首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the mechanisms of H+ transport in the mid-inner medullary collecting duct of hamsters, we measured the intracellular pH (pHi) in the in vitro perfused tubules by microscopic fluorometry using 2,7-bis(carboxyethyl)-carboxyfluorescein (BCECF) as a fluorescent probe. In the basal condition, pHi was 6.74±0.04 (n=45) in HCO 3 -free modified Ringer solution. Either elimination of Na+ from the bath or addition of amiloride (1 mM) to the bath produced a reversible fall in pHi After acid loading with 25 mM NH4Cl, pHi spontaneously recovered with an initial recovery rate of 0.096±0.012 (n=23) pH unit/min. In the absence of ambient Na+, after removal of NH 4 + , the pHi remained low (5.95±0.10, n=8) and showed no signs of recovery. Subsequent restoration of Na+ only in the lumen had no effect on pHi. However, when Na+ in the bath was returned to the control level, pHi recovered completely. Amiloride (1 mM) in the bath completely inhibited the Na+-dependent pHi recovery. Furthermore, elimination of Na+ from the bath, but not from the lumen, decreased pHi from 6.97±0.07 to 6.44±0.05 (n=12) in the HCO 3 /Ringer solution or 6.70±0.03 to 6.02±0.05 (n=8) in the HCO 3 free solution. pHi spontaneously returned to 6.76±0.08 with a recovery rate of 0.017±0.5 pH unit/min in the presence of CO2/HCO 3 , whereas it did not recover in the absence of CO2/HCO 3 . Although elimination of ambient Na+ depolarized the basolateral membrane voltage (V B) from –78±1.2 to –72 ±0.6 mV (n=5, P<0.01), the level of V B was not sufficient to explain the pHi recovery solely by HCO 3 entry driven by the voltage. These results indicate that (a) pHi of the inner medullary collecting duct is regulated mainly by a Na+/H+ exchanger in the basolateral membranes, (b) no apparent Na+-dependent H+ transport system exists in the luminal membranes and (c) Na+-independent H+ transport may also operate in the presence of CO2/HCO 3 Preliminary data were reported at the Conference on Bicarbonate, Chloride, and Proton Transport Systems, New York, USA, in January 1989  相似文献   

2.
The current studies examine the presence of the Na+-HCO3 cotransporter in chicken enterocytes and its role in cytosolic pH (pHi) regulation. The pH-sensitive dye 2,7-bis(carboxyethyl)-5,6-carboxy-fluorescein (BCECF) was used to monitor pHi. Under resting conditions, pHi was 7.25 in solutions buffered with bis(2-hydroxyethyl)-1-piperazine ethanesulphonic acid (HEPES) and 7.17 in those buffered with HCO3 . Removal of external Na+ decreased pHi and readdition of Na+ rapidly increased pHi towards the control values. These Na+-dependent changes were greater in HCO 3 than in HEPES-buffered solutions. In HCO 3 - free solutions the Na+-dependent changes in pHi were prevented by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) and unaffected by 4,4-diisothiocyanatostilbene disulphonic acid (H2-DIDS). In the presence of HCO 3 , the Na+-induced changes in pHi were sensitive to both EIPA and H2-DIDS. In the presence of EIPA, cells partially recovered from a moderate acid load only when both Na+ and HCO 3 were present. This pHi recovery, which was EIPA resistant, and dependent on Na+ and HCO 3 , was inhibited by H2-DIDS and occurred at equal rates in both Cl-containing and Cl-free solutions. Kinetic analysis of the rate of HCO 3 - and Na+- dependent pHi recovery from an acid load as a function of the Na+ concentration revealed first-order kinetics with a Michaelis constant, K m, of 11 mmol/l Na+. It is concluded that in HCO3 /– buffered solutions both the Na+/H+ exchanger and the Na+-HCO3 cotransporter participate in setting the resting pHi in isolated chicken enterocytes and help the recovery from acid loads.  相似文献   

3.
We studied the regulation of intracellular pH (pHi) and the mechanisms of pHi regulation in cultured rat astrocytes using microspectrofluorometry and the pH-sensitive fluorophore 2,7-bis(carboxyethyl-)-5,6-carboxyfluorescein. Control pHi was 7.00±0.02 in HCO 3 - containing solutions at an extracellular pH of 7.35. Addition of 4, 4-diisothiocyanatostilbene-2,2-disulphonic acid (DIDS) or amiloride decreased pHi, as did removal of extracellular Na+, while removal of extracellular Cl- was followed by an increase in pHi. Following exposure to an acid transient induced by increasing the CO2 content from 5 to 15%, pHi rapidly returned to base line, with an average initial rate of recovery of 0.10 pH units min-1 (corresponding to a mean acid extrusion rate of 6.3±0.36 mmolo 1-1 min-1). Regulation of pHi was impaired when either amiloride or DIDS was added or Cl- was removed. This inhibition was enhanced when both DIDS and amiloride were present, and pHi regulation was completely blocked in the absence of extracellular Na+. The rapid regulation of pHi normally seen following a transient alkalinisation was not inhibited by amiloride or removal of Na+, but was partially inhibited by DIDS and by the absence of extracellular Cl-. The results are compatible with the presence of at least three different pHi-regulating mechanisms: a Na+/H+ antiporter, a Na+-dependent HCO 3 - /Cl- exchanger (both regulating pHi during a transient acidification), and a passive Cl-/HCO 3 - exchanger (regulating pHi during transient alkalinisation). The results fail to provide firm evidence of the presence of an electrogenic Na+/HCO 3 - symporter.  相似文献   

4.
Kinetic properties of the Na+-H+ antiport in the acinar cells of the isolated, superfused mouse lacrimal gland were studied by measuring intracellular pH (pHi) and Na+ activity (aNai) with the aid of double-barreled H+- and Na+-selective microelectrodes, respectively. Bicarbonate-free solutions were used throughout. Under untreated control conditions, pHi was 7.12±0.01 and aNai was 6.7±0.6 mmol/l. The cells were acid-loaded by exposure to an NH 4 + solution followed by an Na+-free N-methyl-d-glucamine (NMDG+) solution. Intracellular Na+ and H+ concentrations were manipulated by changing the duration of exposure to the above solutions. Subsequent addition of the standard Na+ solution rapidly increased pHi. This Na+-induced increase in pHi was almost completely inhibited by 0.5 mmol/l amiloride and was associated with a rapid, amiloride-sensitive increase in aNai. The rate of pHi recovery induced by the standard Na+ solution increased in a saturable manner as pHi decreased, and was negligible at pHi 7.2–7.3, indicating an inactivation of the Na+-H+ antiport. The apparent K m for intracellular H+ concentration was 105 nmol/l (pH 6.98). The rate of acid extrusion from the acid-loaded cells increased proportionally to the increase in extracellular pH. Depletion of aNai to less than 1 mmol/l by prolonged exposure to NMDG+ solution significantly increased the rate of Na+-dependent acid extrusion. The rate of acid extrusion increased as the extracellular Na+ concentration increased following Michaelis-Menten kinetics (V max was 0.55 pH/min and the apparent K m was 75 mmol/l at pHi 6.88). The results clearly showed that the Na+-H+ antiport activity is dependent on the chemical potential gradient of both Na+ and H+ ions across the basolateral membrane, and that the antiporter is asymmetric with respect to the substrate affinity of the transport site. The data agree with the current model of activation and inactivation of the antiporter by an intracellular site through changes in the intracellular Na+ and H+ concentrations.  相似文献   

5.
The purpose of this study was to investigate intracytoplasmic pH (pHi) regulation in primary cultures of proximal (PCT) and distal bright (DCTb) convoluted tubules. PCT and DCTb segments were microdissected from rabbit kidney cortex and cultured in a hormonally defined medium. The cultured epithelia were grown on semi-transparent permeable supports. The pHi was determined by video microscopy and digital image processing using 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) and measuring the ratio of BCECF fluorescence excited by two successive wavelengths (490 nm and 450 nm). Resting pHi values, determined in bicarbonatefree medium (extracellular pH: 7.40), were 7.25±0.02 (n=23) and 7.17±0.04 (n=30) for cultured PCT and DCTb respecitively. After the acid-loading procedure, cultured proximal cells recovered their pHi by means of the classic Na+/H+ antiporter, sensitive to amiloride and located in the apical membrane only. In cultured DCTb part of the pHi recovery was mediated by a Na+/H+ exchange present in the basolateral side. Moreover, at physiological initial pHi values, chloride removal from the apical solution caused the pHi to increase in the presence of bicarbonate. In acidified cultured DCTb cells, a partial pHi recovery was induced in sodium-free media by 15 mM HCO 3 in the presence of an outward chloride gradient. This pHi change was completely abolished by 4,4-diisothiocyanostilbene 2,2-disulfonic acid (1 mM). These data suggest that DCTb cells possess in apical anion/base exchanger that resembles the Na+-independent Cl/HCO 3 exchanger.  相似文献   

6.
In recent studies, there has been a re-evaluation of the polarity of Na+/H+ exchange in Madin-Darby canine kidney (MDCK) cells. This study was designed to examine aldosterone actions on basolaterally located Na+/H+ exchange of MDCK cell monolayers grown on permeant filter supports; pHi was analysed in the absence of bicarbonate by using the pH-sensitive fluorescent probe 2,7-bis(carboxyethyl)-5,6-carboxyfluorescein. Pre-exposure of MDCK cells to aldosterone led within 10–20 min to an alkalization of pHi ( 0.3 pH unit); this effect is prevented by an addition of dimethylamiloride to the basolateral superfusate. Addition of aldosterone led to stimulation of the basolaterally located Na+/H+ exchange activity (Na+-dependent recovery from an acid load); this effect required preincubation (more then 3 min) and was observed at 0.1 nM aldosterone. Preexposure (15 min) of MDCK monolayers to phorbol 12-myristate 13-acetate also led to an activation of Na+/H+ exchange; pre-exposure to 8-bromo-cAMP led to inhibition of Na+/H+ exchange activity. An inhibitory effect of aldosterone was observed if Na+/H+ exchange activity was analysed in the presence of aldosterone; the highest inhibitory effects (20%–30%) occurred at concentrations of 5 nM and higher. Aldosterone-dependent inhibition does not require preincubation and is fully reversible; it was only observed at low (20 mM) but not at high Na+ concentrations (130 mM). The data suggest that aldosterone has an instantaneous inhibitory effect on basolaterally located Na+/H+ exchange activity under conditions of low Na+, but stimulates the rate of transport activity upon preincubation under conditions of physiological Na+ concentrations.  相似文献   

7.
We have estimated the changes in cytosolic pH (pHi) that occur when human platelets are stimulated by thrombin. Changes in pHi were estimated (i) from the H+ efflux across the plasma membrane using an extracellular pH electrode and (ii) using an intracellular pH-sensitive fluorescent dye (BCECF). Stimulation of platelets with thrombin (0.5 unit/ml) resulted in an H+ efflux that averaged 7.7±1.6 mol/1011 platelets (means±SD) leading to an increase in pHi, from 7.05±0.04 to 7.45±0.05. Both H+ efflux and pHi changes were unaffected by 0.1 mM 4,4-diisothiocyanostilbene-2,2 disulphonate (DIDS), 0.1 mM 4-acetamido 4-isothiostilbene-2,2-disulphonic acid (SITS), or 0.5 mM bumetanide, suggesting no involvement of anion transport systems, e.g. an HCO 3 /Cl exchange. Removal of HCO 3 or Cl from the suspending buffer had no effect on the extent of the rise in pHi. After blockade of Na+/H+ exchange by 100 M ethylisopropylamiloride (EIPA), thrombin induced a decrease in pHi the rate of which averaged 0.39 unit/min in HCO 3 -containing medium, and 0.57 unit/min in HCO 3 -free medium. The cytosolic buffer capacity for H+ was determined by the nigericin/ NH4Cl technique in BCECF-loaded platelets and averaged 25.3 mmol/(1xpH) in buffer containing 8 mM HCO 3 , but only 17.2 mmol/(1xpH) in HCO 3 -free buffer. The total amount of H+ transferred by Na+/H+ exchange can be estimated from our measurements at 10 mmol/l platelet cytosol in the absence of HCO 3 and to 14 mmol/l platelet cytosol in the presence of HCO 3 , and is in good agreement with the estimated amount of Na+ uptake by ADP-stimulated platelets. We conclude that net extrusion of H+ from stimulated platelets is predominantly mediated by Na+/H+ exchange without an apparent contribution of HCO 3 /Cl exchange.  相似文献   

8.
Uptake studies with22Na were performed in cultured bovine pigmented ciliary epithelial cells, in order to characterize mechanisms of Na+ transport. A large part of Na+ uptake was sensitive to amiloride, quinidine and harmaline. Na+ uptake was stimulated by intracellular acidification (using the NH 4 + prepulse technique), and was inhibited with increasing extracellular proton concentration. Decreasing extracellular pH from 7.5 to 7.0 increased the apparentK M for Na+ from 38 to 86 mM without considerable changes inV max. In the presence of 5 mM Na+ half maximal inhibition of amiloride sensitive Na+ uptake by extracellular protons was observed at a hydrogen concentration of 50 nM. In the presence of 50 mM Na+ the proton concentration necessary for 50% inhibition was 139 nM. Thus, the mode of inhibition of extracellular H+ seemed to be competitive with aK i of 20–40 nM. 10 M amiloride increased the apparentK M for Na+ from 33 mM to 107 mM, whileV max remained nearly unchanged. IC50 for amiloride was 6 M at 5 mM Na+ and 36 M in the presence of 150 mM Na+. Thus, amiloride behaves as a competitive inhibitor with aK i of about 5 M. The affinities of Na+ to the transport site (K M16 mM), to the inhibitory site for protons (K M21 mM), and to the inhibitory site for amiloride (K M26 mM) were in the same order of magnitude.In summary, we have presented evidence for the presence of a Na+/H+ exchanger in cultured bovine pigmented ciliary epithelial cells. The kinetic data suggest the presence of only one common extracellular binding site for Na+, H+ and amiloride.  相似文献   

9.
We have investigated the role of the electrogenic hydrogen ion pump in the regulation of intracellular sodium ion activity (a Na i ) and intracellular pH (pHi) in frog skin epithelial cells using double-barreled ion sensitive microelectrodes. WhenRana esculenta skin is mounted in an Ussing chamber and bathed in 1 mM Na2SO4 buffered to pH 7.34 with imidazole on the apical side and in normal Ringer on the serosal side, the apical addition of the carbonic anhydrase inhibitor, ethoxzolamide (10–4M) blocks net H+ ion excretion and Na absorption, producing a depolarization of 25–30 mV of the apical membrane, potential (mc). We demonstrate the these changes are accompanied by a fall ina Na i from 6.2±0.5 mmol/l to 3.4±0.6 mmol/l and an increase in pHi from 7.20±0.03 to 7.38±0.08 (n=12 skins). Voltage clamping mc to its control value in the presence of ethoxzolamide restoreda Na i but the pHi remained alkaline. Furthermore, the fall ina Na i produced by ethoxzolamide could be mimicked by voltage clamping mc towards the value of the Nernst potential for Na at the apical membrane. These results indicate that the maintenance of the cellular Na+ transport pool is dependent on a favourable electrical driving force and counter-current generated by an electrogenic H+ pump at the apical membrane.Addition of amiloride (10–5 mol/l) or substitution of external Na+ by Mg2+ or K+ caused a hyperpolarization of mc and a fall ina Na i . These effects were accompanied by an inhibition of H+ excretion and a fall in pHi of 0.14 ±0.08 units (n=6 skins). However, when the effect, of Na+ transport inhibition on mc was prevented by imposing a voltage clamp no effects of amiloride on H+ excretion or pHi were observed. Moreover, the effect of amiloride on pHi could be reproduced in control skins by voltage clamping mc to –100 mV. The metabolic inhibitors vanadate (1 mmol/l) and di-cyclo hexyl carbodiimide (5×10–5 mol/l) inhibited H+ excretion and decreased pHi from 7.28±0.08 to 7.02±0.06 and from 7.30±0.06 to 7.12±0.05 (n=6 skins), respectively.These results indicate that an apical membrane H+ ATPase plays a role in regulating pHi and the mechanism is sensitive to membrane potential.  相似文献   

10.
The interaction of angiotensin II (ANG II) and atrial natriuretic peptide (ANP) on intracellular pH (pHi) and calcium ([Ca2+]i) was investigated in T84 cells (a permanent cell line derived from human colon epithelium) using the fluorescent stains BCECF/AM and Fluo 4/AM, respectively. pHi recovery rate mediated by the Na+/H+ exchanger (NHE) was examined following an NH4Cl pulse. Under control conditions pHi recovered at 0.114±0.005 pH units/min (n=35). ANG II (10–12 or 10–9 M) increased this value, whilst ANG II (10–7 M) decreased it. These effects of ANG II were impaired by simultaneous addition of 1 M or 25 M HOE-694, indicating that the stimulatory and inhibitory effects of ANG II on pHi recovery are mediated in part via the NHE1 and NHE2 isoforms. ANG II increased [Ca2+]i concentration-dependently. ANP (10–6 M) or dimethyl-BAPTA/AM (50 M) blocked the effects of ANG II on [Ca2+]i and on the rate of pHi recovery. Thapsigargin (10–5 M) enhanced the effect of ANG II on [Ca2+]i and reversed its stimulatory effect on the rate of pHi recovery to an inhibitory one. External Ca2+-free solution did not affect the effects of ANG II on these parameters. These data suggest that the [Ca2+]i increase induced by ANG II is dependent on intracellular calcium stores. They are compatible with the demonstration of two sites on the C-terminal of the Na+/H+ exchanger, one stimulating Na+/H+ activity by increases of [Ca2+]i in the lower range (at 10–12 or 10–9 M ANG II) and the other inhibiting this activity at high [Ca2+]i levels (at 10–7 M ANG II). ANP or dimethyl-BAPTA/AM, by impairing the pathway mediating the increase in [Ca2+]i, block both the stimulatory and inhibitory effects of ANG II.  相似文献   

11.
The mechanism of regulation of intracellular pH (pHi) in dispersed acini from the rat mandibular salivary gland has been studied with a microfluorimetric imaging method and the pH probe 2,7-bis(2-carboxyethyl)-5(and –6)-carboxyfluorescein. The pHi in the TRIS/HEPES-buffered standard solution was 7.29±0.01. Addition of 1 mol/l acetylcholine (ACh) or ionomycin caused a sustained increase in the pHi. These agents decreased pHi in the absence of external Na+ or in the presence of amiloride. The rate of pHi recovery from an acid load after NH 4 + prepulse was a linear function of pHi and increased as pHi became more acidic. Addition of ACh shifted the relationship towards a more alkaline pHi range. The increase in pHi induced by ACh or ionomycin was not inhibited by the protein kinase C inhibitors staurosporine (10 nM) and 1-(5-isoquinolinesulfonyl)-1-methylpiperazine (50 mol/l). Addition of 0.1–1 mol/l phorbol 12-myristate 13-acetate (TPA) had little effect on pHi within 10 min; however, exposure to TPA for 120 min resulted in a significant rise in pHi. In Ca2+-free solution with 50 mol/l 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate, the ACh-induced rise in both pHi and cytosolic Ca2+ concentration was suppressed. ACh and ionomycin caused an increment of amiloride-sensitive acid output into the extracellular fluid, while 20 mol/l 1-oleoyl-2-acetylglycerol had little effect on it. It was concluded that (a) stimulation with ACh activated the Na+/H+ antiport in the plasma membrane, (b) ACh also stimulated the intracellular acid production but acid extrusion by the Na+/H+ antiport prevented the cell from intracellular acidification, and (c) the major route of signal transduction for the ACh-induced activation of the Na+/H+ antiport was independent of protein kinase C but was dependent on the rise in cytosolic Ca2+ concentration. The implication of the cytosolic acidification and cell volume change in pHi regulation is discussed.  相似文献   

12.
The signaling cascade resulting in the death of several types of cells treated with ouabain or other cardiotonic steroids (CTS) remains poorly understood. Recently, we observed that ouabain kills epithelial and endothelial cells via its interaction with Na+, K+ -ATPase, but independently of inhibition of Na+, K+ -ATPase-mediated ion fluxes and inversion of the [Na+]i/[K+]i ratio. Here, we report that the death of ouabain-treated epithelial cells from the Madin-Darby canine kidney (C7-MDCK) and endothelial cells from porcine aortae is suppressed by acidification of medium from pH 7.4 to 7.0, i.e. under conditions when pHi was decreased from 7.2 to 6.9. The rescue of ouabain-treated C7-MDCK cells was also detected under selective intracellular acidification caused by inhibition of Na+/H+ exchanger. In these cells, neither Na+, K+ pump activity nor [3H]-ouabain binding was significantly affected by modest acidification. The death of ouabain-treated cells was independent of inhibition of RNA and protein synthesis with actinomycin D and cycloheximide. In contrast, both compounds sharply attenuated the protective action of acidified medium. Thus, our results show that very modest intracellular acidification is sufficient to inhibit the Na+ i/K+ i-independent death signal triggered in epithelial and endothelial cells by CTS. They also suggest that the protective action of acidification is mediated by de novo expression of genes involved in inhibition of the cell death machinery.  相似文献   

13.
The pH regulation in HT29 colon carcinoma cells has been investigated using the pH-sensitive fluorescent indicator 2,7-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF). Under control conditions, intracellular pH (pHi) was 7.21±0.07 (n=22) in HCO 3 -containing and 7.21±0.09 (n=12) in HCO 3 -free solution. HOE-694 (10 mol/l), a potent inhibitor of the Na+/H+ exchanger, did not affect control pHi. As a means to acidify cells we used the NH 4 + /NH3 (20 mmol/l) prepulse technique. The mean peak acidification was 0.37±0.07 pH units (n=6). In HCC 3 -free solutions recovery from acid load was completely blocked by HOE-694 (1 mol/l), whereas in HCO3 3 -containing solutions a combination of HOE-694 and 4,4-diisothiocyanatostilbene-2, 2-disulphonate (DIDS, 0.5 mmol/l) was necessary to show the same effect. Recovery from acid load was Na+-dependent in HCO 3 -containing and HCO 3 -free solutions. Removal of external Cl caused a rapid, DIDS-blockable alkalinization of 0.33±0.03 pH units (n=15) and of 0.20±0.006 pH units (n=5), when external Na+ was removed together with Cl. This alkalinization was faster in HCO 3 -containing than in HCO 3 -free solutions. The present observations demonstrate three distinct mechanisms of pH regulation in HT29 cells: (a) a Na+/H+ exchanger, (b) a HCO 3 /Cl exchanger and (c) a Na+-dependent HCC 3 transporter, probably the Na+-HCO 3 /Cl antiporter. Under HCO 3 — free conditions the Na+/H+ exchanger fully accounts for recovery from acid load, whereas in HCO 3 -containing solutions this is accomplished by the Na+/H+ exchanger and a Na+-dependent mechanism, which imports HCO 3 . Recovery from alkaline load is caused by the HCO 3 /Cl exchanger.This study was supported by DFG Gr 480/10  相似文献   

14.
The effect of parathyroid hormone (PTH) on acid/base transport in isolated rabbit renal proximal tubule S3 segment was investigated with double-barreled and conventional microelectrodes. PTH (10 nM) induced a small depolarization and enhanced the initial rates of cell pH (pHi) increase and cell Cl ([Cl]i) decrease in response to bath Cl removal by 28.0±2.1% and 31.0±6.4% respectively. The calculated initial HCO3 influx to bath Cl removal was also enhanced by 28%. On the other hand, PTH reduced the initial rate of pHi decrease to luminal Na+ removal in the absence of HCO3 /CO2 by 20.4±3.9%. The PTH-induced depolarization was not accompanied with changes in steadystate pHi or [Cl]i levels, but was greatly attenuated in the presence of ouabain (0.1 mM). Either dibutyrylcAMP (0.1 mM) plus theophylline (1 mM) or forskolin (10 M) alone could reproduce all the effects of PTH. These results indicate that (a) PTH inhibits the luminal Na+/H+ exchanger but stimulates the basolateral Cl/HCO3 exchanger in the S3 segment; (b) the PTH-induced depolarization largely results from inhibition of Na+/K+-ATPase and (c) all these effects are at least partly mediated by a cAMP-dependent mechanism.  相似文献   

15.
Copper (Cu2+) intoxication has been shown to induce pathological changes in various tissues. The mechanism underlying Cu2+ toxicity is still unclear. It has been suggested that the Na+/K+-ATPase and/or a change of the membrane permeability may be involved. In this study we examined the effects of Cu2+ on the Na+ and Ca2+ homeostasis of cultured human skeletal muscle cells using the ion-selective fluorescent probes Na+-binding benzofuran isophtalate (SBFI) and Fura-2, respectively. In addition, we measured the effect of Cu2+ on the Na+/K+-ATPase activity. Cu2+ and ouabain increase the cytoplasmic free Na+ concentration ([Na+]i). Subsequent addition of Cu2+ after ouabain does not affect the rate of [Na+]i increase. Cu2+ inhibits the Na+/K+-ATPase activity with an IC50 of 51 M. The cytoplasmic free Ca2+ concentration ([Ca2+]i) remains unaffected for more than 10 min after the administration of Cu2+. Thereafter, [Ca2+]i increases as a result of the Na+/Ca2+-exchanger operating in the reversed mode. The effects of Cu2+ on the Na+ homeostasis are reversed by the reducing and chelating agent dithiothreitol and the heavy metal chelator N,N,N,N,-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN). In conclusion, SBFI is a good tool to examine Na+ homeostasis in cultured human skeletal muscle cells. Under the experimental conditions used, Cu2+ does not modify the general membrane permeability, but inhibits the Na+/K+-pump leading to an increase of [Na+]i. As a consequence the operation mode of the Na+/Ca2+-exchanger reverses and [Ca2+]i rises.The authors thank staff and coworkers of the Department of Neurology of the University Hospital Nijmegen, Nijmegen for their kind cooperation in obtaining muscle biopsies. Mr. Arie Oosterhof is gratefully acknowledged for culturing of the human muscle cells. The Prinses Beatrix Fonds and the Dutch-Chinese scientific exchange program contributed financial support for this study.  相似文献   

16.
We have examined the rapid effect of 1,25-dihydroxyvitamin-D3 [1,25(OH)2D3] on apical Na+/H+ exchange activity in opossum kidney (OK) cells and in MCT cells (a culture of simian-virus-40-immortalized mouse cortical tubule cells) grown on filter support. Addition of 1,25(OH)2D3 (10 nM) for 1 min increased apical Na+/H+ exchange activity [recovery from an acid load; measured by 2,7-bis(2-carboxyethyl)-5(6)-carboxyfluorescein] in OK cells (by 56%) and in MCT cells (by 36%). The cellular mechanisms involved in 1,25(OH)2D3-dependent stimulation of Na+/H+ exchange were analysed in OK cells; stimulation of Na+/ H+ exchange by 1,25(OH)2D3 was not prevented by actinomycin D. Applying parathyroid hormone (PTH) reduced Na+/H+ exchange activity in OK cells (by 34% at 10 nM, 5 min); 1,25(OH)2D3 reversed PTH-induced inhibition, either when PTH was added prior to 1,25(OH)2D3 or when the two agonists were applied together. 1,25(OH)2D3 had no effect on basal OK cell cAMP content or on [Ca2+]i (fura-2). 1,25(OH)2D3 attenuated PTH-induced cAMP accumulation and had no effect on the PTH-dependent increase in [Ca2+]i. These data suggest a regulatory control (stimulation) of proximal tubular brush-border Na+/H+ exchange by 1,25(OH)2D3. This effect is non-genomic and might in part be explained by a release from cAMP-dependent control of transport activity.  相似文献   

17.
The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2-7-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.  相似文献   

18.
Proton transport mechanism in the cell membrane of Xenopus laevis oocytes   总被引:2,自引:0,他引:2  
Mechanisms of H+ transport across the plasma cell membrane of prophase-arrested oocytes of Xenopus laevis were investigated by testing the effect of ion substitutions and inhibitors on cytoplasmic pH (pHi), membrane potential (V m) and membrane resistance (R m). During superfusion with control solution of pH=7.4, pHi was 7.49±0.12 (n=15), V m was –61.9±7.8 mV (n=34) (cytoplasm negative), and R m was 2.9±1.5 M (n=19). These data confirm that H+ ions are not distributed at electrochemical equilibrium. By following pHi during recovery of the oocytes from an acid load (20 mmol/l NH4Cl) in the presence and absence of extracellular Na+ or amiloride (1 mmol/l), a Na/H exchanger was identified. On the basis of the known Na+ gradient across the cell membrane, this transporter could suffice to generate the observed H+ disequilibrium distribution. Utilizing blockers or ion-concentration-step experiments no evidence was obtained for an ATP-driven H+ pump or for passive acid/base transporters such as H+ conductances or Na+ (HCO 3 )3 cotransport. The membrane depolarization observed in response to extracellular acidification appeared to result from a pH-dependent, Ba2+-inhibitable K+ conductance.  相似文献   

19.
The effect of unilateral nephrectomy on Na+–H+ exchange in rat renal cortical brush-border membrane vesicles (BBMV) was studied by the method of acridine orange fluorescence quenching. The exchanger activity in BBMV from remnant kidney increased rapidly by 70–75% within first 30 min following uninephrectomy. Only a slight further increase was found in later stages of renal growth, i.e. 30 min to 7 days following uninephrectomy. The changes in antiporter activity were restricted toV max, whereas theK m for Na+ was similar in control and compensatory growing kidney. The increase of Na+–H+ exchange at 15 min was not affected by actinomycin D in vivo, whereas the increase at 48 h was completely abolished indicating that protein synthesis could be involved in the late, but not in the initial stimulation of renal Na+–H+ exchange. The late, but not the initial stimulations of Na+–H+ exchange were associated with elevated activities of cortical (Na++K+)-ATPase indicating that changes in antiporter activity precede those in the (Na++K+)-pump. The early stimulation of Na+–H+ exchange in BBMV in one kidney was induced also by the occlusion of blood flow through the contralateral kidney for 15 min, without removing it. Thirty min after the occlusion was removed and the reflow established, the Na+–H+ exchange in BBMV from the intact kidney decreased to the control values. The observed modulations in renal Na+–H+ exchanger may be regulated by phosphorylation-dephosphorylation events. In support, the concentration of a well known protein kinase C activator, 1,2-diacylglycerol, in the cortical tissue of the remnant kidney increased up to 100% within 5 min following unilateral nephrectomy and preceded the increase in Na+–H+ exchange. The early stimulation of Na+–H+ exchange may be a trigger in initiating the kidney growth.  相似文献   

20.
The membrane potential V m the cytosolic pH (pHi), the transference numbers (t) for K+, Cl and Na+/ non-selective cation (NSC) and the pH-sensitivity of V m were investigated in transitional cells from the vestibular labyrinth of the gerbil. V m, pHi, , and the pHi sensitivity of V m were under control conditions were –92±1 mV (n=89 cells), pHi 7.13±0.07 (n=11 epithelia), 0.87±0.02 (n=22), 0.02±0.01 (n=19), 0.01±0.01 (n=24) and –5 mV/pH unit (n=13 cells/n=11 epithelia), respectively. In the presence of 100 mol/l Ba2+ the corresponding values were: –70±1 mV (n=32), pHi 7.16±0.08 (n=6), 0.31±0.05 (n=4), 0.06±0.01 (n=6), 0.20±0.03 (n=10) and -16 mV/pH-unit (n=15/n=6). In the presence of 500 mol/l amiloride the corresponding values were: –72±2mV (n=34), pHi 7.00±0.07 (n=5), 0.50±0.04 (n=6), 0.04±0.01 (n=11), 0.28±0.04 (n=9) and –26 mV/pH-unit (n=20/n=5). In the presence of 20 mmol/l propionate plus amiloride the corresponding values were: –61±2 mV (n=27), pHi 6.72±0.06 (n=5), 0.30±0.02 (n=6), 0.06±0.01 (n=5) and 0.40±0.02 (n=8), respectively. V m was depolarized and and pHi decreased due to (a) addition of 1 mmol/l amiloride in 150 mmol/l Na+ by 38±1 mV (n=8), from 0.82±0.02 to 0.17±0.02 (n=8) and by 0.13±0.01 pH unit (n=6), respectively; (b) reduction of [Na+] from 150 to 1.5 mmol/l by 3.3±0.5 mV (n=30), from 0.83±0.02 to 0.75±0.04 (n=9) and by 0.33±0.07 pH unit (n=4), respectively and (c) addition of 1 mmol/l amiloride in 1.5 mmol/l Na+ by 20±1 mV (n=11) and from 0.83±0.03 to 0.53±0.02 (n=5), respectively. These data suggest that the K+ conductance is directly inhibited by amiloride and Ba2+ and that Ba2+ and amiloride uncover or induce a pH-sensitive and a Na+/NSC conductance which may or may not be the same entity.Some of the data have been presented at various meetings and appear in abstract form in [31, 35, 37]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号