首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are 2 adult onset neurological disorders with overlapping symptoms and clinical characteristics. It is well established that they share a common pathologic and genetic background. Recently, mutations in profilin 1 gene (PFN1) have been identified in patients with familial ALS, suggesting a role for this gene in the pathogenesis of the disease. Based on this, we hypothesized that mutations in PFN1 might also contribute to FTLD disease. We studied a French cohort of 165 ALS/FTLD patients, without finding any variant. We conclude that mutations in PFN1 are not a common cause for ALS/FTLD in France.  相似文献   

2.
Inclusion body myopathy (IBM) associated with Paget disease of the bone, frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS), sometimes called IBMPFD/ALS or multi system proteinopathy, is a rare, autosomal dominant disorder characterized by progressive degeneration of muscle, brain, motor neurons, and bone with prominent TDP-43 pathology. Recently, 2 novel genes for multi system proteinopathy were discovered; heterogenous nuclear ribonucleoprotein (hnRNP) A1 and A2B1. Subsequently, a mutation in hnRNPA1 was also identified in a pedigree with autosomal dominant familial ALS. The genetic evidence for ALS and other neurodegenerative diseases is still insufficient. We therefore sequenced the prion-like domain of these genes in 135 familial ALS, 1084 sporadic ALS, 68 familial FTD, 74 sporadic FTD, and 31 sporadic IBM patients in a Dutch population. We did not identify any mutations in these genes in our cohorts. Mutations in hnRNPA1 and hnRNPA2B1 prove to be a rare cause of ALS, FTD, and IBM in the Netherlands.  相似文献   

3.
The cause of familial amyotrophic lateral sclerosis (FALS) has been attributed to mutations in several genes. The authors analyzed these genes, including SOD1, FUS, VAPB, ANG, TDP-43, FIG4, and CHMP2B, in a cohort of 15 index patients of Han Chinese descent with adult-onset FALS. Seven different mutations in eight patients, including three in SOD1 (G85R, T137R, and G138E), two in exon 15 of FUS (H517D and R521H), and two in exon 6 of TARDBP (M337V and N378D) were identified. Among them, T137R SOD1, G138E SOD1, H517D FUS, and N378D TARDBP were novel. No mutation was found in VAPB, ANG, FIG4, or CHMP2B genes. Mutations in SOD1, FUS, and TARDBP account for 20%, 13.3%, and 20% of FALS, respectively. This study defined the distribution and frequency of mutations of FALS in a Taiwanese Han Chinese population, which not only broadens the spectrum of the mutations causing FALS, but also further highlights the importance of FUS and TARDBP in the pathogenesis of amyotrophic lateral sclerosis (ALS).  相似文献   

4.
The single-nucleotide polymorphisms (SNPs) rs6700125 and rs6690993 in FGGY (FLJ10986) were recently reported to be a susceptibility factor for sporadic amyotrophic lateral sclerosis (SALS) in Caucasian populations in genome-wide association studies. However, no such association was observed in other independent genome-wide association studies or replication studies in a European cohort or 2 small sample sizes of Chinese patients. We performed a large case-control study in a cohort consisting of 963 SALS cases and 1039 control subjects to examine the association between the 2 reported SNPs in FGGY and amyotrophic lateral sclerosisin Chinese patients. Our results did not find the SNP rs6690993 in FGGY is associated with Chinese SALS and cannot confirm that this FGGY SNP modulates the risk for SALS in the Chinese population.  相似文献   

5.
We have attempted to replicate a recently reported association of polymorphism rs10260404, in the Dipeptidyl-peptidase 6 gene (DPP6), with susceptibility to amyotrophic lateral sclerosis (ALS) in a large independent Italian cohort of 904 cases and 1036 controls. Minor allele frequency was 0.38 in cases and 0.39 in controls and no evidence of association with ALS was observed (P = 0.638). Our negative results agree with those recently reported in additional Polish and Italian cohorts.  相似文献   

6.
7.
Paraoxonase (PON) gene polymorphisms have been associated with susceptibility to sporadic amyotrophic lateral sclerosis (ALS). We have investigated the role of the previously associated single nucleotide polymorphisms rs854560, rs662, and rs6954345 in 350 ALS patients and 376 matched controls from Italy. No significant association was observed at genotype and haplotype level. Our data suggest that PON polymorphisms are not involved in ALS pathogenesis in an Italian population.  相似文献   

8.
Systemic lupus erythematosus (SLE) is one of the common autoimmune diseases, with complex genetic components. Here, we report on a case–control association study of 178 SLE patients and 899 control subjects, using genome-wide gene-based single nucleotide polymorphism (SNP) markers. An SNP, rs3130342, in a 5’ flanking region of the TNXB gene revealed a significant association with SLE [P = 0.000000930, odds ratio (OR) 3.11, with 95% confidence interval (95%CI) of 1.89–5.28] in a Japanese population. This association was replicated independently with 203 cases and 294 controls (P = 0.0440, OR 1.52, with 95%CI of 1.01–2.78). Although a copy number variation (CNV) of the C4 gene adjacent to the TNXB gene was reported to be associated with SLE, our analysis on this CNV revealed that the association of CNV of the C4 gene was weaker than the SNP in the TNXB gene and likely to reflect the linkage disequilibrium between C4 CNV and this particular SNP. Stratified analysis also revealed that the association of SNP rs3130342 with SLE was independent of the HLA-DRB1*1501 allele that has been shown to be associated with SLE. Our findings strongly imply that the TNXB gene is a candidate gene susceptible to SLE in the Japanese population. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder. About 10% of ALS cases are familial (FALS) and the genetic defect is known only in approximately 20%-30% of these cases. The most common genetic cause of ALS is SOD1 (superoxide dismutase 1) mutation. Very recently, mutations of the optineurin gene (OPTN), which is involved in open-angle glaucoma, were identified in 3 Japanese patients/families with ALS, and subsequently in a few FALS patients of European descent. We found a heterozygous nonsense mutation (c.493C>T, p.Gln165X, exon 6) in the OPTN gene in a Danish patient with ALS, and the mutation segregated from his affected father. The p.Gln165X mutation could not be detected in 1070 healthy Danish controls, in 1000 Danish individuals with metabolic phenotypes or in 64 sporadic ALS (SALS) cases. The p.Gln165X mutation described in this study is the first mutation reported in a Danish family and is likely involved in disease pathogenesis. Until now, only few OPTN mutations have been associated with ALS. As the underlying genetic defect is known only in approximately 20%-30% of FALS families, further screening of these cases is necessary for establishing the contribution of OPTN mutations in disease pathogenesis.  相似文献   

10.
Transgenic rat models of amyotrophic lateral sclerosis (ALS) have recently been developed. Most assays of ALS-symptoms in these models monitor disease onset accurately, but do not identify individuals that will develop these symptoms before the motor deficits become apparent. Peak bodyweight has recently been shown to indicate affected individuals before motor deficits become apparent. However, it must be determined retrospectively due to weight fluctuation. Here, we report that exploratory activities detected by a photobeam activity system (PAS) and wire mesh ascending test can be used to detect slight motor deficits in the early phase of ALS. Thus, these tests may be used in addition to peak bodyweight to monitor early disease progression and to assay efficacy of new therapeutic interventions.  相似文献   

11.
Genome-wide association studies can help identify multi-gene contributions to disease. As the number of high-density genomic markers tested increases, however, so does the number of loci associated with disease by chance. Performing a brute-force test for the interaction of four or more high-density genomic loci is unfeasible given the current computational limitations. Heuristics must be employed to limit the number of statistical tests performed.In this paper we explore the use of biological domain knowledge to supplement statistical analysis and data mining methods to identify genes and pathways associated with disease. We describe Pathway/SNP, a software application designed to help evaluate the association between pathways and disease. Pathway/SNP integrates domain knowledge—SNP, gene and pathway annotation from multiple sources—with statistical and data mining algorithms into a tool that can be used to explore the etiology of complex diseases.  相似文献   

12.
There is increasing evidence of a clinical, neuropathological and genetic overlap between frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We conducted a case–control study using a UK dataset to test the hypothesis that polymorphisms in two FTD-related genes (GRN and FT74) are associated with increased susceptibility to ALS. We evaluated the majority of known genetic variability in IFT74 and GRN. The results revealed that the common variations in IFT74 and GRN neither constitute strong ALS risk factors nor modify the age-at-onset. However, the possibility of a modest risk effect remains to be assessed in large datasets.  相似文献   

13.
Reduced DNA repair capacity may play a role in amyotrophic lateral sclerosis (ALS) etiology. We examined the association between ALS risk and single nucleotide polymorphisms (SNPs) in the gene x-ray repair complementing defective repair in Chinese hamster cells 1 (XRCC1) utilizing data from a case-control study and 2 genome-wide association studies (the study of Irish Amyotrophic Lateral Sclerosis and the National Institute of Neurological Disorders and Stroke (NINDS) genome-wide study in Amyotrophic Lateral Sclerosis and Neurologically Normal Controls). Our results did not show any differences in the frequency of XRCC1 gene polymorphisms between ALS patients and controls free of any neurological disease.  相似文献   

14.
Recently, four single nucleotide polymorphisms (rs2585428, rs4809960, rs6022999 and rs6068816) in CYP24A1 gene were extensively studied for their associations with cancer risk. However, these studies included only a few types of cancer, which calls for further investigations. In view of this, we here conducted a case-control study to explore the associations between these four CYP24A1 gene polymorphisms and risk of liver, lung and gastric cancer in a Chinese population. A total of 480 liver cancer patients, 550 lung cancer patients, 460 gastric cancer patients and 800 normal controls were recruited in this study. The genotyping of CYP24A1 gene polymorphisms was applied with Sanger sequencing assay. Single-locus analysis demonstrated that rs6022999 was significantly associated with risk of liver and lung cancer, while rs6068816 was significantly associated with the risk of gastric cancer. Haplotype analysis revealed that haplotype GTAT was associated with an increased risk of liver cancer and a decreased risk of lung cancer, and haplotype ATGC was associated with a decreased risk of lung cancer. The further meta-analysis of rs6068816 and lung cancer risk showed that rs6068816 was not associated with lung cancer risk in Chinese population, which confirmed our present finding. Conclusively, rs6022999 may be a genetic biomarker for liver and lung cancer susceptibility in Chinese population, and rs6068816 may be used to predict gastric cancer risk in Chinese population.  相似文献   

15.
Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further insight into the spectrum and pathogenic relevance of this gene for the complete ALS/FTLD continuum. Four hundred twelve familial and 260 sporadic ALS cases and 16 ALS/FTLD cases from Germany, the Nordic countries, and the United States were screened for PFN1 mutations. Phenotypes of patients carrying PFN1 mutations were studied. In a German ALS family we identified the novel heterozygous PFN1 mutation p.Thr109Met, which was absent in controls. This novel mutation abrogates a phosphorylation site in profilin 1. The recently described p.Gln117Gly sequence variant was found in another familial ALS patient from the United States. The ALS patients with mutations in PFN1 displayed spinal onset motor neuron disease without overt cognitive involvement. PFN1 mutations were absent in patients with motor neuron disease and dementia, and in patients with only FTLD. We provide further evidence that PFN1 mutations can cause ALS as a Mendelian dominant trait. Patients carrying PFN1 mutations reported so far represent the “classic” ALS end of the ALS-FTLD spectrum. The novel p.Thr109Met mutation provides additional proof-of-principle that mutant proteins involved in the regulation of cytoskeletal dynamics can cause motor neuron degeneration. Moreover, this new mutation suggests that fine-tuning of actin polymerization by phosphorylation of profilin 1 might be necessary for motor neuron survival.  相似文献   

16.
Candidate gene analysis of SPARCL1 gene in patients with multiple sclerosis   总被引:1,自引:0,他引:1  
Recently, proteomic analysis in cerebrospinal fluid (CSF) from patients with MS identified four proteins which are present in MS but not in normal human CSF, including SPARCL1, an extracellular matrix-associated protein member of the SPARC family. One hundred eighty-six patients with MS and 185 age-matched controls were genotyped for A/G single nucleotide polymorphism (SNP) in exon 1 (rs1049539), C/G SNP in exon 4 (rs1049544), resulting in a substitution of an aspartate with an histidine, and A/G substitution in the exon 5 (rs1130643), leading to the substitution of alanine with threonine. No significant differences in either allelic or genotypic frequency of the three SNPs were found (P>0.05), even in stratifying MS patients according to the course of the disease. Stratifying according to gender, a trend towards a decreased frequency of the C/C genotype of the rs1049544 was observed in male patients as compared with male controls (30.2% versus 44.0%; P=0.217). Despite proteomic studies in CSF from MS patients suggested an important role for SPARCL1 in the development of the disease, SPARCL1 gene does not appear to act as susceptibility factor for MS in the population investigated here. However, the frequency of the C/C genotype of rs1049544 was decreased in male patients, possibly conferring a lower risk of developing MS in male population. Further studies are needed to clarify this issue.  相似文献   

17.
《Neurobiology of aging》2014,35(12):2884.e1-2884.e4
Mutations in the CHCHD10 gene have been recently identified in a large family with a complex phenotype variably associating frontotemporal dementia (FTD) with amyotrophic lateral sclerosis (ALS), cerebellar ataxia, myopathy, and hearing impairment. CHCHD10 encodes a protein located in the mitochondrial intermembrane space and is likely involved in mitochondrial genome stability and maintenance of cristae junctions. However, the exact contribution of CHCHD10 in FTD and ALS diseases spectrum remains unknown. In this study, we evaluated the frequency of CHCHD10 mutations in 115 patients with FTD and FTD-ALS phenotypes. We identified 2 heterozygous variants in 3 unrelated probands presenting FTD and ALS, characterized by early and predominant bulbar symptoms. This study demonstrates the implication of CHCHD10 in FTD and ALS spectrum. Although the frequency of mutations is low in this series (2.6%), our work suggests that CHCHD10 mutations should be searched particularly when bulbar symptoms are present at onset.  相似文献   

18.
We performed a replication study of the 2 genetic variants, rs2814707 on 9p21.2 and rs12608932 on 19p13.3 that are recently reported to be most significantly associated with sporadic amyotrophic lateral sclerosis (ALS) in Caucasians. Both rs12608932 and rs2814707 showed no evidence of association in Japanese and Chinese (rs12608932, combined p = 0.58, odds ratio [OR] = 1.03, 95% confidence interval [CI] 0.93-1.13; rs2814707, combined p = 0.88, OR = 1.10, 95% CI 0.93-1.30). The association of these loci with susceptibility to sporadic ALS is considered negative in East Asians.  相似文献   

19.
Previous evidence demonstrates that TAR DNA binding protein (TDP-43) mislocalization is a key pathological feature of amyotrophic lateral sclerosis (ALS). TDP-43 normally shows nuclear localization, but in CNS tissue from patients who died with ALS this protein mislocalizes to the cytoplasm. Disease specific TDP-43 species have also been reported to include hyperphosphorylated TDP-43, as well as a C-terminal fragment. Whether these abnormal TDP-43 features are present in patients with SOD1-related familial ALS (fALS), or in mutant SOD1 over-expressing transgenic mouse models of ALS remains controversial. Here we investigate TDP-43 pathology in transgenic mice expressing the G93A mutant form of SOD1. In contrast to previous reports we observe redistribution of TDP-43 to the cytoplasm of motor neurons in mutant SOD1 transgenic mice, but this is seen only in mice having advanced disease. Furthermore, we also observe rounded TDP-43 immunoreactive inclusions associated with intense ubiquitin immunoreactivity in lumbar spinal cord at end stage disease in mSOD mice. These data indicate that TDP-43 mislocalization and ubiquitination are present in end stage mSOD mice. However, we do not observe C-terminal TDP-43 fragments nor TDP-43 hyperphosphorylated species in these end stage mSOD mice. Our findings indicate that G93A mutant SOD1 transgenic mice recapitulate some key pathological, but not all biochemical hallmarks, of TDP-43 pathology previously observed in human ALS. These studies suggest motor neuron degeneration in the mutant SOD1 transgenic mice is associated with TDP-43 histopathology.  相似文献   

20.
Mutations in UBQLN2 have been shown to be a cause of dominant X-linked amyotrophic lateral sclerosis (ALS). Occurrences of mutations in this gene vary across ALS populations. We screened UBQLN2 for mutations in a final cohort of 150 Irish ALS patients. Individuals who were from families with male-to-male transmission or who carried pathogenic hexanucleotide repeat expansions in C9orf72 were excluded. Apart from common synonymous variation, no sequence variants in UBQLN2 were observed. Mutations in UBQLN2 are therefore not a frequent cause of ALS in the Irish population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号