首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeng ZY  Zhou YH  Zhang WL  Xiong W  Fan SQ  Li XL  Luo XM  Wu MH  Yang YX  Huang C  Cao L  Tang K  Qian J  Shen SR  Li GY 《Human pathology》2007,38(1):120-133
Nasopharyngeal carcinoma (NPC) is a particularly common malignant disease in areas of south China and Southeast Asia. To characterize the gene expression profiling of NPC, we detected the gene expression profiles in 22 NPC and 10 nontumor nasopharyngeal epithelial tissues by complementary DNA microarray. We identified 503 genes that were significantly (P < .001) differentially regulated between NPC and nontumor nasopharyngeal epithelial tissues. The differentially expressed genes are involved in many signaling pathways, such as the Wnt, transforming growth factor-beta, and mitogen-activated protein kinase signaling pathways. The aberrant expression of the Wnt signaling pathway components, such as wingless-type MMTV integration site family, member 5A, Frizzled homolog 7, casein kinase IIbeta, beta-catenin, CREB-binding protein, and Dishevelled-associated activator of morphogenesis 2 was validated on the NPC tissue microarrays. The data suggest that the Wnt signaling pathway may be abnormally regulated in NPC, which provides insight into the molecular mechanisms of NPC.  相似文献   

2.
目的:研究干扰miR-31表达初期Notch和Hedgehog信号通路相关基因在神经干细胞(NSCs)中的表达变化。方法:利用荧光定量PCR对干扰miR-31表达初期Notch和Hedgehog信号通路相关基因在NSCs中的表达变化进行研究。结果:干扰与过表达miR-31后3 d,NSCs中的Notch信号通路相关基因Notch2的表达均增加,Jag2、Dll3和Hes1等的表达均降低;Hedgehog信号通路相关基因Wnt3的表达均增加,Bmp5与Wnt7a的表达均降低。结论:影响miR-31的表达可引发NSCs发生分化,在此过程中Notch与Hedgehog信号通路中几个基因的表达都产生相应改变,表明miR-31与NSCs分化过程相关。  相似文献   

3.
Notch signaling is an evolutionarily conserved pathway, which is fundamental for the development of all tissues, organs and systems of human body. Recently, a considerable and still growing number of studies have highlighted the contribution of Notch signaling in various pathological processes of the adult life, such as age-related diseases. In particular, the Notch pathway has emerged as major player in the maintenance of tissue specific homeostasis, through the control of proliferation, migration, phenotypes and functions of tissue cells, as well as in the cross-talk between inflammatory cells and the innate immune system, and in onset of inflammatory age-related diseases. However, until now there is a confounding evidence about the related mechanisms. Here, we discuss mechanisms through which Notch signaling acts in a very complex network of pathways, where it seems to have the crucial role of hub. Thus, we stress the possibility to use Notch pathway, the related molecules and pathways constituting this network, both as innovative (predictive, diagnostic and prognostic) biomarkers and targets for personalised treatments for age-related diseases.  相似文献   

4.
5.
The Wnt and Notch signaling pathways have been independently shown to play a critical role in regulating hematopoietic cell fate decisions. We previously reported that induction of Notch signaling in human CD34(+)CD38(-) cord blood cells by culture with the Notch ligand Delta 1 resulted in more cells with T or natural killer (NK) lymphoid precursor phenotype. Here, we show that addition of Wnt3a to Delta 1 further increased the percentage of CD34(-)CD7(+) and CD34(-)CD7(+)cyCD3(+) cells with increased expression of CD3 epsilon and preT alpha. In contrast, culture with Wnt3a alone did not increase generation of CD34(-)CD7(+) precursors or expression of CD3 epsilon or preT alpha gene. Furthermore, Wnt3a increased the amount of activated Notch1, suggesting that Wnt modulates Notch signaling by affecting Notch protein levels. In contrast, addition of a Wnt signaling inhibitor to Delta 1 increased the percentage of CD56(+) NK cells. Overall, these results demonstrate that regulation of Notch signaling by the Wnt pathway plays a critical role in differentiation of precursors along the early T or NK differentiation pathways. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

6.
肿瘤干细胞是一类能够导致肿瘤发生的具有自我更新能力的细胞,它与干细胞具有很多相似性,其中最重要的一点是自我更新能力。它们具有相似的自我更新调节通路,如:Wnt,Notch和Shh(Sonic hedgehog)。Wnt和Notch信号通路通过其受体和配体的相互作用在自我更新的增殖和分化中都起着重要的作用,两者均能促进干细胞增殖而抑制其分化,但各自侧重不同。此外,Wnt和Notch信号通路之间相互作用、协调共同完成干细胞的自我更新。对肿瘤干细胞的Wnt和Notch信号通路研究将为未来肿瘤的靶向治疗提供新的方向。  相似文献   

7.
Embryonic myogenesis pathways in muscle regeneration.   总被引:4,自引:0,他引:4  
Embryonic myogenesis involves the staged induction of myogenic regulatory factors and positional cues that dictate cell determination, proliferation, and differentiation into adult muscle. Muscle is able to regenerate after damage, and muscle regeneration is generally thought to recapitulate myogenesis during embryogenesis. There has been considerable progress in the delineation of myogenesis pathways during embryogenesis, but it is not known whether the same signaling pathways are relevant to muscle regeneration in adults. Here, we defined the subset of embryogenesis pathways induced in muscle regeneration using a 27 time-point in vivo muscle regeneration series. The embryonic Wnt (Wnt1, 3a, 7a, 11), Shh pathway, and the BMP (BMP2, 4, 7) pathway were not induced during muscle regeneration. Moreover, antagonists of Wnt signaling, sFRP1, sFRP2, and sFRP4 (secreted frizzled-related proteins) were significantly up-regulated, suggesting active inhibition of the Wnt pathway. The pro-differentiation FGFR4 pathway was transiently expressed at day 3, commensurate with expression of MyoD, Myogenin, Myf5, and Pax7. Protein verification studies showed fibroblast growth factor receptor 4 (FGFR4) protein to be strongly expressed in differentiating myoblasts and newly formed myotubes. We present evidence that FGF6 is likely the key ligand for FGFR4 during muscle regeneration, and further suggest that FGF6 is released from necrotic myofibers where it is then sequestered by basal laminae. We also confirmed activation of Notch1 in the regenerating muscle. Finally, known MyoD coactivators (MEF2A, p/CIP, TCF12) and repressors (Twist, Id2) were strongly induced at appropriate time points. Taken together, our results suggest that embryonic positional signals (Wnt, Shh, and BMP) are not induced in postnatal muscle regeneration, whereas cell-autonomous factors (Pax7, MRFs, FGFR4) involving muscle precursor proliferation and differentiation are recapitulated by muscle regeneration.  相似文献   

8.
Epithelial–mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jκ gene, the effector of “canonical” Notch signaling. Hair follicle reconstitution assays demonstrate that this can be attributed to an intrinsic defect of dermal papilla cells. Similar consequences on hair follicle differentiation result from deletion of Wnt5a, a specific dermal papilla signature gene that we found to be under direct Notch/CSL control in these cells. Functional rescue experiments establish Wnt5a as an essential downstream mediator of Notch–CSL signaling, impinging on expression in the keratinocyte compartment of FoxN1, a gene with a key hair follicle regulatory function. Thus, Notch/CSL signaling plays a unique function in control of hair follicle differentiation by the underlying mesenchyme, with Wnt5a signaling and FoxN1 as mediators.  相似文献   

9.
Notch和Wnt信号通路是调节神经干细胞(neural stem cells,NSCs)增殖、分化的重要通路,Notch信号通路的靶基因Hes1、Hes5及HES相关蛋白等分化抑制信号,通过旁侧抑制机制阻止NSCs的分化,并促进其自我更新;通过NICD与CSL DNA结合蛋白的直接结合,形成GFAP的转录激活复合物,上调GFAP的表达,从而促进NSCs向星形胶质细胞的分化。Wnt信号通过Wnt/β-catenin信号通路对细胞周期素D1和D2的转录调节,调控NSCs细胞周期的进程,使其量增殖;然而,过表达的Wnt3a和Wnt7a蛋白能够抑制NSCs的增殖,促进NSCs向神经元方向分化。  相似文献   

10.
目的观察Wnt和Notch信号通路在大鼠创面愈合模型中的表达及作用。方法取25只SD大鼠幼鼠,早期用溴脱氧尿苷(BrdU)标记表皮干细胞,注射BrdU 60 d后建立全层皮肤缺损创面模型。于大鼠致伤后0 d、7 d、14 d、21 d、30 d五个时间点分别各断颈处死5只取标本,利用免疫印迹、免疫组化和免疫荧光双标法观察创面愈合过程中Wnt1、β-catenin、c-Myc、Jagged1、Notch1、Hes1和Brdu的表达情况。结果免疫印迹结果显示Wnt和Notch信号通路成员在伤后表达上调,于伤后7 d达高峰,持续表达至伤后30 d。免疫组化结果显示,β-catenin开始在细胞膜低表达,伤后逐渐转变为表皮全层表达,且部分呈现异常核表达;伤后,Notch1在表皮全层表达逐渐上调,且在基底层表达上调显著。免疫荧光提示,BrdU/c-Myc和BrdU/Hes1双染阳性细胞率在伤后上升,于伤后7 d达高峰,持续表达至伤后30 d。结论 Wnt和Notch双信号通路可能通过调控表皮干细胞的增殖分化参与大鼠创面愈合过程。  相似文献   

11.
12.
Microglia, the resident immune cells of the central nervous system (CNS), are thought to contribute to the pathogenesis of age-related neurodegenerative disorders. It has been hypothesized that microglia undergo age-related changes in gene expression patterns that give rise to pathogenic phenotypes. We compared the gene expression profiles in microglia isolated ex vivo from the retinas of mice ranging from early adulthood to late senescence. We discovered that microglial gene expression demonstrated progressive change with increasing age, and involved genes that regulate microglial supportive functions and immune activation. Molecular pathways involving immune function and regulation, angiogenesis, and neurotrophin signaling demonstrated age-related change. In particular, expression levels of complement genes, C3 and CFB, previously associated with age-related macular degeneration (AMD), increased with aging, suggesting that senescent microglia may contribute to complement dysregulation during disease pathogenesis. Taken together, senescent microglia demonstrate age-related gene expression changes capable of altering their constitutive support functions and regulation of their activation status in ways relating to neuroinflammation and neurodegeneration in the CNS.  相似文献   

13.
During Caenorhabditis elegans vulval development, activation of receptor tyrosine kinase/Ras and Notch signaling pathways causes three vulval precursor cells (VPCs) to adopt induced cell fates. A Wnt signaling pathway also acts in cell fate specification by the VPCs, via regulation of the Hox gene lin-39. We show here that either mutation of pry-1 or expression of an activated BAR-1 beta-catenin protein causes an Overinduced phenotype, in which greater than three VPCs adopt induced cell fates. This indicates that pry-1, which encodes a C. elegans axin homolog, acts as a negative regulator of Wnt signaling in the VPCs. Loss of activity of the APC homolog apr-1 increases the penetrance of this Overinduced phenotype, suggesting that APR-1 may play a negative role in Wnt signaling in this process in C. elegans similar to APC proteins in other systems. The Overinduced phenotype is suppressed by reduction of function of the genes pop-1 TCF and lin-39 Hox. Surprisingly, the Overinduced phenotype caused by hyperactivated Wnt signaling is not dependent on signaling through the Ras pathway. These data suggest that hyperactivation of Wnt signaling is sufficient to cause VPCs to adopt induced fates and that a canonical Wnt pathway may play an important role during C. elegans vulval induction.  相似文献   

14.
Summary: The process of dendritic cell differentiation is governed by a tightly controlled signaling network regulated by cytokines and direct interaction between progenitor cells and bone marrow stroma. Notch signaling represents one of the major pathways activated during direct interaction between hematopoietic progenitor cells and bone marrow stroma. Wnt pathway is activated by soluble proteins produced by bone marrow stroma. Until recently, the role of Notch and Wnt signaling in the development of myeloid cells and dendritic cells in particular remained unclear. In this review, we discuss recent exciting findings that shed light on the critical role of Notch and Wnt pathways, their interaction in differentiation and function of dendritic cells, and their impact on immune responses.  相似文献   

15.
Senescence is thought to play an important role in the progressive age-related decline in tissue integrity and concomitant diseases, but not much is known about the complex interplay between upstream regulators and downstream effectors. We profiled whole genome gene expression of non-stressed and rotenone-stressed human fibroblast strains from young and oldest old subjects, and measured senescence associated β-gal activity. Microarray results identified gene sets involved in carbohydrate metabolism, Wnt/β-catenin signaling, the cell cycle, glutamate signaling, RNA-processing and mitochondrial function as being differentially regulated with chronological age. The most significantly differentially regulated mRNA corresponded to the p16 gene. p16 was then investigated using qPCR, Western blotting and immunocytochemistry. In conclusion, we have identified cellular pathways that are differentially expressed between fibroblast strains from young and old subjects.  相似文献   

16.
Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.  相似文献   

17.
Dishevelled (Dsh) is a phosphoprotein key to beta‐catenin dependent (canonical) and beta‐catenin independent (noncanonical) Wnt signaling. Whereas canonical Wnt signaling has been intensively studied in sea urchin development, little is known about other Wnt pathways. To examine roles of these beta‐catenin independent pathways in embryogenesis, we used Dsh‐DEP, a deletion construct blocking planar cell polarity (PCP) and Wnt/Ca2+ signaling. Embryos overexpressing Dsh‐DEP failed to gastrulate or undergo skeletogenesis, but produced pigment cells. Although early mesodermal gene expression was largely unperturbed, embryos exhibited reduced expression of genes regulating endoderm specification and differentiation. Overexpressing activated beta‐catenin failed to rescue Dsh‐DEP embryos, indicating that Dsh‐DEP blocks endoderm formation downstream of initial canonical Wnt signaling. Because Dsh‐DEP‐like constructs block PCP signaling in other metazoans, and disrupting RhoA or Fz 5/8 in echinoids blocks subsets of the Dsh‐DEP phenotypes, our data suggest that noncanonical Wnt signaling is crucial for sea urchin endoderm formation and skeletogenesis. Developmental Dynamics 238:1649–1665, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
Wnt signaling determines major developmental processes in the embryonic state and regulates maintenance, self-renewal and differentiation of adult mammalian tissue stem cells. Both β-catenin dependent and independent Wnt pathways exist, and both affect stem cell fate in developing and adult tissues. In this review, we debate the response to Wnt signal activation in embryonic stem cells and human, adult stem cells of mesenchymal, hematopoetic, intestinal, gastric, epidermal, mammary and neural lineages, and discuss the need for Wnt signaling in these cell types. Due to the vital actions of Wnt signaling in developmental and maintenance processes, deregulation of the pathway can culminate into a broad spectrum of developmental and genetic diseases, including cancer. The way in which Wnt signals can feed tumors and maintain cancer stem stells is discussed as well. Manipulation of Wnt signals both in vivo and in vitro thus carries potential for therapeutic approaches such as tissue engineering for regenerative medicine and anti-cancer treatment. Although many questions remain regarding the complete Wnt signal cell-type specific response and interplay of Wnt signaling with pathways such as BMP, Hedgehog and Notch, we hereby provide an overview of current knowledge on Wnt signaling and its control over human stem cell fate.  相似文献   

20.
Notch and Wnt/β-catenin signals play essential roles in intestinal development and homeostasis. Citrobacter rodentium induces transmissible murine colonic hyperplasia (TMCH) and various degrees of inflammation, depending upon the genetic background. We aimed at delineating the role of the Notch and Wnt/β-catenin pathways in the regulation of colonic crypt hyperplasia and/or colitis following C. rodentium infection. During TMCH, relative levels of the Notch intracellular domain (NICD) increased significantly, along with increases in Jagged-1 and Hes-1 coinciding with the progression and regression phases of hyperplasia. Blocking of Notch signaling with dibenzazepine (DBZ) for 5 days before the onset of hyperplasia also blocked Wnt/β-catenin signaling. Targeting the Notch pathway for 5 days after the onset of hyperplasia failed to inhibit Wnt/β-catenin-regulated crypt hyperplasia. Chronic DBZ administration for 10 days blocked both Notch and Wnt signaling, disrupted the intestinal barrier, and induced colitis. Core-3(-/-) mice, which are defective in mucin secretion and are susceptible to experimental triggers of colitis, also exhibited significant colitis in response to C. rodentium plus DBZ. Chronic DBZ administration in these mice did not result in depletion of the putative stem cell marker doublecortin-like kinase-1 (DCLK1) in the crypts. Dietary bael (Aegle marmelos) extract (4%) and curcumin (4%) restored signaling via the Notch and Wnt/β-catenin pathways, thereby promoting crypt regeneration, and also replenished the mucus layer, leading to amelioration of C. rodentium- and DBZ-induced colitis in NIH:Swiss mice. Thus, the balancing act between cell proliferation and mucus production to restore barrier integrity seems to depend upon the interplay between the Wnt/β-catenin and Notch pathways in the TMCH model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号