首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new vaccination strategy for dengue virus (DENV) was evaluated in rhesus macaques by priming with tetravalent purified inactivated virus (TPIV) or tetravalent plasmid DNA vaccines expressing the structural prME gene region (TDNA) then boosting 2 months later with a tetravalent live attenuated virus (TLAV) vaccine. Both vaccine combinations elicited virus neutralizing (N) antibodies. The TPIV/TLAV combination afforded complete protection against DENV 3 challenge at month 8. In a second experiment, priming with TPIV elicited N antibodies against all four serotypes (GMT 1:28 to 1:43). Boosting with TLAV led to an increase in the GMT for each serotype (1:500 to 1:1200 for DENVs 1, 3, and 4, and greater than 1:6000 for DENV 2), which declined by month 8 (GMT 1:62 for DENV 3, 1:154 for DENV 1, 1:174 for DENV 4, and 1:767 for DENV 2). After challenge with each one of the four DENV serotypes, vaccinated animals exhibited no viremia but showed anamnestic antibody responses to the challenge viruses.  相似文献   

2.
ObjectivesVaccination for dengue with the live attenuated tetravalent CYD-TDV vaccine (Dengvaxia®) is only recommended in individuals who have had prior dengue virus (DENV) infection. Rapid diagnostic tests (RDT) for past DENV infection would offer a convenient method for pre-vaccination screening at point-of-care. A systematic review was conducted to evaluate the performance of current dengue RDTs for determining dengue serostatus, using IgG antibodies against DENV as a marker of past infection.MethodsPubMed and EMBASE databases were searched from 2000 to 2018 to identify studies evaluating dengue RDTs in individuals with known or possible previous DENV infection. Study quality was evaluated using GRADE and QUADAS-2 criteria. Semi-structured interviews were also performed with available dengue RDT manufacturers.ResultsThe performance of four dengue IgG RDTs was determined in 3137 individuals across ten studies conducted in 13 countries, with serum used in most of the studies. No studies reported data for determining dengue serostatus, and limited data were available regarding cross-reactivity with other viruses. The majority of studies demonstrated sensitivities and specificities between 80% and 100% for dengue IgG detection in samples from secondary infection or convalescent time-points after recent infection.ConclusionsAlthough current dengue IgG RDTs have shown reasonable performance compared with laboratory-based tests in secondary infection, additional research is needed to determine how RDTs would perform in relevant populations targeted for vaccination. New RDTs or modifications to current RDTs are feasible and may optimize the performance of these tests for use in a pre-vaccination screening approach.  相似文献   

3.
DNA shuffling and screening technologies were used to produce chimeric DNA constructs expressing antigens that shared epitopes from all four dengue serotypes. Three shuffled constructs (sA, sB and sC) were evaluated in the rhesus macaque model. Constructs sA and sC expressed pre-membrane and envelope genes, whereas construct sB expressed only the ectodomain of envelope protein. Five of six, and four of six animals vaccinated with sA and sC, respectively, developed antibodies that neutralized all 4 dengue serotypes in vitro. Four of six animals vaccinated with construct sB developed neutralizing antibodies against 3 serotypes (den-1, -2 and -3). When challenged with live dengue-1 or dengue-2 virus, partial protection against dengue-1 was observed. These results demonstrate the utility of DNA shuffling as an attractive tool to create tetravalent chimeric dengue DNA vaccine constructs, as well as a need to find ways to improve the immune responses elicited by DNA vaccines in general.  相似文献   

4.
Reverse vaccinology method was used to predict the monovalent peptide vaccine candidate to produce antibodies for therapeutic purpose and to predict tetravalent vaccine candidate to act as a common vaccine to cover all the dengue virus serotypes. Envelope (E)-proteins of DENV-1-4 serotypes were used for vaccine prediction using NCBI, Uniprot/Swissprot, Swiss-prot viewer, VaxiJen V2.0, TMHMM, BCPREDS, Propred-1, Propred and MHC Pred. Eproteins of DENV-1-4 serotypes were identified as antigen from which T cell epitopes, through B cell epitopes, were predicted to act as peptide vaccine candidates. Each selected T cell epitope of E-protein was confirmed to act as vaccine and to induce complementary antibody against particular serotype of dengue virus. Chimeric tetravalent vaccine was formed by the conjugation of four vaccines, each from four dengue serotypes to act as a common vaccine candidate for all the four dengue serotypes. It can be justifiably concluded that the monovalent 9-mer T cell epitope for each DENV serotype can be used to produce specific antibody against dengue virus and a chimeric common tetravalent vaccine candidate to yield a comparative vaccine to cover any of the four dengue virus serotype. This vaccine is expected to be highly immunogenic against dengue fever.  相似文献   

5.
Dengue viruses (DENV) are the etiological agents of dengue fever (DF) and dengue hemorrhagic fever (DHF). The DENV complex consists of four closely related viruses designated DENV serotypes 1 through 4. Although infection with one serotype induces cross reactive antibody to all 4 serotypes, the long-term protective antibody response is restricted to the serotype responsible for infection. Cross reactive antibodies appear to enhance infection during a second infection with a different serotype. The goal of the present study was to characterize the binding specificity and functional properties of human DENV immune sera. The study focused on domain III of the viral envelope protein (EDIII), as this region has a well characterized epitope that is recognized by strongly neutralizing serotype-specific mouse monoclonal antibodies (Mabs). Our results demonstrate that EDIII-reactive antibodies are present in primary and secondary DENV immune human sera. Human antibodies bound to a serotype specific epitope on EDIII after primary infection and a serotype cross reactive epitope on EDIII after secondary infection. However, EDIII binding antibodies constituted only a small fraction of the total antibody in immune sera binding to DENV. Studies with complete and EDIII antibody depleted human immune sera demonstrated that EDIII binding antibodies play a minor role in DENV neutralization. We propose that human antibodies directed to other epitopes on the virus are primarily responsible for DENV neutralization. Our results have implications for understanding protective immunity following natural DENV infection and for evaluating DENV vaccines.  相似文献   

6.
The four serotypes of endemic dengue viruses (DENV) circulate between humans and peridomestic Aedes mosquitoes. At present endemic DENV infect 100 million people per year, and a third of the global population is at risk. In contrast, sylvatic DENV strains are maintained in a transmission cycle between nonhuman primates and sylvatic Aedes species, and are evolutionarily and ecologically distinct from endemic DENV strains. Phylogenetic analyses place sylvatic strains basal to each of the endemic serotypes, supporting the hypothesis that each of the endemic DENV serotypes emerged independently from sylvatic ancestors. We utilized complete genome analyses of both sylvatic and endemic DENV serotype 2 (DENV-2) to expand our understanding of their genetic relationships. A high degree of conservation was observed in both the 5'- and 3'-untranslated genome regions, whereas considerable differences at the nucleotide and amino acid levels were observed within the open reading frame. Additionally, replication of the two genotypes was compared in cultured cells, where endemic DENV strains produced a significantly higher output of progeny in human liver cells, but not in monkey kidney or mosquito cells. Understanding the genetic relationships and phenotypic differences between endemic and sylvatic DENV genotypes may provide valuable insight into DENV emergence and guide monitoring of future outbreaks.  相似文献   

7.
Dengue viruses (DENVs; serotypes 1–4) are members of the flavivirus family. The envelope protein (E) of DENV has been defined as the principal antigenic target in terms of protection and diagnosis. Antibodies that can reliably detect the E surface glycoprotein are necessary for describing and mapping new DENV epitopes as well as for developing more reliable and inexpensive diagnostic assays. In this study, we describe the production and characterization of a monoclonal antibody (mAb) against a recombinant DENV‐2 E protein that recognizes a sequential antigen in both native and recombinant form located in domain II of the E protein of all four DENV serotypes. We confirmed that this mAb, C21, recognizes a sequence located in the fusion peptide. In addition, C21 does not have neutralizing activity against DENV‐2 in an in vitro system. Furthermore, the C21 mAb is an ideal candidate for the development of research reagents for studying DENV biology because it cross‐reacts with the four dengue serotypes.  相似文献   

8.
Dengue virus infections can cause hemorrhagic fever, shock, encephalitis, and even death. Worldwide, approximately 2.5 billion people live in dengue-infested regions with about 100 million new cases each year, although many of these infections are believed to be silent. There are four antigenically distinct serotypes of dengue virus; thus, immunity from one serotype will not cross-protect from infection with the other three. The difficulties that hamper vaccine development include requirements of the natural conformation of the envelope glycoprotein to induce neutralizing immune responses and the necessity of presenting antigens of all four serotypes. Currently, the only way to meet these requirements is to use a mixture of four serotypes of live attenuated dengue viruses, but safety remains a major problem. In this study, we have developed the basis for a tetravalent dengue vaccine using a novel complex adenovirus platform that is capable of expressing multiple antigens de novo. This dengue vaccine is constructed as a pair of vectors that each expresses the premembrane and envelope genes of two different dengue virus serotypes. Upon vaccination, the vaccine expressed high levels of the dengue virus antigens in cells to mimic a natural infection and induced both humoral and cellular immune responses against multiple serotypes of dengue virus in an animal model. Further analyses show the humoral responses were indeed neutralizing against all four serotypes. Our studies demonstrate the concept of mimicking infections to induce immune responses by synthesizing dengue virus membrane antigens de novo and the feasibility of developing an effective tetravalent dengue vaccine by vector-mediated expression of glycoproteins of the four serotypes.  相似文献   

9.
Dengue virus (DENV) is an arthropod-borne human pathogen that represents a severe public health threat in both endemic and non-endemic regions. So far, there is no licensed vaccine or specific drugs available for dengue fever. A fifteen-amino-acid-long peptide that includes the NGR motif was chemically synthesized and conjugated with keyhole limpet hemocyanin. A standard immunization protocol was followed for the production of polyclonal antibodies by immunizing rabbits against the synthetic peptide. The immune response elicited high-titer polyclonal antibodies with the reactivity of the anti-peptide antibody against both synthetic peptide and four serotypes of DENV confirmed by DOT-ELISA. Neutralizing activity of anti-peptide antibody was found to be cross-reactive and effective resulting in 60% reduction of infectivity at 1:200 dilution in all four serotypes of DENV. Our findings have the potential to further improve our understanding of virus–host interactions and provide new insights into neutralizing antibodies and could also be used as a drug target.  相似文献   

10.
Dengue is a significant mosquito-borne infection in humans, and its worldwide prevalence is rapidly increasing. In 2010, 83 serum samples from febrile travellers returning from dengue-endemic countries to a region in north-eastern Italy, densely infested with Aedes albopictus, were analysed for dengue virus (DENV). DENV RNA was detected in 20.5% of patients. By RT-PCR, DENV serotypes 1 and 3 were the most common. DENV must be identified early in symptomatic travellers returning from high-risk countries, to prevent outbreaks where potential vectors exist.  相似文献   

11.
目的 研究登革2型病毒(Dengue virus type 2,DENV-2)病毒样颗粒(virus-Like particles,VLPs)的免疫原性.方法 利用已构建的DENV-2 ZS01/01株病毒样颗粒的表达质粒转染293T细胞,对分泌型VLPs进行大量培养并通过蔗糖密度梯度离心法对其进行纯化.纯化的VLPs经Western Blot及透射电镜观察等方法鉴定后免疫BALB/c小鼠.利用ELISA及中和试验等方法对体液免疫反应进行检测,ELISPOT法测定细胞免疫水平.结果 登革2型病毒样颗粒表达质粒转染哺乳动物细胞所得上清经蔗糖密度梯度离心后,电镜下可观察到类似于天然登革病毒的大小在45~55nm之间的病毒样颗粒.体液及细胞免疫检测结果显示登革2型VLPs可以刺激小鼠产生较高水平的登革E蛋白特异性抗体及一定水平的中和抗体,免疫小鼠脾淋巴细胞经体外刺激后IFN-γ水平显著升高.结论 登革2型病毒病毒样颗粒免疫BALB/c小鼠后可引起一定水平的细胞免疫及体液免疫反应,该研究结果为四价登革病毒样颗粒疫苗的研制奠定了基础.  相似文献   

12.
2018年杭州市登革热流行病学及病原特征研究   总被引:2,自引:0,他引:2  
目的:了解2018年杭州市登革热疫情的流行病学及病原特征。方法:应用RT-PCR方法检测血清标本中的登革病毒核酸及其型别,并对阳性标本进行病毒分离、 E基因扩增、序列测定及进化分析;描述病例的时间、人群和地区分布特征。 结果:2018年杭州市共检测登革热病例80例,其中输入性病例55例,本地病例2...  相似文献   

13.
Dengue is a mosquito-borne infection caused by four distinct serotypes of dengue virus, each appearing cyclically in the tropics and subtropics along the equator. Although vaccines are currently under development, none are available to the general population. One of the main impediments to the successful advancement of these vaccines is the lack of well-defined immune correlates of protection. Here, we describe a protein microarray approach for measuring antibody responses to the complete viral proteome comprised of the structural (capsid, membrane, and envelope) and nonstructural (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) components of all four dengue virus serotypes (1 to 4). We examined rhesus macaques vaccinated with tetravalent vaccines consisting of live-attenuated virus (LAV) or purified inactivated virus (PIV), followed by boosting with LAV and challenging with wild-type dengue virus. We detected temporal increases in antibodies against envelope proteins in response to either vaccine, while only the PIV/LAV vaccination strategy resulted in anticapsid antibodies. In contrast to results from vaccination, naïve macaques challenged with wild-type viruses of each serotype demonstrated a balanced response to nonstructural and structural components, including responses against the membrane protein. Our results demonstrate discriminating details concerning the nature of antibody responses to dengue virus at the proteomic level and suggest the usefulness of this information for vaccine development.  相似文献   

14.
目的 构建登革病毒1~4型重组亚单位疫苗,分析重组疫苗的免疫原性.方法 利用连接肽将登革病毒1型与2型,3型与4型的外膜蛋白DⅢ基因片段连接在一起,克隆人原核表达载体pET-30a,在大肠埃希菌中表达DEN1/2型、DEN3/4型融合重组蛋白.重组蛋白经高效液相色谱柱分离纯化后,混和免疫小鼠,采用中和实验法测定血清中和抗体效价,同时进行乳鼠体内中和实验,观察中和抗体对乳鼠的免疫保护作用.结果 重组蛋白能诱导小鼠产生针对登革病毒1~4型的中和抗体,平均中和效价分别为1:34.9、1:45.3、1:24.7和1:38.4.中和抗体能保护新生乳鼠免受致死剂量DEN1~4的攻击,保护率分别为100%,100%,83%,83%.结论 构建的重组亚单位疫苗具有良好的免疫原性,能诱导小鼠产生中和抗体,为构建单一四价疫苗提供了实验室依据.  相似文献   

15.
Flaviviruses comprise approximately 70 closely related RNA viruses. These include several mosquito-borne pathogens, such as yellow fever virus (YFV), dengue virus (DENV), and Japanese encephalitis virus (JEV), which can cause significant human diseases and thus are of great medical importance. Vaccines against both YFV and JEV have been used successfully in humans for decades; however, the development of a DENV vaccine has encountered considerable obstacles. Here, we review the protective immune responses elicited by the vaccine against YFV to provide some insights into the development of a protective DENV vaccine.  相似文献   

16.
Yue Chen 《Virology》2010,398(2):290-67
The dengue virus (DENV) nonstructural protein 1 (NS1) is an immunogenic protein that holds potential for the development of vaccines and diagnostic reagents; however, the epitopes of NS1 have not been comprehensively mapped. We mapped B-cell linear epitopes on NS1 using 149 monoclonal antibodies with DENV serotype specificity and cross-reactivity as well as antisera from 27 mice immunized with the four DENV serotypes. Epitope recognition analysis was performed using a set of 15-mer sequential overlapping peptides that spanned the entire NS1 protein from DENV-1. This strategy identified three regions of NS1 that are DENV-1 serotype-specific epitopes, namely amino acid residues 1-15, 71-85, and 338-352. We also identified five group-specific B-cell epitopes that were highly conserved among isolates of the four DENV serotypes. These novel immunodominant serotype- and group-specific B-cell epitopes of DENV NS1 may aid the development of new dengue vaccines and diagnostic assays.  相似文献   

17.
Chimeric yellow fever (YF)-dengue (DEN) viruses (ChimeriVax-DEN) were reconstructed to correct amino acid substitutions within the envelope genes of original constructs described by Guirakhoo et al. (2001, J. Virol. 75, 7290-7304). Viruses were analyzed and compared to the previous constructs containing mutations in terms of their growth kinetics in Vero cells, neurovirulence in mice, and immunogenicity in monkeys as monovalent or tetravalent formulations. All chimeras grew to high titers [ approximately 7 to 8 log(10), plaque-forming units (PFU)/ml] in Vero cells and were less neurovirulent than YF 17D vaccine in mice. For monkey experiments, the dose of DEN2 chimera was lowered to 3 log(10) PFU in the tetravalent mixture in an effort to reduce its dominant immunogenicity. The magnitude of viremia in ChimeriVax-DEN immunized monkeys was similar to that of YF-VAX, but significantly lower than those induced by wild-type DEN viruses. All monkeys developed high levels of neutralizing antibodies against homologous (chimeras) or heterologous (wild-type DEN viruses isolated from different geographical regions) viruses after a single dose of monovalent or tetravalent vaccine. Administration of a second dose of tetravalent vaccine 2 months later increased titers to both homologous and heterologous viruses. A dose adjustment for dengue 2 chimera resulted in a more balanced response against dengue 1, 2, and 3 viruses, but a somewhat higher response against chimeric dengue 4 virus. This indicates that further formulations for dose adjustments need to be tested in monkeys to identify an optimal formulation for humans.  相似文献   

18.
Dengue is the most important arbovirus disease in tropical and sub-tropical countries, and can be caused by infection with any of the four-dengue virus (DENV) serotypes. Infection with DENV can lead to a broad clinical spectrum, ranging from sub-clinical infection or an influenza-like disease known as dengue fever (DF) to a severe, sometimes fatal, disease characterized by hemorrhage and plasma leakage that can lead to shock, known as dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). The diagnosis of dengue is routinely accomplished by serologic assays, such as IgM and IgG ELISAs, as well as HI tests, analyzing serum samples obtained from patients with at least 7 days of symptoms onset. These tests cannot be used for diagnosis during the early symptomatic phase. In addition, antibodies against dengue are broad reactive with other flaviviruses. Therefore, a specific diagnostic method for acute DENV infection is of great interest. In that sense, the real-time RT-PCR has become an important tool that can be used for early and specific detection of dengue virus genome in human serum samples. This study describes a simple, specific, and sensitive real-time RT-PCR for early diagnosis of dengue virus infection.  相似文献   

19.
There are four serotypes of dengue (DEN1-DEN4) virus that are endemic in most areas of Southeast Asia, Central and South America, and other subtropical regions. The number of cases of severe disease associated with DEN virus infection is growing because of the continued spread of the mosquito vector, Aedes aegypti, which transmits the virus to humans. Infection with DEN virus can result in an asymptomatic infection, a febrile illness called dengue fever (DF), and the very severe disease called dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Currently, a licensed vaccine is not available. However, a tetravalent vaccine is urgently needed to prevent DF and DHF/DSS, the latter of which occurs predominantly in partially immune individuals. A live attenuated, tetravalent DEN virus vaccine candidate has been generated using reverse genetics that is able to provide immunity to each of the four serotypes of DEN. Attenuation has been achieved by generating recombinant DEN (rDEN) viruses which are modified by deletion or, alternatively, by antigenic chimerization between two related DEN viruses using the following two strategies: 1) introduction of an attenuating 30 nucleotide deletion (Delta30) mutation into the 3' untranslated region of DEN1 and DEN4; and 2) replacement of structural proteins of the attenuated rDEN4Delta30 vaccine candidate with those from DEN2 or DEN3. Attenuation of the four monovalent vaccine candidates has been achieved for rhesus monkeys or humans and an immunogenic tetravalent vaccine candidate has been formulated. The level of attenuation of each dengue vaccine component can be increased, if needed, by introduction of additional attenuating mutations that have been well characterized.  相似文献   

20.
Kyle JL  Balsitis SJ  Zhang L  Beatty PR  Harris E 《Virology》2008,380(2):296-303
The four serotypes of dengue virus (DENV1–4) are causative agents of dengue fever and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Previous DENV infection is a risk factor for DHF/DSS during subsequent infection by a different serotype. Nonetheless, most primary and secondary DENV infections are asymptomatic. To investigate the possible mechanisms of immune protection in vivo, 129/Pas mice lacking IFN-α/β and -γ receptors (AG129) were used to model secondary infection using both DENV1–DENV2 and DENV2–DENV4 sequences. At intervals between sequential infections of 4 to 52 weeks, protection against secondary heterologous DENV infection was observed. Passive transfer of DENV-immune serum was protective against replication of heterologous challenge virus in all tissues tested, whereas adoptive transfer of DENV-immune cells significantly protected mice from replication of the challenge virus only when a lower inoculum was administered. These findings are relevant for understanding both natural and vaccine-induced immunity to DENV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号