首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Activation of K(+) current plays a critical role in the control of programmed cell death. In the present study, whole-cell patch-clamp recording, a caspase-3 activity assay, and flow cytometric analysis were used to examine the effects of the MT2 melatonin receptor agonist 2-iodomelatonin on the delayed-rectifier K(+) current (IK) and the prevention of apoptosis. It was found that apoptosis of cerebellar granular neurons induced by low-K(+) (5 mm) incubation was associated with an increase in IK amplitude and caspase-3 activity. After 6 hr of low-K(+) treatment, IK was increased by 45% (n = 86). Flow cytometry showed that the apoptosis rate increased by 333% compared with the control neurons. In addition, exposure of cultured granule cells to low K(+) also resulted in a significant activation of caspase-3, by 466%. 2-Iodomelatonin (10 microm in injection pipette) inhibited the IK amplitude recorded from control cells and from cells undergoing apoptosis. However, 2-iodomelatonin only modified the IK-channel activation kinetics of cells under both conditions. Furthermore, 2-iodomelatonin reduced the rate of apoptosis and caspase-3 activation, by 66 and 64%, respectively. The melatonin receptor antagonist, 4P-PDOT, abrogated the effect of 2-iodomelatonin on the IK augmentation, caspase-3 activity, and apoptosis. These results suggest that the neuroprotective effects of melatonin are not only because of its function as a powerful antioxidant, but also to its interactions with specific receptors. The effect of 2-iodomelatonin against apoptosis may be mediated by activating a melatonin receptor, which modulates IK channels and reduces K(+) efflux.  相似文献   

2.
Chronic melatonin exposure produces microtubule rearrangements in Chinese hamster ovary (CHO) cells expressing the human MT1 melatonin receptor while at the same time desensitizing MT1 receptors. Because microtubule rearrangements parallel MT1 receptor desensitization, we tested whether microtubules modulate receptor responsiveness. We determined whether depolymerization of microtubules by Colcemid, which prevents melatonin-induced outgrowths in MT1-expressing CHO cells, also prevents MT1 receptor desensitization by affecting G(alpha)-GTP exchange on G-proteins. In this study, we found that depolymerization of microtubules in MT1 receptor expressing cells, prevented melatonin-induced receptor desensitization reflected by an increase in the number of high potency sites when compared with melatonin-treated cells. Further examination of the mechanism(s) underlying this desensitization suggested that these effects occurred at the level of G-proteins. Depolymerization of microtubules during melatonin-induced desensitization, attenuated forskolin-induced cAMP accumulation, the opposite of which usually occurs following melatonin exposure alone. Concomitant to this attenuation in the forskolin response was a reduction in the amount of G(i alpha) protein coupled to MT1 receptors and an increase in [32P] azidoanilido GTP incorporation into G(i) proteins. These data are consistent with the findings that microtubule depolymerization did not affect MT1/G(q) coupling nor did it affect melatonin-induced phosphoinositide hydrolysis following melatonin exposure. However, interestingly, microtubule depolymerization enhanced melatonin-induced protein kinase C activation that was blocked in the presence of pertussis toxin. These data demonstrate that microtubule dynamics can modulate melatonin receptor function through their actions on G(i) proteins and impact on downstream signaling cascades.  相似文献   

3.
Abstract:  We have recently shown that melatonin antagonizes damage-induced apoptosis by interaction with the MT-1/MT-2 plasma membrane receptors. Here, we show that melatonin interferes with the intrinsic pathway of apoptosis at the mitochondrial level. In response to an apoptogenic stimulus, melatonin allows mitochondrial translocation of the pro-apoptotic protein Bax, but it impairs its activation/dimerization The downstream apoptotic events, i.e. cytochrome c release, caspase 9 and 3 activation and nuclear vesiculation are equally impaired, indicating that melatonin interferes with Bax activation within mitochondria. Interestingly, we found that melatonin induces a strong re-localization of Bcl-2, the main Bax antagonist to mitochondria, suggesting that Bax activation may in fact be antagonized by Bcl-2 at the mitochondrial level. Indeed, we inhibit the melatonin anti-apoptotic effect (i) by silencing Bcl-2 with small interfering RNAs, or with small-molecular inhibitors targeted at the BH3 binding pocket in Bcl-2 (i.e. the one interacting with Bax); and (ii) by inhibiting melatonin-induced Bcl-2 mitochondrial re-localization with the MT1/MT2 receptor antagonist luzindole. This evidence provides a mechanism that may explain how melatonin through interaction with the MT1/MT2 receptors, elicits a pathway that interferes with the Bcl-2 family, thus modulating the cell life/death balance.  相似文献   

4.
The influence of melatonin on evoked potentials recorded from the CAI field of mouse hippocampal slices was investigated. Melatonin (0.1-2.0 mM) and its analog, 6-chloromelatonin (0.1-0.5 mM) depressed evoked potentials (EPSP and the population spike) in a concentration-dependent manner. The melatonin-induced depression was followed by a slow recovery phase. Since the fiber potential was not affected, it was concluded that melatonin influenced synaptic efficiency and/or cell excitability. Luzindole, an antagonist of MT2 melatonin receptors, although slightly depressing evoked potentials when applied by itself (100 microM), blocked any further inhibition by melatonin when added afterwards. We concluded that melatonin reduced synaptic efficiency and/or excitability of hippocampal neurons most likely through interaction with MT2 melatonin receptors, but other possible mechanisms of melatonin action are also considered.  相似文献   

5.
The function of melatonin as a protective agent against newborn hypoxic‐ischemic (H‐I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H‐I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H‐I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H‐I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H‐I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.  相似文献   

6.
Melatonin is known to increase neuronal activity in the hippocampus, an effect contrary to that of somatostatin (somatotropin release-inhibiting factor, SRIF). Thus, the aim of this study was to investigate whether the somatostatinergic system is implicated in the mechanism of action of melatonin in the rat hippocampus. One group of rats was injected a single dose of melatonin [25 microg/kg subcutaneously (s.c.)] or saline containing ethanol (0.5%, s.c.) and killed 5 hr later. Melatonin significantly decreased the SRIF-like immunoreactivity levels and induced a significant decrease in the density of SRIF receptors as well as in the dissociation constant (Kd). SRIF-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase activity was markedly decreased in hippocampal membranes from melatonin-treated rats. The functional activity of Gi proteins was similar in hippocampal membranes from melatonin-treated and control rats. Western blot analyses revealed that melatonin administration did not alter Gialpha1 or Gialpha2 levels. To determine if the changes observed were related to melatonin-induced activation of central melatonin receptors, a melatonin receptor antagonist, luzindole, was administered prior to melatonin injection. Pretreatment with luzindole (10 mg/kg, s.c.) did not alter the melatonin-induced effects on the above-mentioned parameters and luzindole, alone, had no observable effect. The present results demonstrate that melatonin decreases the activity of the SRIF receptor-effector system in the rat hippocampus, an effect which is apparently not mediated by melatonin receptors. As SRIF exerts an opposite effect to that of melatonin on hippocampal neuronal activity, it is possible that the SRIFergic system could be implicated in the mechanism of action of melatonin in the rat.  相似文献   

7.
The pineal secretory product melatonin has, in addition to regulating retinal, circadian and vascular functions, neuroprotective effects. Blood melatonin levels are often decreased in Alzheimer's disease (AD), a progressively disabling neurodegenerative disorder. In this study we provide the first immunohistochemical evidence for the localization of melatonin 1a-receptor (MT(1)) in aged human hippocampus and a comparison of AD cases. MT(1) was localized to pyramidal neurons in the hippocampal cornu ammonis (CA)1-4 subfields. There was a distinct increase in staining intensity in all AD cases indicating an up-regulation of the receptor, possibly as a compensatory response to impaired melatonin levels in order to augment melatonin's neuroprotective effects.  相似文献   

8.
The pineal hormone melatonin exhibits immunomodulatory activity well documented in mammals and birds. The mechanism of melatonin action within the immune system is, however, poorly understood. In mammalian immune cells in vitro, melatonin acts mainly as an antiapoptotic, oncostatic and antiproliferative agent, and these effects are exerted via specific receptors or are related to its free radical scavenging activity. In previous studies we have found that in short-term chicken splenocyte cultures in vitro melatonin stimulated basil proliferation and inhibited that stimulated with phytohemagglutinin, a T-cell mitogen. This paper is devoted to the involvement of membrane receptors, previously characterised by us as MT2 (Mel(1b)) and Mel(1c) subtypes, in the above mentioned melatonin effects in chicken splenocyte cultures. For this purpose, in present study a nonselective melatonin receptor antagonist, luzindole, and the selective MT2 blocker, 4P-PDOT, were used. The effect of melatonin on second messengers, cyclic adenosine-3',5'-monophosphate (cAMP) and inositol-1,4,5-trisphosphate (IP(3)), involved in the regulation of proliferation, was examined. We have found that the stimulation of proliferation occurs via Mel(1c) receptor and is associated with the changes in intracellular second messengers concentration: a decrease in cAMP and an increase in IP(3). In contrast, in mitogen-activated splenocytes, melatonin-induced inhibition of proliferation is mediated by MT2 receptors and is related to cAMP accumulation, as well as a decrease in IP(3). In conclusion, we have demonstrated that the stimulatory and inhibitory effect of melatonin on chicken splenocytes in vitro, dependent on the magnitude of cell stimulation, resulted from two different subtypes of membrane receptors.  相似文献   

9.
The pharmacological potential of targeting selectively melatonin MT1 or MT2 receptors has not yet been exploited in medicine. Research using selective MT1/MT2 receptor ligands and MT1/MT2 receptor knockout mice has indicated that the activation of MT2 receptors selectively increases non‐rapid eye movement (NREM) sleep whereas MT1 receptors seem mostly implicated in the regulation of REM sleep. Moreover, MT1 knockout mice show an increase in NREM sleep, while MT2 knockout a decrease, suggesting an opposite role of these two receptors. A recent paper in mice by Sharma et al (J Pineal Res, 2018, e12498) found that MT1 but not MT2 receptors are expressed on orexin neurons in the perifornical lateral hypothalamus (PFH). Moreover, after injecting melatonin or luzindole into the mouse PFH, the authors suggest that melatonin promotes NREM sleep because activates PFH MT1 receptors, which in turn inhibit orexin neurons that are important in promoting arousal and maintaining wakefulness. In this commentary, we have critically commented on some of these findings on the bases of previous literature. In addition, we highlighted the fact that no conclusions could be drawn on the melatonin receptor subtype mediating the effects of melatonin on sleep because the authors used the non‐selective MT1/MT2 receptors antagonist luzindole. More solid research should further characterize the pharmacological function of these two melatonin receptors in sleep.  相似文献   

10.
Respiratory activity is under circadian modulation and the physiological mechanisms may involve the pineal secretory product, melatonin, and the carotid chemoreceptor. We hypothesized that melatonin modulates the carotid chemoreceptor response to hypercapnic acidosis. To determine whether the effect of melatonin on the chemoreceptor response to hypercapnic acidosis is mediated by melatonin receptors in the chemosensitive cells, cytosolic calcium ([Ca2+]i) was measured by spectrofluorometry in fura-2-loaded glomus cells dissociated from rat carotid bodies. Melatonin (0.01-10 nm) per se did not change the [Ca2+]i levels of the glomus cells but it concentration-dependently attenuated the peak [Ca2+]i response to hypercapnic acidosis in the glomus cells. In addition, the [Ca2+]i response was attenuated by 2-iodomelatonin, an agonist of melatonin receptors. The melatonin-induced attenuation of the [Ca2+]i response to hypercapnic acidosis was abolished by pretreatment with an non-selective mt1/MT2 antagonist, luzindole, and by MT2 antagonists, 4-phenyl-2-propionamidotetraline or DH97. In situ hybridization study with antisense mt1 and MT2 receptor mRNA oligonucleotide probes showed an expression of mt1 and MT2 receptors in the rat carotid body. Also, melatonin attenuated the carotid afferent response to hypercapnic acidosis in single- or pauci-fibers recorded from the sinus nerve in isolated carotid bodies superfused with bicarbonate-buffer saline. Results suggest that an activation of the melatonin receptors expressed in the glomus cells of the rat carotid body reduces the chemoreceptor response to hypercapnic acidosis. This modulation may play a physiological role in the influence of the circadian rhythms on the chemoreflex.  相似文献   

11.
Individuals of many vertebrate species undergo seasonal changes in immune function in addition to marked seasonal changes in reproductive, metabolic, and other physiological processes. Despite growing evidence that photoperiod mediates seasonal changes in immunity, little is known regarding the neuroendocrine mechanisms underlying these changes. Enhanced immune function in short days is correlated with increased duration of nightly melatonin secretion, and recent studies indicate that melatonin can act directly on immune cells to enhance immune function. It remains unknown, however, which melatonin receptor subtype mediates immune enhancement by melatonin. The present study examined the contribution of specific melatonin receptor subtypes, mt1 (Mel 1a) and MT2 (Mel 1b), in mediating melatonin-induced enhancement of cell-mediated and humoral immune function in mice. Melatonin enhanced both splenocyte proliferation and anti-keyhole limpet hemocyanin (KLH) IgG concentrations in both wild-type (WT) and mice lacking a functional gene for melatonin receptor mt1 (mt1 -/-), suggesting that the mt1 receptor does not mediate these responses. In addition, luzindole, an MT2 receptor antagonist, attenuated melatonin-induced enhancement of splenocyte proliferation in both WT and mt1 -/- mice. Taken together, these results suggest that receptor subtype mt1 is not necessary for mediating melatonin-induced enhancement of immune function and provide the first evidence for a specific melatonin receptor subtype, MT2, that may be involved in melatonin-induced immune enhancement.  相似文献   

12.
Abstract:  Melatonin induces cellular differentiation in numerous cell types. Data show that multiple mechanisms are involved in these processes that are cell-type specific and may be receptor dependent or independent. The focus of this study was to specifically assess the role of human MT1 melatonin receptors in cellular differentiation using an MT1-Chinese hamster ovary (CHO) model; one that reproducibly produces measurable morphologic changes in response to melatonin. Using multiple approaches, we show that melatonin induces MT1-CHO cells to hyperelongate through a MEK 1/2, and ERK 1/2-dependent mechanism that is dependent upon MT1 receptor internalization, Gi protein activation, and clathrin-mediated endocytosis. Using immunoprecipitation analysis, we show that MT1 receptors form complexes with Giα 2,3, Gqα, β-arrestin-2, MEK 1/2, and ERK 1/2 in the presence of melatonin. We also show that MEK and ERK activity that is induced by melatonin is dependent on Gi protein activation, clathrin-mediated endocytosis and is modulated by microtubules. We conclude from these studies that melatonin-induced internalization of human MT1 melatonin receptors in CHO cells is responsible for activating both MEK 1/2 and ERK 1/2 to drive these morphologic changes. These events, as mediated by melatonin, require Gi protein activation and endocytosis mediated through clathrin, to form MT1 receptor complexes with β-arrestin-2/MEK 1/2 and ERK 1/2. The MT1-CHO model is invaluable to mapping out signaling cascades as mediated through MT1 receptors especially because it separates out MEK/ERK 1/2 activation by MT1 receptors from that of receptor tyrosine kinases.  相似文献   

13.
Abstract:  MT1 melatonin receptors expressed in Chinese hamster ovary (CHO) cells remain sensitive to a melatonin re-challenge even following chronic melatonin exposure when microtubules are depolymerized in the cell, an exposure that normally results in MT1 receptor desensitization. We extended our findings to MT2 melatonin receptors using both in vitro and in vivo approaches. Using CHO cells expressing human MT2 melatonin receptors, microtubule depolymerization prevents the loss in the number of high potency states of the receptor when compared to melatonin-treated cells. In addition, microtubule depolymerization increases melatonin-induced PKC activity but not PI hydrolysis via Gi proteins similar to that shown for MT1Rs. Furthermore, microtubule depolymerization in MT2-CHO cells enhances the exchange of GTP on Gi-proteins using a photoaffinity analog of GTP. To test whether microtubules are capable of modulating melatonin-induced phase-shifts, microtubules are depolymerized specifically within the suprachiasmatic nucleus of the hypothalamus (SCN) of the Long Evans rat and the efficacy of melatonin to phase shift their circadian activity rhythms was assessed and compared to animals with intact SCN microtubules. We find that microtubule depolymerization in the SCN using either Colcemid or nocodazole enhances the efficacy of 10 p m melatonin to phase-shift the activity rhythms of the Long Evans rat. No enhancement occurs in the presence of β-lumicolchicine, the inactive analog of Colcemid. Taken together, these data suggest that microtubule dynamics can modulate melatonin-induced phase shifts of circadian activity rhythms which may explain, in part, why circadian disturbances occur in individuals afflicted with diseases associated with microtubule disturbances.  相似文献   

14.
15.
16.
The aim of the present study was to identify the distribution of the second melatonin receptor (MT2) in the human hippocampus of elderly controls and Alzheimer's disease (AD) patients. This is the first report of immunohistochemical MT2 localization in the human hippocampus both in control and AD cases. The specificity of the MT2 antibody was ascertained by fluorescence microscopy using the anti-MT2 antibody in HEK 293 cells expressing recombinant MT2, in immunoblot experiments on membranes from MT2 expressing cells, and, finally, by immunoprecipitation experiments of the native MT2. MT2 immunoreactivity was studied in the hippocampus of 16 elderly control and 16 AD cases. In controls, MT2 was localized in pyramidal neurons of the hippocampal subfields CA1-4 and in some granular neurons of the stratum granulosum. The overall intensity of the MT2 staining was distinctly decreased in AD cases. The results indicate that MT2 may be involved in mediating the effects of melatonin in the human hippocampus, and this mechanism may be heavily impaired in AD.  相似文献   

17.
18.
Several reports have demonstrated that the pineal hormone, melatonin, plays an important role in body mass regulation in mammals. To date, however, the target tissues and relevant biochemical mechanisms involved remain uncharacterized. As adipose tissue is the principal site of energy storage in the body, we investigated whether melatonin could also act on this tissue. Semiquantitative RT-PCR analysis revealed the expression of MT1 and MT2 melatonin receptor mRNAs in the human brown adipose cell line, PAZ6, as well as in human brown and white adipose tissue. Binding analysis with 2-[(125)I]iodomelatonin ((125)I-Mel) revealed the presence of a single, high affinity binding site in PAZ6 adipocytes with a binding capacity of 7.46 +/- 1.58 fmol/mg protein and a K(d) of 457 +/- 5 pM. Both melatonin and the MT2 receptor-selective antagonist, 4-phenyl-2-propionamidotetraline, competed with 2-[(125)I]iodomelatonin binding, with respective K(i) values of 3 x 10(-11) and 1.5 x 10(-11) M. Functional expression of melatonin receptors in PAZ6 adipocytes was indicated by the melatonin-induced, dose-dependent inhibition of forskolin-stimulated cAMP levels and basal cGMP levels with IC(50) values of 2 x 10(-9) and 3 x 10(-10) M, respectively. Modulation of the cGMP pathway by melatonin further supports functional expression of MT2 receptors, as this pathway was shown to be specific for that subtype in humans. In addition, long-term melatonin treatment of PAZ6 adipocytes was found to decrease the expression of the glucose transporter Glut4 and glucose uptake, an important parameter of adipocyte metabolism. These results suggest that melatonin may act directly at MT2 receptors on human brown adipocytes to regulate adipocyte physiology.  相似文献   

19.
Chronic amphetamine (AMPH) abuse leads to damage of the hippocampus, the brain area associated with learning and memory process. Previous results have shown that AMPH‐induced dopamine neurotransmitter release, reactive oxygen species formation, and degenerative protein aggregation lead to neuronal death. Melatonin, a powerful antioxidant, plays a role as a neuroprotective agent. The objective of this study was to investigate whether the protective effect of melatonin on AMPH‐induced hippocampal damage in the postnatal rat acts through the dopaminergic pathway. Four‐day‐old postnatal rats were subcutaneously injected with 5‐10 mg/kg AMPH and pretreated with 10 mg/kg melatonin prior to AMPH exposure for seven days. The results showed that melatonin decreased the AMPH‐induced hippocampal neuronal degeneration in the dentate gyrus, CA1, and CA3. Melatonin attenuated the reduction in the expression of hippocampal synaptophysin, PSD‐95, α‐synuclein, and N‐methyl‐D‐aspartate (NMDA) receptor protein and mRNA caused by AMPH. Melatonin attenuated the AMPH‐induced reduction in dopamine transporter (DAT) protein expression in the hippocampus and the reduction in mRNA expression in the ventral tegmental area (VTA). Immunofluorescence demonstrated that melatonin not only prevented the AMPH‐induced loss of DAT and NMDA receptor but also prevented AMPH‐induced α‐synuclein overexpression in the dentate gyrus, CA1, and CA3. Melatonin decreased the AMPH‐induced reduction in the protein and mRNA of the NMDA receptor downstream signaling molecule, calcium/calmodulin‐dependent protein kinase II (CaMKII), and the melatonin receptors (MT1 and MT2). This study showed that melatonin prevented AMPH‐induced toxicity in the hippocampus of postnatal rats possibly via its antioxidative effect and mitochondrial protection.  相似文献   

20.
The taurinate analog acamprosate (calcium acetylhomotaurinate) has received considerable attention in Europe for its ability to prevent relapse in abstained alcoholics. To determine the mechanism of acamprosate actions in the CNS, we superfused acamprosate onto rat hippocampal CA1 pyramidal neurons using an in vitro slice preparation. In current- and voltage-clamp recordings, acamprosate (100 to 1000 μM) superfusion had little effect on resting membrane potential or input slope resistance. Acamprosate had no effect on Ca2+-dependent action potentials when tetrodotoxin was used to block Na+ spikes. In whole-cell voltage-clamp recordings, and in the presence of tetraethylammonium and Cs+ to block K+ channels, acamprosate had little effect on a Cd2+-sensitive inward current likely to be a high voltage-activated Ca2+ current. However, in both current- and voltage-clamp recordings, acamprosate significantly increased the N-methyl-d -aspartate (NMDA) component of excitatory postsynaptic potentials evoked by stimulation of Schaffer collaterals in the stratum radiatum, in the presence of the selective non-NMDA (R.S)-α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid kainate) glutamate receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione and the GABAA receptor antagonist bicuculline. Acamprosate had inconsistent or no effects on the stratum radiatum-evoked non-NMDA component of the excitatory postsynaptic potentials, in the presence of bicuculline and the NMDA antagonist dl -2-amino-5-phosphonovalerate. Acamprosate, on average, had little effect on the late inhibitory postsynaptic potentials thought to be mediated by GABAB receptors. In the presence of tetrodotoxin to block synaptic transmission, acamprosate dramatically increased inward current responses in most CA1 neurons to exogenous NMDA applied by pressure or superfusion, with reversal on washout of acamprosate. These data suggest that acamprosate may act postsynaptically to increase the NMDA component of excitatory transmission to hippocampal CA1 pyramidal neurons. Considering the known interaction of ethanol with NMDA receptors, this acamprosate modulation of NMDA receptor-mediated neurotransmission could provide a mechanism of action underlying the clinical efficacy of acamprosate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号