscle contraction were investigated. A23187 (5 microM) and ionomycin (0.5 microM) produced a prompt but transient contraction. C-kinase activators either produced no effect--e.g., PMA at 200 nM--or produced a rise in tension that was slow in onset but then gradually increased--e.g., mezerein at 400 nM. In contrast, ionophores and C-kinase activators, in combination, acted synergistically to produce a prompt and sustained contractile response that is reminiscent of that observed in response to carbachol, a cholinergic agonist. In addition, BAY K 8644 (20 nM), which has a minimal effect on tension by itself, could significantly enhance contraction induced by C-kinase activators. The contraction induced by all of these agents was quickly reversed either by removal of extracellular Ca2+ or upon addition of forskolin, an activator of adenylate cyclase. A similar reversal of carbachol-induced contraction by forskolin was observed with carbachol-induced contraction. These findings strongly suggest that C-kinase plays an important role in mediating tracheal smooth muscle contraction.  相似文献   

2.
The effects of ET-1 on contraction, Ca2+ transient and L-type Ca2+ current (ICa.L) were studied in single cells isolated from ventricles of guinea-pig hearts. The aim of our study was to elucidate the mechanism of the positive inotropic effect during endothelin receptor stimulation by focusing on the role of PKC. ET-1 at concentrations of 5 and 10 nM produced a biphasic pattern of inotropism: a first decrease in contraction by 34.4 +/- 2.5% of the control followed by a sustained increase in contraction by 66.6 +/- 8.4% (mean +/- SEM, n = 9). The Ca2+ transient decreased by 13.5 +/- 1.0% during the negative inotropic phase, while it increased by 58.1 +/- 8.4% (n = 10) during the positive inotropic phase. Using the whole-cell voltage-clamp technique with conventional microelectrodes, the application of ET-1 (5 nM) increased the ICa.L by 32.6 +/- 5.1% (n = 10), which was preceded by a short-lived decrease in ICa.L. Incubation of myocytes with pertussis toxin (PTX, at 2 micrograms/ml for > 3 h at 35 degrees C) failed to block the ET-1-induced enhancement of ICa.L. The increases in contraction, Ca2+ transient, and ICa.L by ET-1 were inhibited by pretreatment with 5-N-methyl-N-isobutyl amiloride (MIA; 10 microM), an amiloride analog, and a novel selective Na+/H+ exchange inhibitor HOE694 (10 microM). To determine whether activation of protein kinase C (PKC) is responsible for the enhancement of ICa.L by ET-1, we tested a PKC inhibitor, GF109203X, and found that it does exert an inhibitory effect on the ET-1-induced ICa.L increase. Our study suggests that during ET receptor stimulation an increase in ICa.L due to stimulation of Na+/H+ exchange via PKC activation causes an increase in Ca2+ transients and thereby in the contractile force of the ventricular myocytes.  相似文献   

3.
K Meier  W Knepel  C Sch?fl 《Endocrinology》1988,122(6):2764-2770
Changes in membrane potential may influence Ca2+-dependent functions through changes in cytosolic free calcium concentration [( Ca2+]i). This study characterized pharmacologically those voltage-dependent Ca2+ channels in normal rat anterior pituitary cells that are involved in the elevation of [Ca2+]i upon high potassium-induced membrane depolarization. The [Ca2+]i was monitored directly by means of the intracellularly trapped fluorescent indicator fura-2. The addition of K+ (6-100 mM) increased [Ca2+]i in a concentration-dependent manner. The fluorescent signal reached a peak within seconds and then decayed to form a new elevated plateau. K+ at the highest concentration used (100 mM) raised [Ca2+]i by about 450 nM. The K+-induced increase in [Ca2+]i was absent in a Ca2+-free medium. BAY K 8644, a 1,4-dihydropyridine Ca2+ channel agonist, also caused an increase in [Ca2+]i. The maximum response in [Ca2+]i upon stimulation with BAY K 8644 (100 nM) was about 40 nM. The half-maximally effective concentration of BAY K 8644 (100 nM) was about 20 nM. The response in [Ca2+]i upon BAY K 8644-stimulation was abolished in a Ca2+-free medium. Predepolarization with various K+ concentrations enhanced the effect of BAY K 8644 (1 microM) on [Ca2+]i. Pretreatment with BAY K 8644 (1 microM) enhanced the response in [Ca2+]i induced by K+ (25 mM). The addition of Mg2+ (30 mM) and nifedipine (1 microM) lowered the resting [Ca2+]i by about 40 and 20 nM, respectively. Mg2+, nifedipine, nimodipine, G? 5438, verapamil, and diltiazem inhibited the K+ (25 mM)-induced increase in [Ca2+]i; the order of potency (and half-maximally inhibitory concentrations) were nimodipine = G? 5438 = nifedipine (approximately 100 nM) greater than verapamil (900 nM) greater than diltiazem (greater than 10 microM) greater than Mg2+ (6 mM). Omega-Conotoxin (100 nM) did not inhibit the K+ (25 mM)-induced increase in [Ca2+]i. These data demonstrate that, over a wide range, membrane depolarization induced by high potassium concentration is indeed associated with increases in [Ca2+]i in normal rat anterior pituitary cells. This elevation of [Ca2+]i is mainly due to an influx of Ca2+ through 1,4-dihydropyridine-sensitive, omega-conotoxin-insensitive calcium channels (L-type).  相似文献   

4.
Mechanisms of blockade of two types of Ca2+ channels by the organic Ca2+ antagonists, nicardipine, diltiazem, verapamil, and flunarizine, were examined in rat aorta smooth muscle cells in primary culture by using the whole-cell voltage-clamp method. T-type Ca2+ current (T-type ICa) was isolated by an internal perfusion of 5 mM F-, which irreversibly suppressed the L-type ICa, without affecting T-type ICa. L-type ICa was isolated by setting a holding potential at -60 mV, at which most of the T-type Ca2+ channels were inactivated. L-type ICa is halved by 0.1 microM nicardipine, 3.0 microM diltiazem, 0.6 microM verapamil, and 0.1 microM flunarizine, whereas T-type ICa is halved by the same drugs at 0.6, 30, 30, and 0.1 microM, respectively. Diltiazem and verapamil accelerated the decay of L-type ICa and cumulatively blocked L-type ICa during repetitive step depolarizations elicited every 30 seconds ("use-dependent block"). Diltiazem and verapamil neither changed the decay of T-type ICa nor showed a use-dependent block of T-type ICa. Nicardipine and flunarizine blocked both L- and T-type ICa from the first depolarization step after drug treatment ("tonic block") and shifted their steady-state inactivation curves to the left. The estimated binding constants of nicardipine and flunarizine for the inactivated state of T-type Ca2+ channels (48 and 19 nM, respectively) were smaller than those for the resting state of L-type Ca2+ channels (160 and 90 nM, respectively). A low concentration (0.1 microM) of nicardipine initially potentiated T-type ICa and then reduced it. We conclude from these results that 1) nicardipine and flunarizine block not only the resting state but, more preferentially, the inactivated state of both the L- and T-type Ca2+ channels; 2) verapamil and diltiazem preferentially act on the open state of the L-type Ca2+ channel and on the resting and inactivated state of the T-type Ca2+ channel; and 3) the T-type Ca2+ channel of the rat aorta smooth muscle cells appears to be more sensitive to nicardipine and flunarizine than does the L-type Ca2+ channel at around the resting membrane potential.  相似文献   

5.
Early afterdepolarizations (EADs) are a type of triggered activity found in heart muscle. We used voltage-clamped sheep cardiac Purkinje fibers to examine the mechanism underlying EADs induced near action potential plateau voltages with the Ca2+ current agonist Bay K 8644 and the effect of several interventions known to suppress or enhance these EADs. Bay K 8644 produced an inward shift of the steady-state current-voltage relation near plateau voltages. Tetrodotoxin, lidocaine, verapamil, nitrendipine, and raising [K]o abolish EADs and shift the steady-state current-voltage relations outwardly. Using a two-pulse voltage-clamp protocol, an inward current transient was present at voltages where EADs were induced. The voltage-dependence of availability of the inward current transient and of EAD induction were similar. The time-dependence of recovery from inactivation of the inward current transient and of EAD amplitude were nearly identical. Without recovery of the inward current transient, EADs could not be elicited. The inward current transient was enhanced with Bay K 8644 and blocked by nitrendipine, but was not abolished by tetrodotoxin or replacement of [Na]o with an impermeant cation. These results support a hypothesis that the induction of EADs near action potential plateau voltages requires 1) a conditioning phase controlled by the sum of membrane currents present near the action potential plateau and characterized by lengthening and flattening of the plateau within a voltage range where, 2) recovery from inactivation and reactivation of L-type Ca2+ channels to carry the depolarizing charge can occur. Our results suggest an essential role for the L-type Ca2+ "window" current and provide a framework for understanding the role of several membrane currents in the induction and block of EADs.  相似文献   

6.
The concentration of intracellular free Ca2+ ([Ca2+]i) was measured in melanotrophs, the characteristic endocrine cells of the pars intermedia of the rat pituitary gland, using the fluorescent Ca indicator fura-2. The resting [Ca2+]i was 211 +/- 8 nM and was little affected by tetrodotoxin (TTX; 5 or 10 microM), which inhibits the spontaneous action potentials that occur in these cells. Removal of extracellular Ca2+ (by chelation with EGTA) or addition of the Ca channel blocker nimodipine (1 microM) produced a rapid fall in [Ca2+]i, which occurred whether TTX was present or not. Excess K+ (60 mM), veratridine (10 or 100 microM) and BAY K 8644 (1 microM) each caused a rapid rise in [Ca2+]i, which was blocked or truncated by EGTA or nimodipine. TTX blocked or truncated the increases in [Ca2+]i induced by veratridine, but not those induced by either excess K+ or BAY K 8644. The results show that manipulations that increase or decrease hormone output increase or decrease [Ca2+]i. Furthermore, the resting [Ca2+]i appears to depend importantly on Ca influx, since it is rapidly and markedly reduced by removal of extracellular Ca2+ or addition of a Ca channel blocker.  相似文献   

7.
To clarify whether the Ca2+ uptake function of the sarcoplasmic reticulum (SR) during arterial contraction is altered in hypertension, the effects of cyclopiazonic acid (CPA) and thapsigargin, which inhibit SR Ca2+-ATPase, on the contractile responses to Bay k 8644, an agonist of L-type Ca2+ channels, were compared in endothelium-denuded strips of carotid arteries from 13-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). The addition of Bay k 8644 (1-300 nM) to the strips caused a concentration-dependent contraction that was larger in SHR than in WKY. The contractile responses to Bay k 8644 were augmented by CPA (10 microM) or thapsigargin (100 nM) in both strains. This augmentation was greater in SHR. Each of CPA and thapsigargin induced a relatively transient contraction, and both of these contractions were larger in SHR than in WKY. The basal 45Ca influx in this artery was larger in SHR than in WKY. The addition of caffeine (1-20 mM) caused a transient contraction that was larger in SHR than in WKY. Our results indicate that 1) the large Ca2+ influx during rest in the SHR carotid artery is strongly buffered by Ca2+ uptake into the superficial SR; and 2) the Ca2+ uptake function of the SR during the contraction with Bay k 8644 was increased in SHR compared with WKY. We conclude that the SHR carotid artery has an increased total capacity of SR for Ca2+ storage as an attempt to compensate for the large Ca2+ influx.  相似文献   

8.
The influx of Ca2+ ions controls many important processes in excitable cells, including the regulation of the gating of Ca(2+)-activated K+ channels (the current IK[Ca]). Various IK[Ca] channels contribute to the regulation of the action-potential waveform, the repetitive discharge of spikes, and the secretion of neurotransmitters. It is thought that large-conductance IK[Ca] channels must be closely colocalized with Ca2+ channels (ICa) to be gated by Ca2+ influx. We now report that IK[Ca] channels can be preferentially colocalized with pharmacologically distinct subtypes of voltage-activated Ca2+ channel and that this occurs differently in embryonic chicken sympathetic and parasympathetic neurons. The effects of various dihydropyridines and omega-conotoxin on voltage-activated Ca2+ currents (ICa) and Ca(2+)-activated K+ currents (IK[Ca]) were examined by using perforated-patch whole-cell recordings from embryonic chicken ciliary and sympathetic ganglion neurons. Application of nifedipine or omega-conotoxin each caused a 40-60% reduction in ICa, whereas application of S-(-)-BAY K 8644 potentiated ICa in ciliary ganglion neurons. But application of omega-conotoxin had little or no effect on IK[Ca], whereas nifedipine and S-(-)-BAY K 8644 inhibited and potentiated IK[Ca], respectively. These results indicate that IK[Ca] channels are preferentially coupled to L-type, but not to N-type, Ca2+ channels on chicken ciliary ganglion neurons. Chicken sympathetic neurons also express dihydropyridine-sensitive and omega-conotoxin-sensitive components of ICa. However, in those cells, application of omega-conotoxin caused a 40-60% reduction in IK[Ca], whereas nifedipine reduced IK[Ca] but only in a subpopulation of cells. Therefore, IK[Ca] in sympathetic neurons is either coupled to N-type Ca2+ channels or is not selectively coupled to a single Ca(2+)-channel subtype. The preferential coupling of IK[Ca] channels with distinct ICa subtypes may be part of a mechanism to allow for selective modulation of neurotransmitter release. Preferential coupling may also be important for the differentiation and development of vertebrate neurons.  相似文献   

9.
Calcium channel activation: a different type of drug action.   总被引:17,自引:5,他引:12       下载免费PDF全文
Depolarization of NG108-15 (neuroblastoma-glioma) cells causes an increase in 45Ca2+ influx. This effect is blocked by low concentrations of dihydropyridines such as nitrendipine and by other blockers of voltage-sensitive calcium channels such as D-600, diltiazem, and Cd2+. Two other dihydropyridines, BAY K8644 and CGP 28392, have the opposite effect. Low concentrations of these compounds enhance depolarization-induced 45Ca2+ influxes. BAY K8644 is more effective than CGP 28392. Both agents have no effect on fluxes measured under nondepolarizing conditions. The effects of BAY K8644 and CGP 28392 can be inhibited by nitrendipine, D-600, diltiazem, or Cd2+. Whereas the interaction between nitrendipine and BAY K8644 is shown to be competitive in nature, that between BAY K8644 and D-600 is shown to be noncompetitive. These results indicate that dihydropyridines show a variety of effects on calcium channels, ranging from agonistic through partially agonistic to antagonistic. Moreover, the results also indicate that dihydropyridines and D-600 exert their effects on calcium channels at different sites.  相似文献   

10.
We compared the Ca2+ buffering function of the superficial sarcoplasmic reticulum (SR) during rest and during contraction in endothelium-denuded strips of small mesenteric arteries from 13-week-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). The addition of caffeine (1-20 mM) caused a transient contraction in both strains, and the contraction was significantly larger in SHR. When the SR Ca2+ buffering function was eliminated by cyclopiazonic acid (CPA; 10 microM) or thapsigargin (100 nM), both of which inhibit SR Ca2+-ATPase, or by ryanodine (10 microM), which depletes the SR Ca2+, there was a larger contraction in SHR than in WKY, suggesting that the Ca2+ buffering function of the SR during rest is more important in SHR than in WKY. Judging from the augmenting effects of these three agents on the contractile responses to Bay k 8644 (1-300 nM), an agonist of L-type Ca2+ channels, or norepinephrine (10(-9)-10(-4) M), an alpha-adrenoceptor agonist, the effects were significantly greater in SHR than in WKY. We conclude that 1) the Ca2+ influx during rest and during stimulation with Bay k 8644 or norepinephrine is strongly buffered by Ca2+ uptake into the superficial SR in the small mesenteric arteries from SHR and WKY; and 2) these Ca2+ buffering functions are increased in SHR because of the larger capacity of SR for Ca2+ storage.  相似文献   

11.
In normal adult-ventricular myocardium, Ca2+-induced Ca2+ release (CICR) from the sarcoplasmic reticulum (SR) is activated via Ca2+ entry through L-type Ca2+ channels. However, embryonic-ventricular myocytes have a prominent T-type Ca2+ current (ICa,T). In this study, the contribution of ICa,T to CICR was determined in chick-ventricular development. Electrically stimulated Ca2+ transients were examined in myocytes loaded with fura-2 and Ca2+ currents with perforated patch-clamp. The results show that the magnitudes of the Ca2+ transient, L-type Ca2+ current (ICa,L) and ICa,T, decline with development with the majority of the decline of transients and ICa,L occurring between embryonic day (ED) 5 and 11. Compared to controls, the magnitude of the Ca2+ transient in the presence of nifedipine was reduced by 41% at ED5, 77% at ED11, and 78% at ED15. These results demonstrated that the overall contribution of ICa,T to the transient was greatest at ED5, while ICa,L was predominate at ED11 and 15. This indicated a decline in the contribution of ICa,T to the Ca2+ transient with development. Nifedipine plus caffeine was added to deplete the SR of Ca2+ and eliminate the occurrence of CICR due to ICa,T. Under these conditions, the transients were further reduced at all three developmental ages, which indicated that a portion of the Ca2+ transients present after just nifedipine addition was due to CICR stimulated by ICa,T. These results indicate that Ca2+ entry via T-type channels plays a significant role in excitation-contraction coupling in the developing heart that includes stimulation of CICR.  相似文献   

12.
We used adult rat cardiac myocytes to examine the acute effects of 0.1-5.0% (vol/vol) ethanol (ETOH) on 1) the cytosolic [Ca2+] (Cai) transient measured as the change in indo 1 fluorescence at 410/490 nm and contraction elicited by electrical stimulation of single cells and 2) the sarcoplasmic reticulum (SR) Ca2+ content in cell suspensions. During stimulation at 1 Hz, clinically relevant ETOH correlations (0.1-0.15% [vol/vol]) caused a 10-15% decrease in the contraction amplitude, measured by myocyte edge tracking, without decreasing the Cai transient that initiates contraction. At higher ETOH concentrations (1-5% [vol/vol]), ETOH caused profound contractile depression and also reduced the magnitude of the Cai transient. These effects were reversed within minutes of ETOH washout. Addition of norepinephrine (10 microM) to the bathing solution or an increase in bathing [Ca2+] in the continued presence of ETOH could also reverse its effects. The relation of the amplitude of the Cai transient to the contraction amplitude measured across a range of bathing [Ca2+] was shifted by ETOH, such that for a given Cai transient a marked reduction in contraction amplitude occurred. In unstimulated myocyte suspensions, ETOH (1-5% [vol/vol]) caused a concentration-dependent depletion of SR Ca2+ content, manifested as a diminution in the Cai increase elicited by caffeine in the presence of extracellular EGTA and no added Ca2+. Thus, in rat cardiac myocytes a reduction in the myofilament Ca2+ response, possibly due to a decrease in myofilament Ca2+ sensitivity, is a mechanism for contractile depression due to clinically relevant ETOH concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Dihydropyridine (DHP) Ca2+ channel blockers decrease L-type Ca2+ channel current (I(CaL)) by enhancing steady-state inactivation, whereas beta-adrenergic stimulation increases I(CaL) with small changes in the kinetics. We studied the effects of DHP Ca2+ channel blockers on cardiac I(CaL) augmented by beta-adrenergic stimulation. We recorded I(CaL) as Ba2+ currents (I(Ba)) from guinea pig ventricular myocytes using the whole-cell patch clamp technique. and compared the effects of nitrendipine (NIT) in the absence and presence of isoproterenol (1 microM, ISO) or forskolin (10 microM, FSK). Maximal I(Ba) elicited from a holding potential of -80 mV were diminished to 69.4+/-13.5% (mean and SE, n=5) of control by NIT (100 nM) and the diminished I(Ba) were increased to 180.3+/-23.2% of control by ISO in the presence of NIT, which was similar to the enhancement seen in the absence of NIT. NIT shifted the V(1/2) of the I(Ba) inactivation curve from -34.6+/-1.9 mV (n=5) to -48.7+/-1.2 mV, enhancing I(Ba) decay with shortening T(1/2) at -10 mV from 164.6+/-24.2 ms (n=7) to 105.4+/-15.2 ms. ISO elicited a small additional shift in the V(1/2) of I(Ba) inactivation in the same direction. ISO and FSK each slowed I(Ba) decay in the absence of NIT, but not in its presence. Thus, beta-adrenergic agonists increase and DHP Ca2+ channel blockers decrease the amplitude of cardiac I(CaL) independently and the kinetics of I(CaL) is determined mainly by the latter when these drugs coexist.  相似文献   

14.
The dinoflagellate toxin maitotoxin (MTX) stimulated 45Ca2+ uptake in cultured NG108-15 neuroblastoma X glioma cells. Depolarizing stimuli (e.g., 50 mM K+) produced an immediate stimulation in Ca2+ uptake, whereas that produced by MTX occurred only after a lag period of about 2 min. MTX did not stimulate Ca2+ uptake into fibroblasts. Both 50 mM K+- and MTX-stimulated Ca2+ uptake was blocked by organic calcium channel antagonists (nitrendipine, D-600, diltiazem) at very low concentrations. Cd2+ was also a potent blocker. The novel dihydropyridine BAY K8644 enhanced Ca2+ uptake in the presence of 50 mM K+ but had no effect in 5 mM Ca2+. However, in the presence of MTX, BAY K8644 stimulated Ca2+ uptake in 5 mM K+. The effects of MTX were not blocked by tetrodotoxin but were decreased in Na+-free medium. MTX did not stimulate Na+ uptake into NG108-15 cells and did not alter [3H]nitrendipine binding to rat brain cortical synaptosomes. It is concluded that MTX may alter the voltage dependence of calcium-channel activation.  相似文献   

15.
We examined the effects of dihydropyridine Ca2+-channel agonists on synaptosomal voltage-dependent Ca2+ entry and endogenous dopamine release. The (-) isomer of Bay K 8644 and the (+) isomer of Sandoz compound 202-791 were 100-1000 times more potent than their respective opposite enantiomers in enhancing Ca2+ uptake and dopamine release from striatal synaptosomes. The active isomer of each of these compounds increased Ca2+ entry and dopamine release to the same extent at a concentration of 1 nM. Fast-phase Ca2+ entry into synaptosomes isolated from cerebellum, cortex, and hippocampus was sensitive to nanomolar concentrations of Bay K 8644. No effect of Bay K 8644 was observed in synaptosomes isolated from brainstem. Bay K 8644 increased synaptosomal Ca2+ uptake and endogenous dopamine release from striatal synaptosomes only during the initial seconds of KCl-induced depolarization. The greatest increase was observed during the first second of depolarization. No effect was observed after greater than or equal to 5 sec of depolarization. Bay K 8644 did not alter Ca2+ uptake or dopamine release under resting conditions (5 mM KCl) or in response to KCl at greater than 15 mM. The activity of Bay K 8644 was also attenuated by lowering the concentrations of divalent cations in the incubation medium. Agonist activity was observed at Mg2+ concentrations greater than 500 microM (Ca2+ held at 100 microM) and Ca2+ concentrations greater than 100 microM (Mg2+ held at 1000 microM). These results suggest that the Ca2+ channels present in synaptosomes are sensitive to nanomolar concentrations of dihydropyridine agonists under a narrow range of experimental conditions.  相似文献   

16.
The whole-cell patch-clamp technique has been used to analyze the properties of the dihydropyridine-sensitive Ca2+ channel in rat skeletal muscle cells (myoballs) in culture. The potential dependence of Ca2+-channel activation is similar to that observed in cardiac cells. However, the skeletal muscle Ca2+ channel is activated more slowly (by a factor of about 10). The voltage dependence of Ca2+-channel inactivation indicates a half-maximal inactivation (Vh0.5) at -72 mV as compared to Vh0.5 = -35 mV for cardiac cells. Blockade of the skeletal muscle Ca2+ channel by the dihydropyridine (+)-PN 200-110 is voltage dependent, with a half-maximal effect (K0.5) of 13 nM for an application of the drug to the myoball membrane held at -90 mV and of 0.15 nM for an application at a potential of -65 mV. The 100-fold difference in apparent affinity is interpreted as a preferential association of PN 200-110 with the inactivated form of the Ca2+ channel. The K0.5 value found from electrophysiological experiments for the binding to the inactivated state (K0.5 = 0.15 nM) is nearly identical to the equilibrium dissociation constant found from binding experiments with (+)-[3H]PN 200-110 using transverse-tubular membranes (Kd = 0.22 nM). The dihydropyridine activator Bay K8644 acts by increasing Ca2+ current amplitude and by slowing down deactivation.  相似文献   

17.
alpha1-Adrenoceptor stimulation (alpha1ARS) modulates cardiac muscle contraction under physiological conditions by means of changes in Ca2+ current through L-type channels (ICa,L) and Ca2+ sensitivity of the myofilaments. However, the cellular mechanisms of alpha1ARS are not fully clarified. In this study, we investigated the role of Ca2+/calmodulin-dependent PK II (CaMKII) in the regulation of ICa,L during alpha1ARS in isolated adult rat ventricular myocytes by using the perforated patch-clamp technique. CaMKII inhibition with 0.5 microM KN-93 abolished the potentiation in ICa,L observed during alpha1ARS by 10 microM phenylephrine. In the presence of PKC inhibitor (10 microM chelerythrine), the potentiation of ICa,L by phenylephrine also disappeared. In Western immunoblotting analysis, phenylephrine (> or =1 microM) increased the amount of autophosphorylated CaMKII (active CaMKII) significantly, and this increase was abolished by CaMKII inhibition or PKC inhibition. Also, we investigated changes in the subcellular localization of active CaMKII by using immunofluorescence microscopy and immunoelectron microscopy. Before alpha1ARS, active CaMKII was exclusively located just beneath the plasmalemma. However, after alpha1ARS, active CaMKII was localized close to transverse tubules, where most of L-type Ca2+ channels are located. From these results, we propose that CaMKII, which exists near transverse tubules, is activated and phosphorylated by alpha1ARS and that CaMKII activation directly potentiates ICa,L in rat ventricular myocytes.  相似文献   

18.
The highly unsaturated n-3 fatty acids from fish oils, eicosapentaenoic acid [EPA; C20:5 (n-3)] and docosahexanoic acid [DHA; C22:6 (n-3)], prevent the toxicity of high concentrations of the cardiac glycoside ouabain to isolated neonatal rat cardiac myocytes. Arachidonic acid [C20:4 (n-6)] lacks such protective action. The protective effect of the n-3 fatty acids is associated with their ability to prevent high levels of cytosolic free calcium from occurring in response to the ouabain. This in turn results, at least in part, from a 30% reduction in calcium influx rate induced by the n-3 fatty acids. This protective effect is simulated by nitrendipine, a dihydropyridine inhibitor of the L-type calcium channels in cardiac myocytes. Nitrendipine (0.1 mM) alone, however, inhibits myocyte contractility, as do verapamil (10 microM) and diltiazem (1.0 microM). EPA or DHA (5 microM) blocks the inhibitory effects of nitrendipine but not those of verapamil or diltiazem. Bay K8644, a known dihydropyridine agonist of L-type calcium channels, produces a ouabain-like effect that is also prevented by EPA or DHA. Specific binding of [3H]nitrendipine to intact myocytes is noncompetitively inhibited by EPA or DHA in a manner that reduces the number of high- and low-affinity binding sites (Bmax) and increases their affinities. The fish oil fatty acids prevent calcium overload from ouabain and Bay K8644. They also prevent a calcium-depleted state in the myocytes caused by the L-type calcium channel blocker nitrendipine. The protective effects of the n-3 fatty acids appear to result from their modulatory effects on nitrendipine-sensitive L-type calcium channels.  相似文献   

19.
The present studies were designed to investigate the mechanism by which neuropeptide-Y (NPY) augments the effect of LHRH to stimulate the release of LH from cultured rat anterior pituitary cells. Anterior pituitary cells from ovariectomized rats were enzymatically dispersed, cultured for 3 days, and then exposed to various secretagogues during 3-h incubations. As reported by this laboratory previously, NPY alone (100 nM) did not affect LH release, but significantly enhanced the LH response to 1 nM LHRH. This facilitatory action of NPY was mimicked by the dihydropyridine Ca2+ channel agonist Bay K 8644 (1 microM), and the enhancement of LHRH-induced LH release by either NPY or Bay K 8644 was prevented by the dihydropyridine antagonist nitrendipine (1 microM). Nitrendipine alone reduced the response to LHRH by approximately 25%, but did not affect basal LH release. In contrast, NPY failed to amplify the release of PRL in response to TRH, another Ca2(+)-mobilizing hormone. To test whether NPY also enhances the increase in cytosolic Ca2+ induced by LHRH, anterior pituitary cells were acutely dispersed into single cell suspensions, loaded with the fluorescent Ca2+ probe Indo-1 AM, and analyzed with a UV laser in an EPICS-753 flow cytometer at a rate of 500 cells/sec for 200 sec. The ratio of intracellular fluorescence resulting from Ca2+ bound to the Indo-1 to the fluorescence from Indo-1 alone (Indo-1 ratio), which is an index of the concentration of free cytosolic Ca2+, was determined for each cell. Approximately 7% of anterior pituitary cells responded to LHRH (1 or 10 nM) with significant increases in Indo-1 ratios, indicative of an increase in the concentration of free cytosolic Ca2+. EGTA (2.5 mM) reduced the basal Indo-1 ratios and attenuated, but did not abolish, the initial increase in response to LHRH, consistent with the initial extracellular Ca2+ influx-independent phase of the response to LHRH. NPY alone (100 nM) did not affect the Indo-1 ratios in anterior pituitary cells, but pretreatment with the peptide for 10 min before the scans significantly augmented the Indo-1 ratio response to 10 nM LHRH. This effect of NPY was also blocked by EGTA. Taken together, these biochemical and pharmacological studies suggest that NPY enhances the release of LH stimulated by LHRH by increasing extracellular Ca2+ entry, possibly by selectively affecting that component of the response involving dihydropyridine-sensitive L-type voltage-sensitive Ca2+ channels during the initial stages of the cellular response to LHRH.  相似文献   

20.
We used left ventricular myocytes from adult rats to investigate the effect of 4 beta-phorbol 12-myristate 13-acetate (PMA) and of sn-1,2-dioctanoylglycerol (DiC-8) on the membrane association of protein kinase C (PKC), cytosolic [Ca2+], (Cai) homeostasis, and the contractile properties of single cardiac cells. Because PKC activity is known to be highly Ca2+ sensitive, the K+ concentration of the bathing medium was raised from 5 to 30 mM in some experiments, a perturbation known to depolarize the cell and increase Cai. In cell suspensions both PMA (3 x 10(-10) and 3 x 10(-7) M) and DiC-8 (10(-5) and 10(-4) M) increased membrane association of PKC. The effect of PMA (10(-7) M) on PKC translocation was enhanced in 30 mM KCl compared with 5 mM KCl. During steady field stimulation at 1 Hz in 1 mM bathing [Ca2+], both PMA (10(-7) M) and DiC-8 (10(-5) M) decreased twitch amplitude to approximately 60% of control in 5 mM KCl, and the negative inotropic effect of either drug was more pronounced in 30 mM KCl than in 5 mM KCl. In single cardiac myocytes loaded with the Ca2+ indicator indo-1 and bathed in 5 mM KCl, we simultaneously measured cell length and Cai. The myofilament responsiveness to Ca2+ was assessed by the relation between contraction amplitude and the peak of the Cai transient. The negative inotropic effect of both PMA and DiC-8 was related to a diminished amplitude of the Cai transient and not to a decreased myofilament responsiveness to Ca2+. In the absence of electrical stimulation, PMA (10(-7) M) and DiC-8 (10(-5) M) decreased the frequency of contractile waves due to spontaneous Ca2+ release from the sarcoplasmic reticulum, and DiC-8 also decreased resting Cai. Thus, activation of PKC, which is thought to occur as part of the response of cardiac muscle to alpha 1-adrenergic stimulation, is associated with a negative inotropic action due to a smaller Cai transient rather than to a decrease in the myofilament responsiveness to Ca2+. These effects on the membrane association of PKC and on contractility are enhanced by cell depolarization achieved by raising [KCl] in the bathing medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号