首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common defect of fatty acid oxidation. Many countries have introduced newborn screening for MCADD, because characteristic acylcarnitines can easily be identified in filter paper blood spot samples by tandem mass spectrometry (MS/MS), because MCADD is a frequent disease, and because of the success of early treatment initiated before clinical symptoms have emerged. In Denmark we have screened 519,350 newborns for MCADD by MS/MS and identified 58 affected babies. The diagnosis of MCADD was confirmed in all 58 newborns by mutation analysis. This gives an incidence of MCADD detected by newborn screening in Denmark of 1/8954. In sharp contrast to this we found that the incidence of clinically presenting MCADD in Denmark in the 10 year period preceding introduction of MS/MS-based screening was only 1 in 39,691. This means that four times more newborns with MCADD are detected by screening than what is expected based on the number of children presenting clinically in an unscreened population. The mutation spectrum in the newborns detected by screening is different from that observed in clinically presenting patients with a much lower proportion of newborns being homozygous for the prevalent disease-causing c.985A>G mutation. A significant number of the newborns have genotypes with mutations that have not been observed in patients detected clinically. Some of these mutations, like c.199T>C and c.127G>A, are always associated with a milder biochemical phenotype and may cause a milder form of MCADD with a relatively low risk of disease manifestation, thereby explaining part of the discrepancy between the frequency of clinically manifested MCADD and the frequency of MCADD determined by screening. In addition, our data suggest that some of this discrepancy can be explained by a reduced penetrance of the c.985A>G mutation, with perhaps only 50% of c.985A>G homozygotes presenting with disease manifestations. Interestingly, we also report that the observed number of newborns identified by screening who are homozygous for the c.985A>G mutation is twice that predicted from the estimated carrier frequency. We therefore redetermined the carrier frequency in a new sample of 1946 blood spots using a new assay, but this only confirmed that the c.985A>G carrier frequency in Denmark is approximately 1/105. We conclude that MCADD is much more frequent than expected, has a reduced penetrance and that rapid genotyping using the initial blood spot sample is important for correct diagnosis and counseling.  相似文献   

2.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent inherited defect of fatty acid oxidation, with a significant morbidity and mortality in undiagnosed patients. Adverse outcomes can effectively be prevented by avoiding metabolic stress and following simple dietary measures. Therefore, prospective newborn screening (NBS) is being proposed for this condition. However, technical validation of MCADD population screening and assessment of its overall benefit require broadening of the as-yet-scarce knowledge of the MCADD genetic heterogeneity unraveled by NBS and its phenotypic consequences. Here, we describe the entire spectrum of sequence variations occurring in newborns with MCADD in the population of Bavaria, Germany, in relation to the biochemical phenotype. Among 524,287 newborns, we identified 62 cases of MCADD, indicating a birth incidence of 1 in 8,456. In all of the 57 newborns available for analysis, two alterations within the MCADD gene (ACADM) were identified. The most prevalent alteration c.985A>G (Lys329Glu) occurred in 27 (47%) newborns in the homozygous and in 18 (32%) in the heterozygous state (63% of defective alleles). The mild folding variant c.199T>C (Tyr67His) was identified in nine individuals, six of them being compound heterozygous with c.985A>G (Lys329Glu). Neither of the prevalent alterations were found in the remaining nine newborns. A total of 18 sequence variations were identified; 13 of them were novel: eight missense mutations, one nonsense mutation, two splice variants, and two small deletions. The remaining five were previously reported in MCADD patients. The ACADM heterogeneity uncovered was larger as anticipated from previous c.985A>G (Lys329Glu) carrier screening data. In addition, we show that MCADD appears to occur as frequently in Turkish newborns as in the native German population. Our data validate that biochemical NBS for MCADD is a highly specific procedure for disease detection, with the identification of a significant share of milder biochemical phenotypes, such as c.199T>C (Tyr67His). These show statistically lower acylcarnitine markers, allowing us to distinguish subgroups within the spectrum of ACADM sequence variations that correlate to biochemical MCADD disease expression. Our data might provide technical and medical guidance for decision making in the worldwide efforts to introduce MCADD population screening.  相似文献   

3.
Medium‐chain acyl‐CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β‐oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions—c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)—were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.  相似文献   

4.
Biallelic variants in the ACADM gene cause medium-chain acyl-CoA dehydrogenase deficiency (MCADD). This study reports on differences in the occurrence of secondary free carnitine (C0) deficiency and different biochemical phenotypes related to genotype and age in 109 MCADD patients followed-up at a single tertiary care center during 22 years. C0 deficiency occurred earlier and more frequently in c.985A>G homozygotes (genotype A) compared to c.985A>G compound heterozygotes (genotype B) and individuals carrying variants other than c.985A>G and c.199C>T (genotype D) (median age 4.2 vs. 6.6 years; p < 0.001). No patient carrying c.199C>T (genotype C) developed C0 deficiency. A daily dosage of 20–40 mg/kg carnitine was sufficient to maintain normal C0 concentrations. Compared to genotype A as reference group, octanoylcarnitine (C8) was significantly lower in genotypes B and C, whereas C0 was significantly higher by 8.28 μmol/L in genotype C (p < 0.05). In conclusion, C0 deficiency is mainly found in patients with pathogenic genotypes associated with high concentrations of presumably toxic acylcarnitines, while individuals carrying the variant c.199C>T are spared and show consistently mild biochemical phenotypes into adulthood. Low-dose carnitine supplementation maintains normal C0 concentrations. However, future studies need to evaluate clinical benefits on acute and chronic manifestations of MCADD.  相似文献   

5.
The incidence of severe metabolic crises in medium chain acyl-CoA dehydrogenase deficiency (MCADD) patients homozygous for the common c.985A>G mutation, who had been identified by neonatal screening, was assessed prospectively and compared to retrospective cohort data in unscreened patients with identical genotypes. Logrank test showed a significant reduction of severe metabolic crises in the screened cohort (p<0.01). Neonatal screening appears to reduce the rate of severe metabolic crisis or death in the most prevalent subset of MCADD.  相似文献   

6.
OBJECTIVE: To establish the risk associated with mutations in the coding region of GDF9 gene in Indian women with ovarian failure. DESIGN: This case-control study was designed for mutational analysis of the GDF9 coding region in a cohort of women with premature ovarian failure (n = 127), primary amenorrhea (n = 58), and secondary amenorrhea (n = 10) compared with controls (n = 220). RESULTS: This case-control study revealed eight mutations in the GDF9 gene, including five novel mutations: c.1-8C>T, c.199A>C (p.Lys67Glu), c. 205C>T, c.646G>A (p.Val216Mat), and c.1353C>T, and three documented mutations: c.398-39C>G, c.447C>T, and c.546G>A. Missense mutation c.199A>C was present in 4 of 127 premature ovarian failure (POF) cases and 1 of 10 secondary amenorrhea cases. The c.646G>A mutation was present in two POF cases. Both missense mutations were absent in controls. Genotype distribution of c.447C>T was significantly different in POF cases than controls (chi(2) = 5.93, P = 0.05). We chose two frequent single-nucleotide polymorphisms (c.398-39C>G, c.447C>T) for haplotyping and found that the C-T haplotype was significantly higher in patients (P = 0.03), whereas the C-C haplotype was representative of the control group. CONCLUSIONS: We report two rare missense mutations, c.199A>C and c.646G>A, which are associated with ovarian failure. The presence of the c.447>T mutation might indicate a higher risk for POF. Haplotype C-T was significantly associated with ovarian failure, whereas the C-C haplotype was representative of the control group.  相似文献   

7.
In the follow-up of New Jersey newborn screens suggestive of medium chain acyl-CoA dehydrogenase deficiency (MCADD) during a 30-month period, we identified five patients of Hispanic American ethnicity. With information provided by the New Jersey Department of Health and Human Services Newborn Screening program we calculated an overall cumulative incidence of approximately 7.20/100,000 for MCADD; 7.58/100,000 among Hispanic Americans and 7.08/100,000 among non-Hispanic Americans. Among the five Hispanic American infants who screened positive, a common variant (c.443G>A [p.R148K]) was identified which accounted for 30% of the alleles; c.799G>A (p.G267R) and c.985A>G (p.K329E) each accounted for an additional 20%; and a novel variant c.302G>A (p.G101E) was identified in one patient. Although treated prospectively during interim illnesses to prevent unwanted sequelae; till date, none of the patients carrying the c.443G>A variant have been symptomatic. ? 2012 Wiley Periodicals, Inc.  相似文献   

8.
BackgroundNewborn screening (NBS) for medium chain acyl-CoA dehydrogenase deficiency (MCADD), one of the most common disorders identified, uses measurement of octanoylcarnitine (C8) from dried blood spots. In the state of Ohio, as in many places, primary care providers, with or without consultation from a metabolic specialist, may perform “confirmatory testing”, with the final diagnostic decision returned to the state. Confirmatory testing may involve measurement of metabolites, enzyme analysis, mutation screening, or sequencing. We now report sequencing results for infants said to have “false positive” NBS results for MCAD deficiency, or who died before confirmatory testing could be performed.MethodsDried blood spots (DBS) were obtained from all 18 available NBS cards identified as “false positive” by NBS for the 3 year period after screening began in Ohio in 2003 (N = 20, thus 2 had no DBS available), and from all 6 infants with abnormal screens who died before confirmatory testing could be obtained. DNA extracted from DBS was screened for the common c.985A > G mutation in exon 11 of the ACADM gene, using a specific restriction digest method, followed by sequencing of the 12 exons, intron–exon junctions, and several hundred base pairs of the 5′ untranslated region.ResultsThe NBS cut-off value for C8 used was 0.7 μmol/L. Sequencing of ACADM in six neonates with elevated C8 on NBS who died before confirmatory testing was obtained did not identify any significant variants in the coding region of the gene, suggesting that MCADD was not a contributing factor in these deaths. The mean C8 for the 18 surviving infants labeled as “False Positives” was 0.90 (95%CI 0.77–1.15), much lower than the mean value for confirmed cases. Ten of the 18 were premature births weighing < 1200 g, the rest were normal sized and full term. Eight infants, mostly full term with appropriate birth weight, were heterozygous for the common c.985A > G mutation; one of those also has a novel sequence change identified in exon 9 that predicts a PRO to LEU change at residue 258 of the protein. Both the phase and any possible clinical significance of the variant are unknown, but several lines of evidence suggest that it could lead to protein malfunction. That child had an NBS C8 of 2.2, more than double the mean for the False Positive group. Unfortunately, the study design did not provide clinical outcome data, but the child is not known to have presented clinically by age 7 years.ConclusionsThese results suggest that sequencing of ACADM from dried blood spots can be one useful follow-up tool to provide accurate genetic counseling in the situation of an infant with elevated C8 on NBS who dies before confirmatory testing is obtained. Of surviving neonates, there appear to be two populations of infants with false positive NBS C8 values: 1) term AGA infants who are heterozygous for the common c.985A > G mutation, and, 2) premature infants, regardless of carrier status. The finding of two sequence variants in an infant reported to the state as not affected suggests the possibility that some infants with two mutations may be reported as normal at follow-up. State registries may wish to consider asking that metabolic specialists, who are most familiar with the variability of these rare disorders, be involved in the final diagnostic evaluation. Finally, providers may wish to consider ACADM sequencing, or other diagnostic testing, as part of the confirmatory evaluation for infants with NBS C8 concentrations that are significantly above the cut-off value, even if plasma and urine metabolites are not strikingly increased.  相似文献   

9.
IntroductionMedium chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent of the fatty acid oxidation disorders (FAOD), a group caused by defects in the mitochondrial B-oxidation of fatty acids. Fatty acid oxidation is critical in supplying energy during periods when glucose is limited or when energy needs are increased beyond the availability of glucose. In MCADD, this energy shortage can result in acute metabolic episodes or sudden death. The prevention of sudden death from MCADD served as the primary impetus to expand newborn screening. However, we have experienced sudden death in four children with MCADD despite their detection by newborn screening. The purpose of this report is to alert others to the danger of sudden death in MCADD even when it is detected by newborn screening, to identify the clinical symptoms that precede sudden death, and to examine the relationship between the newborn screening result and the risk for sudden death.MethodsWe describe these children and their metabolic findings with emphasis on their newborn screening octanoylcarnitine (C8) level, the primary marker for newborn detection of MCADD. We also performed a literature search of cases of sudden death in MCADD in which the clinical status preceding death is described.ResultsThe newborn screening C8 levels in our four cases were markedly elevated, ranging from 8.4 to 24.8 μmol/L (cut off < 0.8 μmol/L). Only two of the children were homozygous for the common c.985A>G MCAD mutation; the other two were heterozygous for this mutation. Similarly, among the eight reported cases which included MCAD genotypes, five were homozygous for the c.985A>G mutation, while two were heterozygous and one was homozygous for a splice site mutation. Vomiting 12–24 h before sudden death was present in all four of our cases, and the review of reported cases of sudden death in MCADD disclosed vomiting as a frequent symptom.ConclusionWe suggest that in MCADD (1) a newborn screening C8 level of 6 μmol/L or greater represents particular risk of sudden death; (2) that MCAD genotypes other than homozygosity for the c.985A>G mutation are also associated with sudden death; (3) that vomiting is a frequent symptom preceding sudden death; and (4) social support and medical follow-up of these families are crucial in reducing the occurrence of sudden death.  相似文献   

10.
《Genetics in medicine》2016,18(3):221-230
PurposeTo assess the potential of whole-genome sequencing (WGS) to replicate and augment results from conventional blood-based newborn screening (NBS).MethodsResearch-generated WGS data from an ancestrally diverse cohort of 1,696 infants and both parents of each infant were analyzed for variants in 163 genes involved in disorders included or under discussion for inclusion in US NBS programs. WGS results were compared with results from state NBS and related follow-up testing.ResultsNBS genes are generally well covered by WGS. There is a median of one (range: 0–6) database-annotated pathogenic variant in the NBS genes per infant. Results of WGS and NBS in detecting 28 state-screened disorders and four hemoglobin traits were concordant for 88.6% of true positives (n = 35) and 98.9% of true negatives (n = 45,757). Of the five infants affected with a state-screened disorder, WGS identified two whereas NBS detected four. WGS yielded fewer false positives than NBS (0.037 vs. 0.17%) but more results of uncertain significance (0.90 vs. 0.013%).ConclusionWGS may help rule in and rule out NBS disorders, pinpoint molecular diagnoses, and detect conditions not amenable to current NBS assays.  相似文献   

11.
The extreme phenotypic variability of patients with Gaucher disease (GD) is not completely explained by glucocerebrosidase gene mutations. It has been proposed that genetic modifiers might influence GD phenotype. We examined seven polymorphisms of the glucosylceramide synthase gene (UGCG) and their correlation with severity of GD. Five UGCG variants were significantly associated with disease severity, according to the DS3 scoring system: c.‐295C>T, c.‐232_‐241ins10, c.98+50A>G, c.98+68A>T, and c.861A>G. Heterozygous [N370S]+[L444P] patients with c.[‐232_‐241ins10;98+50G] haplotype had a significantly lower DS3 score in relation to patients carrying only one of these polymorphisms. Electrophoretic mobility shift assay analysis showed an increased nuclear protein binding ability for the G allele at the cDNA position c.98+50, as well as an altered pattern for the c.‐232_‐241ins10 allele. The promoter activity of the haplotypes decreased significantly with respect to wild type activity in HepG2 and COS‐7 cells (?14% and ?16% for the c.[‐232_‐241ins10;98+50A] haplotype, ?44% and ?25% for c.[‐222nonins;98+50G] haplotypes, and ?64% and ?75% for c.[‐232_‐241ins10;98+50G] haplotype, respectively). These data indicate that the c.‐232_‐241ins10 and c.98+50A>G variants are modifying factors of GD severity, which can partly explain the variability in severity of the disease.  相似文献   

12.
In homocystinuria due to cystathionine β‐synthase (CBS) deficiency, vitamin B6 response has been linked to distinct mutations and ruled out for others. The splice site mutation c.1224‐2A>C leading to the deletion of exon 12 is predominantly found in patients from Central Europe, where it has been found on in average 14% of mutant alleles. In this study we analyzed the clinical picture in 17 CBS deficient carriers of c.1224‐2A>C. Homozygotes for c.1224‐2A>C did not respond to vitamin B6, while in compound heterozygotes the response to vitamin B6 depended on the mutation on the second allele. Maximum likelihood analysis revealed one common haplotype of the c.1224‐2A>C alleles. Additionally, we report the four novel CBS mutations c.451G>A (p.Gly151?), c.740_769del (p.Lys247_Gly256del), c.862G>C (p.Ala288Pro) and c.1135C>T (p.Arg379Trp). In summary, the data of this study suggest that the CBS c.1224‐2A>C allele confers vitamin B6 nonresponsiveness and that this mutant allele came from a common ancestor. © 2004 Wiley‐Liss, Inc.  相似文献   

13.
An enzyme‐linked immunosorbent assay (ELISA) was developed as a rapid, reproducible and cost‐effective method for routine analysis of atrazine and simazine in environmental samples. Atrazine recoveries from C18 solid phase extractions (SPE) of water spiked from 0.1 ppb to 100 ppb showed good correlations with gas chromatography (GC), [14C] atrazine radioassay and ELISA methods. The C18 cartridges demonstrated very good recovery for extracting and concentrating the herbicide by all three analytical methods. Comparison between ELISA and GC for analysis of 75 well water samples showed no false negatives and a low (5%) occurrence of false positives. Soil extracts from a controlled simazine spill were also analyzed by GC and ELISA, with excellent correlation between the two methods. Characterization of the s‐triazine assay for tolerance to organic solvents and salts demonstrated the method to be resistant to such modifiers. Additionally, comparison of two monoclonal and two polyclonal antibodies raised against triazine structures were made to assess the performance of the two types of bioreagents. The ELISA method offered sensitivity, accuracy and precision which were competitive with the GC methods. The throughput and cost of the ELISA method offers advantages over traditional extraction and analysis of the s‐triazines on a routine basis.  相似文献   

14.
15.
Several polymorphisms of genes involved in one-carbon metabolism have been identified. The reported metabolic phenotypes are often based on small studies providing inconsistent results. This large-scale study of 10,601 population-based samples was carried out to investigate the association between a panel of biochemical parameters and genetics variants related to one-carbon metabolism. Concentrations of total homocysteine (tHcy), folate, vitamin B(12) (cobalamin), methylmalonic acid (MMA), vitamin B(2) (riboflavin), vitamin B(6) (PLP), choline, betaine, dimethylglycine (DMG), cystathionine, cysteine, methionine, and creatinine were determined in serum/plasma. All subjects were genotyped for 13 common polymorphisms: methylenetetrahydrofolate reductase (MTHFR) c.665C>T (known as 677C>T; p.Ala222Val) and c.1286A>C (known as 1298A>C; p.Glu429Ala); methionine synthase (MTR) c.2756A>G (p.Asp919Gly); methionine synthase reductase (MTRR) c.66A>G (p.Ile22Met); methylenetetrahydrofolate dehydrogenase (MTHFD1) c.1958G>A (p.Arg653Gln); betaine homocysteine methyltransferase (BHMT) c.716G>A (known as 742G>A; p.Arg239Gln); cystathionine beta-synthase (CBS) c.844_845ins68 and c.699C>T (p.Tyr233Tyr); transcobalamin-II (TCN2) c.67A>G (p.Ile23Val) and c.776C>G (p.Pro259Arg); reduced folate carrier-1 (SLC19A1) c.80G>A (p.Arg27His); and paraoxonase-1 (PON1) c.163T>A (p.Leu55Met) and c.575A>G (p.Gln192Arg). The metabolic profile in terms of the measured vitamins and metabolites were investigated for these 13 polymorphisms. We confirmed the strong associations of MTHFR c.665C>T with tHcy and folate, but also observed significant (P<0.01) changes in metabolite concentrations according to other gene polymorphisms. These include MTHFR c.1286A>C (associations with tHcy, folate and betaine), MTR c.2756A>G (tHcy), BHMT c.716G>A (DMG), CBS c.844_845ins68 (tHcy, betaine), CBS c.699C>T (tHcy, betaine, cystathionine) and TCN2 c.776C>G (MMA). No associations were observed for the other polymorphisms investigated.  相似文献   

16.
Studies have shown that the maternal risk for Down syndrome (DS) may be modulated by alterations in folate metabolism. The aim of this study was to evaluate the influence of 12 genetic polymorphisms involved in folate metabolism on maternal risk for DS. In addition, we evaluated the impact of these polymorphisms on serum folate and plasma methylmalonic acid (MMA, an indicator of vitamin B_{12} status) concentrations. The polymorphisms transcobalamin II (TCN2) c.776C>G, betaine-homocysteine S-methyltransferase (BHMT) c.742A>G, methylenetetrahydrofolate reductase (NAD(P)H) (MTHFR) c.677 C>T and the MTHFR 677C-1298A-1317T haplotype modulate DS risk. The polymorphisms MTHFR c.677C>T and solute carrier family 19 (folate transporter), member 1 (SLC19A1) c.80 A>G modulate folate concentrations, whereas the 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) c.66A>G polymorphism affects the MMA concentration. These results are consistent with the modulation of the maternal risk for DS by these polymorphisms.  相似文献   

17.
18.
Hereditary non-polyposis colorectal cancer (HNPCC), the most common hereditary colon cancer syndrome, is a dominant disorder caused by germline defects in mismatch repair (MMR) genes. Identification of MMR gene mutations can have direct clinical implications in counseling and management of HNPCC families. We screened 44 HNPCC and 97 suspected HNPCC Korean families for germline mutations in three MMR genes: MLH1, MSH2 and MSH6. We identified twelve novel mutations: nine in MLH1(c.632_633insT, c.808_811delACTT, c.845C>G, c.1625A>C, c.1730+1delG, c.1907T>C, c.1918C>T, c.2104-2A>G and c.2170T>A), two in MSH2 (c.1886A>G, c.1316_1318delCCT) and one in MSH6 (c.3488A>T). In addition, two statically significant cSNPs in MLH1: c.1128T>C ( p=0.008 in HNPCC and p=0.037 in early-onset CRC) and c.2168C>A ( p<0.001 in HNPCC). Interestingly, the most frequent mutation, c.1757_1758insC in MLH1, was a founder mutation inherited from a common Korean ancestor.  相似文献   

19.
The fatty acid oxidation disorder most commonly identified by tandem mass spectrometry newborn screening is the potentially fatal medium-chain acyl-CoA dehydrogenase deficiency (MCAD). In clinically presenting cases, 80% are homozygous for the common mutation, c.985A > G and 18% heterozygous. We screened 592,785 babies and identified 34 with MCAD, 17 homozygous for c.985A > G, 14 with one copy, and 3 with no copy. We sequenced the exons of 19 patients, the 17 carrying one or no copy of c.985A > G, and two with marginal findings, and examined correlations between groups of mutations and biochemical markers. We found two known or putative pathogenic mutations in 18 of the 19 patients. Two mutations appeared more than once: c.199T > C, not recorded in clinically presenting cases (n = 4), and c.583G > A (n = 2). Patients homozygous for c.985A > G had the highest levels of neonatal octanoylcarnitine, plasma octanoylcarnitine when asymptomatic, and urinary acylglycines. Compound heterozygotes of c.985A > G and other mutations had intermediate levels, and those without c.985A > G, or heterozygous for that and c.199T > C had the lowest levels of these analytes. There was overlap in all values. The c.985A > G and c.583G > A mutations appear to have functional effects towards the severe end of the spectrum, and the c.199T > C mutation a smaller effect, as has been previously postulated. If these results are confirmed and extended, this could influence the advice given to parents of babies with MCAD detected by newborn screening, and make management more specific. In the meantime, all MCAD patients identified by newborn screening have, by definition, a functional defect and require careful clinical management.  相似文献   

20.
Gaucher disease, the most prevalent sphingolipidosis, is caused by the deficient activity of acid beta-glucosidase, mainly due to mutations in the GBA gene. Over 200 mutations have been identified worldwide, more than 25 of which were in Spanish patients. In order to demonstrate causality for Gaucher disease, some of them: c.662C>T (p.P182L), c.680A>G (p.N188S), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1093G>A (p.E326K), c.1289C>T (p.P391L), c.1292A>T (p.N392I), c.1322T>C (p.I402T), and the double mutants [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), were expressed in Sf9 cells using a baculovirus expression system. Other well-established Gaucher disease mutations, namely c.1226A>G (p.N370S), c.1342G>C (p.D409H), and c.1448T>C (p.L444P), were also expressed for comparison. The levels of residual acid beta-glucosidase activity of the mutant enzymes produced by the cDNAs carrying alleles c.662C>T (p.P182L), c.886C>T (p.R257X), c.1054T>C (p.Y313H), c.1289C>T (p.P391L), and c.1292A>T (p.N392I) were negligible. The c.1226A>G (p.N370S), c.1322T>C (p.I402T), c.1342G>C (p.D409H), c.1448T>C (p.L444P), and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]) alleles produced enzymes with levels ranging from 6 to 14% of the wild-type. The three remaining alleles, c.680A>G (p.N188S), c.1093G>A (p.E326K), and [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]), showed higher activity (66.6, 42.7, and 23.2%, respectively). Expression studies revealed that the c.1093G>A (p.E326K) change, which was never found alone in a Gaucher disease-causing allele, when found in a double mutant such as [c.680A>G; c.1093G>A] ([p.N188S; p.E326K]) and [c.1448T>C; c.1093G>A] ([p.L444P; p.E326K]), decreases activity compared to the activity found for the other mutation alone. These results suggest that c.1093G>A (p.E326K) should be considered a "modifier variant" rather than a neutral polymorphism, as previously considered. Mutation c.680A>G (p.N188S), which produces a mutant enzyme with the highest level of activity, is probably a very mild mutation or another "modifier variant."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号