首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Werner syndrome (WS) is an autosomal recessive disease manifested by the premature onset of age-related phenotypes, including diseases such as atherosclerosis and cancer. This mimicry of normal aging with the possible exception of central nervous system manifestations has made it a focus of recent molecular studies on the pathophysiology of aging. In culture, cells obtained from patients with WS are genetically unstable, characterized by an increased frequency of nonclonal translocations and extensive DNA deletions. The WS gene product (WRN) is a DNA helicase belonging to the RecQ family, but is unique within this family in that it also contains an exonuclease activity. In addition to unwinding double-stranded DNA, WRN helicase is able to resolve aberrant DNA structures such as G4 tetraplexes, triplexes and 4-way junctions. Concordant with this structure-specificity, WRN exonuclease preferentially hydrolyzes alternative DNA that contains bubbles, extra-helical loops, 3-way junctions or 4-way junctions. WRN has been shown to bind to and/or functionally interact with other proteins, including replication protein A (RPA), proliferating cell nuclear antigen (PCNA), DNA topoisomerase I, Ku 86/70, DNA polymerase delta and p53. Each of these interacting proteins is involved in DNA transactions including those that resolve alternative DNA structures or repair DNA damage. The biochemical activities of WRN and the functions of WRN associated proteins suggest that in vivo WRN resolves DNA topological or structural aberrations that either occur during DNA metabolic processes such as recombination, replication and repair, or are the outcome of DNA damage.  相似文献   

2.
3.
Werner syndrome (WS) is a premature aging disease characterized by genetic instability. WS is caused by mutations in a gene encoding for a 160 kDa nuclear protein, the Werner syndrome protein (WRN), which has exonuclease and helicase activities. The mechanism whereby WRN controls genome stability and life span is not known. Over the last few years, WRN has become the focus of intense investigation by a growing number of scientists. The studies carried out by many laboratories have provided a wealth of new information about the functional properties of WRN and its cellular partners. This review focuses on recent findings that demonstrate a functional interaction between WRN and two factors that bind to DNA breaks, Ku and poly(ADP-ribose) polymerase 1, and discuss how these interactions can influence fundamental cellular processes such as DNA repair, apoptosis and possibly regulate cell senescence and organismal aging.  相似文献   

4.
Reactive oxygen species, generated either by cellular respiration or upon exposure to environmental agents such as ionizing radiation (IR), attack DNA to form a variety of oxidized base and sugar modifications. Accumulation of oxidative DNA damage has been associated with age-related disease as well as the aging process. Single-strand breaks harboring oxidative 3' obstructive termini, e.g. 3' phosphates and 3' phosphoglycolates, must be removed prior to DNA repair synthesis or ligation. In addition, 3' tyrosyl-linked protein damage, resulting from therapeutic agents such as camptothecin (CPT), must be processed to initiate repair. Several nucleases participate in DNA repair and the excision of 3' obstructive ends. As the protein defective in the segmental progeroid Werner syndrome (WRN) possesses 3'-5' exonuclease activity, and Werner syndrome cells are hypersensitive to IR and CPT, we examined for WRN exonuclease activity on 3' blocking lesions. Moreover, we compared side-by-side the activity of four prominent human 3'-5' exonucleases (WRN, APE1, TREX1, and p53) on substrates containing 3' phosphates, phosphoglycolates, and tyrosyl residues. Our studies reveal that while WRN degrades 3' hydroxyl containing substrates in a non-processive manner, it does not excise 3' phosphate, phosphoglycolate, or tyrosyl groups. In addition, we found that APE1 was most active at excising 3' blocking termini in comparison to the disease-related exonucleases TREX1, WRN, and p53 under identical physiological reaction conditions, and that TREX1 was the most powerful 3'-5' exonuclease on undamaged oligonucleotide substrates.  相似文献   

5.
Werner syndrome (WS) is a recessive inherited human disease characterized by the early onset of aging. The gene mutated in WS encodes a DNA helicase that unwinds the double helical structure of DNA in the 3'-->5' direction as well as a 3'-->5' exonuclease. Our previous studies indicated that the activity of Werner syndrome helicase (WRN) could be stimulated by human replication protein A (hRPA), a heterotrimeric single-stranded DNA binding protein. We now localize the interaction between WRN and hRPA by measuring the stimulation of helicase activity and the binding of WRN by hRPA and its derivatives. The large subunit of hRPA (hRPA70) stimulates WRN helicase to the same extent as the hRPA heterotrimer, whereas the dimer of the two smaller subunits (hRPA 32.14) does not stimulate. By examining hRPA70 mutants with progressive deletions from either the C- or N-terminus, we found that the domain responsible for stimulation lies in the N-terminal half of the protein. By using enzyme-linked immunosorbent assay (ELISA) to examine physical interaction between WRN and the same deletion mutants, we found that the WRN-binding motif is located within amino acids 100-300 and overlaps with the single-stranded DNA binding domain (amino acids 150-450). We suggest that hRPA, by engaging in both protein-protein and protein-DNA interactions, facilitates unwinding events catalyzed by WRN helicase during DNA synthetic processes. These data should help further elucidation of the molecular mechanisms of genetic instability and premature aging phenotypes manifested by WS.  相似文献   

6.
Ageing is linked to the accumulation of replicatively senescent cells. The best model system to date for studying human cellular ageing is the progeroid Werner's syndrome (WS), caused by a defect in WRN, a recQ-like helicase that also possesses exonuclease activity. In this paper, we characterise the interaction between WRN and an essential replication factor, PCNA. We show that wild-type WRN protein physically associates with PCNA at physiological protein concentrations in normal cells, while no association is seen in cells from patients with WS. We demonstrate co-localisation of WRN and PCNA at replication factories, show that PCNA binds to two distinct functional sites on WRN, and suggest a mechanism by which association between WRN and PCNA may be regulated in cells on DNA damage and during DNA replication.  相似文献   

7.
Werner syndrome (WS) is an autosomal recessive progeroid disease characterized by genomic instability. WRN gene encodes one of the RecQ helicase family proteins, WRN, which has ATPase, helicase, exonuclease and single stranded DNA annealing activities. There is accumulating evidence suggesting that WRN contributes to the maintenance of genomic integrity through its involvement in DNA repair, replication and recombination. The role of WRN in these pathways can be modulated by its post-translational modifications in response to DNA damage. Here, we review the functional consequences of post-translational modifications on WRN as well as specific DNA repair pathways where WRN is involved and discuss how these modifications affect DNA repair pathways.  相似文献   

8.
Werner syndrome (WS), caused by mutation of the WRN gene, is an autosomal recessive disorder associated with premature aging and predisposition to cancer. WRN belongs to the RecQ DNA helicase family, members of which play a role in maintaining genomic stability. Here, we demonstrate that WRN rapidly forms discrete nuclear foci in an NBS1-dependent manner following DNA damage. NBS1 physically interacts with WRN through its FHA domain, which interaction is important for the phosphorylation of WRN. WRN subsequently forms DNA damage-dependent foci during the S phase, but not in the G1 phase. WS cells exhibit an increase in spontaneous focus formation of polη and Rad18, which are important for translesion synthesis (TLS). WRN also interacts with PCNA in the absence of DNA damage, but DNA damage induces the dissociation of PCNA from WRN, leading to the ubiquitination of PCNA, which is essential for TLS. This dissociation correlates with ATM/NBS1-dependent degradation of WRN. Moreover, WS cells show constitutive ubiquitination of PCNA and interaction between PCNA and Rad18 E3 ligase in the absence of DNA damage. Taken together, these results indicate that WRN participates in the TLS pathway to prevent genomic instability in an ATM/NBS1-dependent manner.  相似文献   

9.
Werner syndrome (WS) is a premature aging and cancer-prone disease caused by loss of the RecQ helicase WRN protein. Cultured WS fibroblasts display high genomic instability and senesce prematurely. Epigenetic inactivation of the WRN gene occurs in numerous tumor types, in which WRN demonstrates tumor suppressor-like activity (Agrelo et al., 2006). However, the role of WRN in tumors that express WRN protein is unknown. Here we report that the inhibition of WRN expression strongly impairs growth of 12 out of 15 cancer cell lines tested. For those cell lines in which WRN depletion induced high cell death, the majority of the surviving proliferative clones exhibited WRN expression. Growth arrest induced by WRN depletion was characterized by an accumulation of cells in the G2/M cell cycle phases and an increase in DNA damage. Importantly, WRN depletion inhibited tumor growth in vivo in SCID mouse xenograft models. Altogether, these findings support a dual role for WRN in tumorigenesis; tumor suppressor-like activity in tumors with WRN inactivation and the promotion of proliferation and survival in tumors that express WRN. These findings suggest a possible therapeutic role for WRN as an anti-cancer target, and highlight the importance of WRN protein status for tumorigenesis and clinical treatments of patients.  相似文献   

10.
11.
Ku complex interacts with and stimulates the Werner protein   总被引:24,自引:0,他引:24       下载免费PDF全文
Werner syndrome (WS) is the hallmark premature aging disorder in which affected humans appear older than their chronological age. The protein WRNp, defective in WS, has helicase function, DNA-dependent ATPase, and exonuclease activity. Although WRNp functions in nucleic acid metabolism, there is little or no information about the pathways or protein interactions in which it participates. Here we identify Ku70 and Ku86 as proteins that interact with WRNp. Although Ku proteins had no effect on ATPase or helicase activity, they strongly stimulated specific exonuclease activity. These results suggest that WRNp and the Ku complex participate in a common DNA metabolic pathway.  相似文献   

12.
13.
p53 in cytoplasm displays an intrinsic 3'-->5' exonuclease activity. To understand the significance of p53 exonuclease activity in cytoplasm, cytoplasmic extracts of various cell lines were examined for exonuclease activity with different single-stranded RNA (ssRNA) substrates. Using an in vitro RNA degradation assay, we observed in cytoplasmic extracts of LCC2 cells, expressing high levels of endogenous wtp53, an efficient 3'-->5' exonuclease activity with RNA substrates, removing the 3'-terminal nucleotides. Interestingly, RNA containing AU-rich sequences (ARE) is the permissive substrate for exonucleolytic degradation. Evidence that exonuclease function with RNA detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: (1) this activity closely parallels with status and levels of endogenous cytoplasmic p53; (2) the endogenous exonuclease exerts identical RNA substrate specificity and excision profile characteristic for purified baculovirus-or bacterially-expressed wtp53s; (3) the exonuclease activity with ARE RNA is competed out by the presence of ss or double-stranded DNA substrate utilized by p53 protein in cytoplasm; (4) immunoprecipitation by specific anti-p53 antibodies markedly reduced the exonuclease activity with both RNA and DNA substrates; and (5) transfection of the wtp53, but not exonuclease-deficient mutant p53-R175H, into p53-null H1299 or HCT116 cells induced high levels of exonuclease activity with ARE RNA substrate in cytoplasm with characteristic excision profile. The efficient ARE RNA degradation correlates with the efficient binding of p53 to ARE RNA in cytoplasm. The possible role of p53 exonuclease activity in ARE-mRNA destabilization in cytoplasm, which may be important for expression of proteins that control cell growth and/or apoptosis is discussed.  相似文献   

14.
p53-Mediated apoptosis is attenuated in Werner syndrome cells   总被引:12,自引:0,他引:12  
The WRN DNA helicase is a member of the DExH-containing DNA helicase superfamily that includes XPB, XPD, and BLM. Mutations in WRN are found in patients with the premature aging and cancer susceptibility syndrome known as Werner syndrome (WS). p53 binds to the WRN protein in vivo and in vitro through its carboxyl terminus. WS fibroblasts have an attenuated p53- mediated apoptotic response, and this deficiency can be rescued by expression of wild-type WRN. These data support the hypothesis that p53 can induce apoptosis through the modulation of specific DExH-containing DNA helicases and may have implications for the cancer predisposition observed in WS patients.  相似文献   

15.
BackgroundGALT deficiency is a rare genetic disorder of carbohydrate metabolism. Due to the decreased activity or absence of the enzyme galactose-1-phosphate uridylyltransferase (GALT), cells from affected individuals are unable to metabolize galactose normally. Lactose consumption in the newborn period could potentially lead to a lethal disease process with multi-organ involvement. In contrast to the newborn-stage disease, however, a galactose-restricted diet does not prevent long-term complications such as central nervous system (CNS) dysfunction with speech defects, learning disability and neurological disease in addition to hypergonadotropic hypogonadism or primary ovarian insufficiency (POI) in females. As the literature suggests an association between GALT enzyme activity and the long-term complications, it is of importance to have a highly sensitive assay to quantify the GALT enzyme activity. To that end, we had developed a sensitive and accurate LC-MS/MS method to measure GALT enzyme activity. Its ability to predict outcome is the subject of this report.Materials and methodsThe GALT enzyme activity in erythrocytes from 160 individuals, in which 135 with classic, clinical variant or biochemical variant galactosemia, was quantified by LC-MS/MS. Individuals with GALT deficiency were evaluated for the long-term complications of speech defects, dysarthria, ataxia, dystonia, tremor, POI, as well as intellectual functioning (full scale IQ). The LC-MS/MS results were compared to a variety of assays: radioactive, [14C]-galactose-1-phosphate, paper chromatography with scintillation counting, enzyme-coupled assays with spectrophotometric or fluorometric readout or high-pressure liquid chromatography with UV detection of UDP-galactose.ResultsThe LC-MS/MS method measured GALT activity as low as 0.2%, whereas other methods showed no detectable activity. Largely due to GALT activities that were over 1%, the LC-MS/MS measurements were not significantly different than values obtained in other laboratories using other methodologies. Severe long-term complications were less frequently noted in subjects with >1% activity. Patients with a p.Q188R/p.Q188R genotype have no residual enzyme activity in erythrocytes.ConclusionOur LC-MS/MS assay may be necessary to accurately quantify residual GALT activities below 5%. The data suggest that patients with >1% residual activity are less likely to develop diet-independent long-term complications. However, much larger sample sizes are needed to properly assess the clinical phenotype in patients with residual enzyme activities between 0.1 and 5%.  相似文献   

16.
Werner syndrome is a premature aging syndrome characterized by early onset of cancer and abnormal cellular metabolism of glycosaminoglycan. The WRN helicase plays an important role in the maintenance of telomere function. WRN promoter methylation and gene silencing are common in colorectal cancer with the CpG island methylator phenotype (CIMP), which is associated with microsatellite instability (MSI) and mucinous tumors. However, no study has examined the relationship between mucinous differentiation, WRN methylation, CIMP and MSI in colorectal cancer. Utilizing 903 population-based colorectal cancers and real-time PCR (MethyLight), we quantified DNA methylation in WRN and eight other promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3 and SOCS1) known to be specific for CIMP. Supporting WRN as a good CIMP marker, WRN methylation was correlated well with CIMP-high diagnosis (> or =6/8 methylated promoters), demonstrating 89% sensitivity and 81% specificity. WRN methylation was associated with the presence of any mucinous component and > or =50% mucinous component (P<0.0001). Because both MSI and CIMP were associated with mucinous tumors and WRN methylation, we stratified tumors into 9 MSI/CIMP subtypes, to examine whether the relationship between WRN methylation and mucin still persisted. In each MSI/CIMP subtype, tumors with mucinous component were persistently more common in WRN-methylated tumors than WRN-unmethylated tumors (P=0.004). No relations of WRN methylation with other variables (age, sex, tumor location, poor differentiation, signet ring cells, lymphocytic reactions, KRAS, BRAF, p53, p21 or 18q loss of heterozygosity) persisted after tumors were stratified by CIMP status. In conclusion, WRN methylation is associated with mucinous differentiation independent of CIMP and MSI status. Our data suggest a possible role of WRN methylation in mucinous differentiation, and may provide explanation to the enigmatic association between mucin and MSI/CIMP.  相似文献   

17.
The human premature aging protein Werner (WRN), deficient in Werner syndrome (WS), is localized mainly to the nucleolus in many cell types. DNA damage or replication arrest causes WRN to redistribute from the nucleolus to the nucleoplasm into discrete foci. In this study, we have investigated DNA damage specific cellular redistribution of WRN. In response to agents causing DNA double strand breaks or DNA base damage, WRN is re-distributed from the nucleolus to the nucleoplasm in a reversible manner. However, after ultraviolet (UV) irradiation such redistribution of WRN is largely absent. We also show that WRN is associated with the insoluble protein fraction of cells after exposure to various kinds of DNA damage but not after UV irradiation. Further, we have studied the DNA damage specific post-translational modulation of WRN. Our results show that WRN is acetylated after mytomycin C or methyl methane-sulfonate treatment, but not after UV irradiation. Also, DNA damage specific phosphorylation of WRN is absent in UV irradiated cells. Inhibition of phosphorylation fails to restore WRN localization. Thus, our results suggest that the dynamics of WRN protein trafficking is DNA damage specific and is related to its post-translational modulation. The results also indicate a preferred role of WRN in recombination and base excision repair rather than nucleotide excision repair.  相似文献   

18.
T Tsurumi 《Virology》1992,189(2):803-807
Epstein-Barr virus (EBV) DNA polymerase possesses a proofreading 3'-to-5' exonuclease activity (Tsurumi, T. (1991) Virology 182, 376-381). The 3'-to-5' exonuclease activity can be selectively inhibited by ribonucleoside 5'-monophosphates, while no inhibition of the DNA polymerase activity can be observed even when the template/primer concentrations are rate-limiting. Deoxynucleoside monophosphates except 5'dGMP have almost no effect on the exonuclease activity. Of the four ribonucleoside monophosphates, 5'GMP is the most potent (62% inhibition at 5 mM). The kinetic study shows that 5'-GMP inhibits the exonuclease activity competitively with respect to DNA template/primer. During DNA polymerization process the EBV DNA polymerase catalyzes the DNA-dependent conversion of complementary deoxynucleoside triphosphate to monophosphate form. With poly(dT).oligo(rA) as a template primer, selective inhibition of the exonuclease activity by 5'-GMP results in a decrease in the amount of free dAMP generated which is complementary to the template DNA, suggesting the functional relationship between the editing exonuclease activity and the chain elongation activity of the EBV DNA polymerase molecule.  相似文献   

19.
Werner syndrome (WS) is a rare, segmental progeroid syndrome caused by defects in the WRN gene, which encodes a RecQ helicase. WRN has roles in many aspects of DNA metabolism including DNA repair and recombination. In this study, we exploited two different recombination assays previously used to describe a role for the structure-specific endonuclease ERCC1-XPF in mitotic and targeted homologous recombination. We constructed Chinese hamster ovary (CHO) cell lines isogenic with the cell lines used in these previous studies by depleting WRN using shRNA vectors. When intrachromosomal, mitotic recombination was assayed in WRN-depleted CHO cells, a hyperrecombination phenotype was observed, and a small number of aberrant recombinants were generated. Targeted homologous recombination was also examined in WRN-depleted CHO cells using a plasmid-chromosome targeting assay. In these experiments, loss of WRN resulted in a significant decrease in nonhomologous integration events and ablation of recombinants that required random integration of the corrected targeting vector. Aberrant recombinants were also recovered, but only from WRN-depleted cells. The pleiotropic recombination phenotypes conferred by WRN depletion, reflected in distinct homologous and nonhomologous recombination pathways, suggest a role for WRN in processing specific types of homologous recombination intermediates as well as an important function in nonhomologous recombination.  相似文献   

20.
Werner syndrome (WS) is a progeroid syndrome caused by autosomal recessive null mutations at the WRN locus. The WRN gene encodes a nuclear protein of 180 kD that contains both exonuclease and helicase domains. WS patients develop various forms of arteriosclerosis, particularly atherosclerosis, and medial calcinosis. The most common cause of death in Caucasian subjects with WS is myocardial infarction. Previous studies have identified specific polymorphisms within WRN that may modulate the risk of atherosclerosis. Population studies of the 1074Leu/Phe and 1367Cys/Arg polymorphisms were undertaken to evaluate the role of WRN in atherogenesis. Frequencies of the 1074Leu/Phe polymorphisms in Finnish and Mexican populations revealed an age-dependent decline of 1074Phe/Phe genotype. In Mexican newborns, but not in Finnish newborns, the 1074Leu/Phe and 1367Cys/ Arg polymorphisms were in linkage disequilibrium. Among coronary artery disease subjects, there was a tendency for the 1074Phe allele to be associated with coronary stenosis in a gene dose-dependent manner. Furthermore, the 1367Arg/Arg genotype predicted a lower degree of coronary artery occlusion, as measured by NV50, when compared to the 1367Cys/Cys or 1367Cys/Arg genotypes. However, these tendencies did not achieve statistical significance. Samples from Mexican patients with ischemic stroke showed a trend of haplotype frequencies different from that in a control group of Mexican adults. These data support the hypothesis that WRN may mediate not only WS, but may also modulate more common age-related disorders and, perhaps, a basic aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号